rowid,title,contents,year,author,author_slug,published,url,topic 262,Be the Villain,"Inclusive Design is the practice of making products and services accessible to, and usable by as many people as reasonably possible without the need for specialized accommodations. The practice was popularized by author and User Experience Design Director Kat Holmes. If getting you to discover her work is the only thing this article succeeds in doing then I’ll consider it a success. As a framework for creating resilient solutions to problems, Inclusive Design is incredible. However, the aimless idealistic aspirations many of its newer practitioners default to can oftentimes run into trouble. Without outlining concrete, actionable outcomes that are then vetted by the people you intend to serve, there is the potential to do more harm than good. When designing, you take a user flow and make sure it can’t be broken. Ensuring that if something is removed, it can be restored. Or that something editable can also be updated at a later date—you know, that kind of thing. What we want to do is avoid surprises. Much like a water slide with a section of pipe missing, a broken flow forcibly ejects a user, to great surprise and frustration. Interactions within a user flow also have to be small enough to be self-contained, so as to avoid creating a none pizza with left beef scenario. Lately, I’ve been thinking about how to expand on this practice. Watertight user flows make for a great immediate experience, but it’s all too easy to miss the forest for the trees when you’re a product designer focused on cranking out features. What I’m concerned about is while to trying to envision how a user flow could be broken, you also think about how it could be subverted. In addition to preventing the removal of a section of water slide, you also keep someone from mugging the user when they shoot out the end. If you pay attention, you’ll start to notice this subversion with increasing frequency: Domestic abusers using internet-controlled devices to spy on and control their partner. Zealots tanking a business’ rating on Google because its owners spoke out against unchecked gun violence. Forcing people to choose between TV or stalking because the messaging center portion of a cable provider’s entertainment package lacks muting or blocking features. White supremacists tricking celebrities into endorsing anti-Semitic conspiracy theories. Facebook repeatedly allowing housing, credit, and employment advertisers to discriminate against users by their race, ability, and religion. White supremacists also using a video game chat service as a recruiting tool. The unchecked harassment of minors on Instagram. Swatting. If I were to guess why we haven’t heard more about this problem, I’d say that optimistically, people have settled out of court. Pessimistically, it’s most likely because we ignore, dismiss, downplay, and suppress those who try to bring it to our attention. Subverted design isn’t the practice of employing Dark Patterns to achieve your business goals. If you are not familiar with the term, Dark Patterns are the use of cheap user interface tricks and psychological manipulation to get users to act against their own best interests. User Experience consultant Chris Nodder wrote Evil By Design, a fantastic book that unpacks how to detect and think about them, if you’re interested in this kind of thing Subverted design also isn’t beholden design, or simple lack of attention. This phenomenon isn’t even necessarily premeditated. I think it arises from naïve (or willfully ignorant) design decisions being executed at a historically unprecedented pace and scale. These decisions are then preyed on by the shrewd and opportunistic, used to control and inflict harm on the undeserving. Have system, will game. This is worth discussing. As the field of design continues to industrialize empathy, it also continues to ignore the very established practice of threat modeling. Most times, framing user experience in terms of how to best funnel people into a service comes with an implicit agreement that the larger system that necessitates the service is worth supporting. To achieve success in the eyes of their superiors, designers may turn to emotional empathy exercises. By projecting themselves into the perceived surface-level experiences of others, they play-act at understanding how to nudge their targeted demographics into a conversion funnel. This roleplaying exercise has the effect of scoping concerns to the immediate, while simultaneously reinforcing the idea of engagement at all cost within the identified demographic. The thing is, pure engagement leaves the door wide open for bad actors. Even within the scope of a limited population, the assumption that everyone entering into the funnel is acting with good intentions is a poor one. Security researchers, network administrators, and other professionals who practice threat modeling understand that the opposite is true. By preventing everyone save for well-intentioned users from operating a system within the parameters you set for them, you intentionally limit the scope of abuse that can be enacted. Don’t get me wrong: being able to escort as many users as you can to the happy path is a foundational skill. But we should also be having uncomfortable conversations about why something unthinkable may in fact not be. They’re not going to be fun conversations. It’s not going to be easy convincing others that these aren’t paranoid delusions best tucked out of sight in the darkest, dustiest corner of the backlog. Realistically, talking about it may even harm your career. But consider the alternative. The controlled environment of the hypothetical allows us to explore these issues without propagating harm. Better to be viewed as the office’s resident villain than to have to live with something like this: If the past few years have taught us anything, it’s that the choices we make—or avoid making—have consequences. Design has been doing a lot of growing up as of late, including waking up to the idea that technology isn’t neutral. You’re going to have to start thinking the way a monster does—if you can imagine it, chances are someone else can as well. To get into this kind of mindset, inverting the Inclusive Design Principles is a good place to start: Providing a comparable experience becomes forcing a single path. Considering situation becomes ignoring circumstance. Being consistent becomes acting capriciously. Giving control becomes removing autonomy. Offering choice becomes limiting options. Prioritizing content becomes obfuscating purpose. Adding value becomes filling with gibberish. Combined, these inverted principles start to paint a picture of something we’re all familiar with: a half-baked, unscrupulous service that will jump at the chance to take advantage of you. This environment is also a perfect breeding ground for spawning bad actors. These kinds of services limit you in the ways you can interact with them. They kick you out or lock you in if you don’t meet their unnamed criteria. They force you to parse layout, prices, and policies that change without notification or justification. Their controls operate in ways that are unexpected and may shift throughout the experience. Their terms are dictated to you, gaslighting you to extract profit. Heaps of jargon and flashy, unnecessary features are showered on you to distract from larger structural and conceptual flaws. So, how else can we go about preventing subverted design? Marli Mesibov, Content Strategist and Managing Editor of UX Booth, wrote a brilliant article about how to use Dark Patterns for good—perhaps the most important takeaway being admitting you have a problem in the first place. Another exercise is asking the question, “What is the evil version of this feature?” Ask it during the ideation phase. Ask it as part of acceptance criteria. Heck, ask it over lunch. I honestly don’t care when, so long as the question is actually raised. In keeping with the spirit of this article, we can also expand on this line of thinking. Author, scientist, feminist, and pacifist Ursula Franklin urges us to ask, “Whose benefits? Whose risks?” instead of “What benefits? What risks?” in her talk, When the Seven Deadly Sins Became the Seven Cardinal Virtues. Inspired by the talk, Ethan Marcotte discusses how this relates to the web platform in his powerful post, Seven into seven. Few things in this world are intrinsically altruistic or good—it’s just the nature of the beast. However, that doesn’t mean we have to stand idly by when harm is created. If we can add terms like “anti-pattern” to our professional vocabulary, we can certainly also incorporate phrases like “abuser flow.” Design finally got a seat at the table. We should use this newfound privilege wisely. Listen to women. Listen to minorities, listen to immigrants, the unhoused, the less economically advantaged, and the less technologically-literate. Listen to the underrepresented and the underprivileged. Subverted design is a huge problem, likely one that will never completely go away. However, the more of us who put the hard work into being the villain, the more we can lessen the scope of its impact.",2018,Eric Bailey,ericbailey,2018-12-06T00:00:00+00:00,https://24ways.org/2018/be-the-villain/,ux 241,Jank-Free Image Loads,"There are a few fundamental problems with embedding images in pages of hypertext; perhaps chief among them is this: text is very light and loads rather fast; images are much heavier and arrive much later. Consequently, millions (billions?) of times a day, a hapless Web surfer will start reading some text on a page, and then — Your browser doesn’t support HTML5 video. Here is a link to the video instead. — oops! — an image pops in above it, pushing said text down the page, and our poor reader loses their place. By default, partially-loaded pages have the user experience of a slippery fish, or spilled jar of jumping beans. For the rest of this article, I shall call that jarring, no-good jumpiness by its name: jank. And I’ll chart a path into a jank-free future – one in which it’s easy and natural to author elements that load like this: Your browser doesn’t support HTML5 video. Here is a link to the video instead. Jank is a very old problem, and there is a very old solution to it: the width and height attributes on . The idea is: if we stick an image’s dimensions right into the HTML, browsers can know those dimensions before the image loads, and reserve some space on the layout for it so that nothing gets bumped down the page when the image finally arrives. width Specifies the intended width of the image in pixels. When given together with the height, this allows user agents to reserve screen space for the image before the image data has arrived over the network. —The HTML 3.2 Specification, published on January 14 1997 Unfortunately for us, when width and height were first spec’d and implemented, layouts were largely fixed and images were usually only intended to render at their fixed, actual dimensions. When image sizing gets fluid, width and height get weird: See the Pen fluid width + fixed height = distortion by Eric Portis (@eeeps) on CodePen. width and height are too rigid for the responsive world. What we need, and have needed for a very long time, is a way to specify fixed aspect ratios, to pair with our fluid widths. I have good news, bad news, and great news. The good news is, there are ways to do this, now, that work in every browser. Responsible sites, and responsible developers, go through the effort to do them. The bad news is that these techniques are all terrible, cumbersome hacks. They’re difficult to remember, difficult to understand, and they can interact with other pieces of CSS in unexpected ways. So, the great news: there are two on-the-horizon web platform features that are trying to make no-jank, fixed-aspect-ratio, fluid-width images a natural part of the web platform. aspect-ratio in CSS The first proposed feature? An aspect-ratio property in CSS! This would allow us to write CSS like this: img { width: 100%; } .thumb { aspect-ratio: 1/1; } .hero { aspect-ratio: 16/9; } This’ll work wonders when we need to set aspect ratios for whole classes of images, which are all sized to fit within pre-defined layout slots, like the .thumb and .hero images, above. Alas, the harder problem, in my experience, is not images with known-ahead-of-time aspect ratios. It’s images – possibly user generated images – that can have any aspect ratio. The really tricky problem is unknown-when-you’re-writing-your-CSS aspect ratios that can vary per-image. Using aspect-ratio to reserve space for images like this requires inline styles: And inline styles give me the heebie-jeebies! As a web developer of a certain age, I have a tiny man in a blue beanie permanently embedded deep within my hindbrain, who cries out in agony whenever I author a style="""" attribute. And you know what? The old man has a point! By sticking super-high-specificity inline styles in my content, I’m cutting off my, (or anyone else’s) ability to change those aspect ratios, for whatever reason, later. How might we specify aspect ratios at a lower level? How might we give browsers information about an image’s dimensions, without giving them explicit instructions about how to style it? I’ll tell you: we could give browsers the intrinsic aspect ratio of the image in our HTML, rather than specifying an extrinsic aspect ratio! A brief note on intrinsic and extrinsic sizing What do I mean by “intrinsic” and “extrinsic?” The intrinsic size of an image is, put simply, how big it’d be if you plopped it onto a page and applied no CSS to it whatsoever. An 800×600 image has an intrinsic width of 800px. The extrinsic size of an image, then, is how large it ends up after CSS has been applied. Stick a width: 300px rule on that same 800×600 image, and its intrinsic size (accessible via the Image.naturalWidth property, in JavaScript) doesn’t change: its intrinsic size is still 800px. But this image now has an extrinsic size (accessible via Image.clientWidth) of 300px. It surprised me to learn this year that height and width are interpreted as presentational hints and that they end up setting extrinsic dimensions (albeit ones that, unlike inline styles, have absolutely no specificity). CSS aspect-ratio lets us avoid setting extrinsic heights and widths – and instead lets us give images (or anything else) an extrinsic aspect ratio, so that as soon as we set one dimension (possibly to a fluid width, like 100%!), the other dimension is set automatically in relation to it. The last tool I’m going to talk about gets us out of the extrinsic sizing game all together — which, I think, is only appropriate for a feature that we’re going to be using in HTML. intrinsicsize in HTML The proposed intrinsicsize attribute will let you do this: That tells the browser, “hey, this image.jpg that I’m using here – I know you haven’t loaded it yet but I’m just going to let you know right away that it’s going to have an intrinsic size of 800×600.” This gives the browser enough information to reserve space on the layout for the image, and ensures that any and all extrinsic sizing instructions, specified in our CSS, will layer cleanly on top of this, the image’s intrinsic size. You may ask (I did!): wait, what if my references multiple resources, which all have different intrinsic sizes? Well, if you’re using srcset, intrinsicsize is a bit of a misnomer – what the attribute will do then, is specify an intrinsic aspect ratio: In the future (and behind the “Experimental Web Platform Features” flag right now, in Chrome 71+), asking this image for its .naturalWidth would not return 3 – it will return whatever 75vw is, given the current viewport width. And Image.naturalHeight will return that width, divided by the intrinsic aspect ratio: 3/2. Can’t wait I seem to have gotten myself into the weeds a bit. Sizing on the web is complicated! Don’t let all of these details bury the big takeaway here: sometime soon (🤞 2019‽ 🤞), we’ll be able to toss our terrible aspect-ratio hacks into the dustbin of history, get in the habit of setting aspect-ratios in CSS and/or intrinsicsizes in HTML, and surf a less-frustrating, more-performant, less-janky web. I can’t wait!",2018,Eric Portis,ericportis,2018-12-21T00:00:00+00:00,https://24ways.org/2018/jank-free-image-loads/,code 260,The Art of Mathematics: A Mandala Maker Tutorial,"In front-end development, there’s often a great deal of focus on tools that aim to make our work more efficient. But what if you’re new to web development? When you’re just starting out, the amount of new material can be overwhelming, particularly if you don’t have a solid background in Computer Science. But the truth is, once you’ve learned a little bit of JavaScript, you can already make some pretty impressive things. A couple of years back, when I was learning to code, I started working on a side project. I wanted to make something colorful and fun to share with my friends. This is what my app looks like these days: Mandala Maker user interface The coolest part about it is the fact that it’s a tool: anyone can use it to create something original and brand new. In this tutorial, we’ll build a smaller version of this app – a symmetrical drawing tool in ES5, JavaScript and HTML5. The tutorial app will have eight reflections, a color picker and a Clear button. Once we’re done, you’re on your own and can tweak it as you please. Be creative! Preparations: a blank canvas The first thing you’ll need for this project is a designated drawing space. We’ll use the HTML5 canvas element and give it a width and a height of 600px (you can set the dimensions to anything else if you like). Files Create 3 files: index.html, styles.css, main.js. Don’t forget to include your JS and CSS files in your HTML.

Your browser doesn't support canvas.

I’ll ask you to update your HTML file at a later point, but the CSS file we’ll start with will stay the same throughout the project. This is the full CSS we are going to use: body { background-color: #ccc; text-align: center; } canvas { touch-action: none; background-color: #fff; } button { font-size: 110%; } Next steps We are done with our preparations and ready to move on to the actual tutorial, which is made up of 4 parts: Building a simple drawing app with one line and one color Adding a Clear button and a color picker Adding more functionality: 2 line drawing (add the first reflection) Adding more functionality: 8 line drawing (add 6 more reflections!) Interactive demos This tutorial will be accompanied by four CodePens, one at the end of each section. In my own app I originally used mouse events, and only added touch events when I realized mobile device support was (A) possible, and (B) going to make my app way more accessible. For the sake of code simplicity, I decided that in this tutorial app I will only use one event type, so I picked a third option: pointer events. These are supported by some desktop browsers and some mobile browsers. An up-to-date version of Chrome is probably your best bet. Part 1: A simple drawing app Let’s get started with our main.js file. Our basic drawing app will be made up of 6 functions: init, drawLine, stopDrawing, recordPointerLocation, handlePointerMove, handlePointerDown. It also has nine variables: var canvas, context, w, h, prevX = 0, currX = 0, prevY = 0, currY = 0, draw = false; The variables canvas and context let us manipulate the canvas. w is the canvas width and h is the canvas height. The four coordinates are used for tracking the current and previous location of the pointer. A short line is drawn between (prevX, prevY) and (currX, currY) repeatedly many times while we move the pointer upon the canvas. For your drawing to appear, three conditions must be met: the pointer (be it a finger, a trackpad or a mouse) must be down, it must be moving and the movement has to be on the canvas. If these three conditions are met, the boolean draw is set to true. 1. init Responsible for canvas set up, this listens to pointer events and the location of their coordinates and sets everything in motion by calling other functions, which in turn handle touch and movement events. function init() { canvas = document.querySelector(""canvas""); context = canvas.getContext(""2d""); w = canvas.width; h = canvas.height; canvas.onpointermove = handlePointerMove; canvas.onpointerdown = handlePointerDown; canvas.onpointerup = stopDrawing; canvas.onpointerout = stopDrawing; } 2. drawLine This is called to action by handlePointerMove() and draws the pointer path. It only runs if draw = true. It uses canvas methods you can read about in the canvas API documentation. You can also learn to use the canvas element in this tutorial. lineWidth and linecap set the properties of our paint brush, or digital pen, but pay attention to beginPath and closePath. Between those two is where the magic happens: moveTo and lineTo take canvas coordinates as arguments and draw from (a,b) to (c,d), which is to say from (prevX,prevY) to (currX,currY). function drawLine() { var a = prevX, b = prevY, c = currX, d = currY; context.lineWidth = 4; context.lineCap = ""round""; context.beginPath(); context.moveTo(a, b); context.lineTo(c, d); context.stroke(); context.closePath(); } 3. stopDrawing This is used by init when the pointer is not down (onpointerup) or is out of bounds (onpointerout). function stopDrawing() { draw = false; } 4. recordPointerLocation This tracks the pointer’s location and stores its coordinates. Also, you need to know that in computer graphics the origin of the coordinate space (0,0) is at the top left corner, and all elements are positioned relative to it. When we use canvas we are dealing with two coordinate spaces: the browser window and the canvas itself. This function converts between the two: it subtracts the canvas offsetLeft and offsetTop so we can later treat the canvas as the only coordinate space. If you are confused, read more about it. function recordPointerLocation(e) { prevX = currX; prevY = currY; currX = e.clientX - canvas.offsetLeft; currY = e.clientY - canvas.offsetTop; } 5. handlePointerMove This is set by init to run when the pointer moves. It checks if draw = true. If so, it calls recordPointerLocation to get the path and drawLine to draw it. function handlePointerMove(e) { if (draw) { recordPointerLocation(e); drawLine(); } } 6. handlePointerDown This is set by init to run when the pointer is down (finger is on touchscreen or mouse it clicked). If it is, calls recordPointerLocation to get the path and sets draw to true. That’s because we only want movement events from handlePointerMove to cause drawing if the pointer is down. function handlePointerDown(e) { recordPointerLocation(e); draw = true; } Finally, we have a working drawing app. But that’s just the beginning! See the Pen Mandala Maker Tutorial: Part 1 by Hagar Shilo (@hagarsh) on CodePen. Part 2: Add a Clear button and a color picker Now we’ll update our HTML file, adding a menu div with an input of the type and class color and a button of the class clear.

Your browser doesn't support canvas.

Color picker This is our new color picker function. It targets the input element by its class and gets its value. function getColor() { return document.querySelector("".color"").value; } Up until now, the app used a default color (black) for the paint brush/digital pen. If we want to change the color we need to use the canvas property strokeStyle. We’ll update drawLine by adding strokeStyle to it and setting it to the input value by calling getColor. function drawLine() { //...code... context.strokeStyle = getColor(); context.lineWidth = 4; context.lineCap = ""round""; //...code... } Clear button This is our new Clear function. It responds to a button click and displays a dialog asking the user if she really wants to delete the drawing. function clearCanvas() { if (confirm(""Want to clear?"")) { context.clearRect(0, 0, w, h); } } The method clearRect takes four arguments. The first two (0,0) mark the origin, which is actually the top left corner of the canvas. The other two (w,h) mark the full width and height of the canvas. This means the entire canvas will be erased, from the top left corner to the bottom right corner. If we were to give clearRect a slightly different set of arguments, say (0,0,w/2,h), the result would be different. In this case, only the left side of the canvas would clear up. Let’s add this event handler to init: function init() { //...code... canvas.onpointermove = handleMouseMove; canvas.onpointerdown = handleMouseDown; canvas.onpointerup = stopDrawing; canvas.onpointerout = stopDrawing; document.querySelector("".clear"").onclick = clearCanvas; } See the Pen Mandala Maker Tutorial: Part 2 by Hagar Shilo (@hagarsh) on CodePen. Part 3: Draw with 2 lines It’s time to make a line appear where no pointer has gone before. A ghost line! For that we are going to need four new coordinates: a', b', c' and d' (marked in the code as a_, b_, c_ and d_). In order for us to be able to add the first reflection, first we must decide if it’s going to go over the y-axis or the x-axis. Since this is an arbitrary decision, it doesn’t matter which one we choose. Let’s go with the x-axis. Here is a sketch to help you grasp the mathematics of reflecting a point across the x-axis. The coordinate space in my sketch is different from my explanation earlier about the way the coordinate space works in computer graphics (more about that in a bit!). Now, look at A. It shows a point drawn where the pointer hits, and B shows the additional point we want to appear: a reflection of the point across the x-axis. This is our goal. A sketch illustrating the mathematics of reflecting a point. What happens to the x coordinates? The variables a/a' and c/c' correspond to prevX and currX respectively, so we can call them “the x coordinates”. We are reflecting across x, so their values remain the same, and therefore a' = a and c' = c. What happens to the y coordinates? What about b' and d'? Those are the ones that have to change, but in what way? Thanks to the slightly misleading sketch I showed you just now (of A and B), you probably think that the y coordinates b' and d' should get the negative values of b and d respectively, but nope. This is computer graphics, remember? The origin is at the top left corner and not at the canvas center, and therefore we get the following values: b = h - b, d' = h - d, where h is the canvas height. This is the new code for the app’s variables and the two lines: the one that fills the pointer’s path and the one mirroring it across the x-axis. function drawLine() { var a = prevX, a_ = a, b = prevY, b_ = h-b, c = currX, c_ = c, d = currY, d_ = h-d; //... code ... // Draw line #1, at the pointer's location context.moveTo(a, b); context.lineTo(c, d); // Draw line #2, mirroring the line #1 context.moveTo(a_, b_); context.lineTo(c_, d_); //... code ... } In case this was too abstract for you, let’s look at some actual numbers to see how this works. Let’s say we have a tiny canvas of w = h = 10. Now let a = 3, b = 2, c = 4 and d = 3. So b' = 10 - 2 = 8 and d' = 10 - 3 = 7. We use the top and the left as references. For the y coordinates this means we count from the top, and 8 from the top is also 2 from the bottom. Similarly, 7 from the top is 3 from the bottom of the canvas. That’s it, really. This is how the single point, and a line (not necessarily a straight one, by the way) is made up of many, many small segments that are similar to point in behavior. If you are still confused, I don’t blame you. Here is the result. Draw something and see what happens. See the Pen Mandala Maker Tutorial: Part 3 by Hagar Shilo (@hagarsh) on CodePen. Part 4: Draw with 8 lines I have made yet another confusing sketch, with points C and D, so you understand what we’re trying to do. Later on we’ll look at points E, F, G and H as well. The circled point is the one we’re adding at each particular step. The circled point at C has the coordinates (-3,2) and the circled point at D has the coordinates (-3,-2). Once again, keep in mind that the origin in the sketches is not the same as the origin of the canvas. A sketch illustrating points C and D. This is the part where the math gets a bit mathier, as our drawLine function evolves further. We’ll keep using the four new coordinates: a', b', c' and d', and reassign their values for each new location/line. Let’s add two more lines in two new locations on the canvas. Their locations relative to the first two lines are exactly what you see in the sketch above, though the calculation required is different (because of the origin points being different). function drawLine() { //... code ... // Reassign values a_ = w-a; b_ = b; c_ = w-c; d_ = d; // Draw the 3rd line context.moveTo(a_, b_); context.lineTo(c_, d_); // Reassign values a_ = w-a; b_ = h-b; c_ = w-c; d_ = h-d; // Draw the 4th line context.moveTo(a_, b_); context.lineTo(c_, d_); //... code ... What is happening? You might be wondering why we use w and h as separate variables, even though we know they have the same value. Why complicate the code this way for no apparent reason? That’s because we want the symmetry to hold for a rectangular canvas as well, and this way it will. Also, you may have noticed that the values of a' and c' are not reassigned when the fourth line is created. Why write their value assignments twice? It’s for readability, documentation and communication. Maintaining the quadruple structure in the code is meant to help you remember that all the while we are dealing with two y coordinates (current and previous) and two x coordinates (current and previous). What happens to the x coordinates? As you recall, our x coordinates are a (prevX) and c (currX). For the third line we are adding, a' = w - a and c' = w - c, which means… For the fourth line, the same thing happens to our x coordinates a and c. What happens to the y coordinates? As you recall, our y coordinates are b (prevY) and d (currY). For the third line we are adding, b' = b and d' = d, which means the y coordinates are the ones not changing this time, making this is a reflection across the y-axis. For the fourth line, b' = h - b and d' = h - d, which we’ve seen before: that’s a reflection across the x-axis. We have four more lines, or locations, to define. Note: the part of the code that’s responsible for drawing a micro-line between the newly calculated coordinates is always the same: context.moveTo(a_, b_); context.lineTo(c_, d_); We can leave it out of the next code snippets and just focus on the calculations, i.e, the reassignments. Once again, we need some concrete examples to see where we’re going, so here’s another sketch! The circled point E has the coordinates (2,3) and the circled point F has the coordinates (2,-3). The ability to draw at A but also make the drawing appear at E and F (in addition to B, C and D that we already dealt with) is the functionality we are about to add to out code. A sketch illustrating points E and F. This is the code for E and F: // Reassign for 5 a_ = w/2+h/2-b; b_ = w/2+h/2-a; c_ = w/2+h/2-d; d_ = w/2+h/2-c; // Reassign for 6 a_ = w/2+h/2-b; b_ = h/2-w/2+a; c_ = w/2+h/2-d; d_ = h/2-w/2+c; Their x coordinates are identical and their y coordinates are reversed to one another. This one will be out final sketch. The circled point G has the coordinates (-2,3) and the circled point H has the coordinates (-2,-3). A sketch illustrating points G and H. This is the code: // Reassign for 7 a_ = w/2-h/2+b; b_ = w/2+h/2-a; c_ = w/2-h/2+d; d_ = w/2+h/2-c; // Reassign for 8 a_ = w/2-h/2+b; b_ = h/2-w/2+a; c_ = w/2-h/2+d; d_ = h/2-w/2+c; //...code... } Once again, the x coordinates of these two points are the same, while the y coordinates are different. And once again I won’t go into the full details, since this has been a long enough journey as it is, and I think we’ve covered all the important principles. But feel free to play around with the code and change it. I really recommend commenting out the code for some of the points to see what your drawing looks like without them. I hope you had fun learning! This is our final app: See the Pen Mandala Maker Tutorial: Part 4 by Hagar Shilo (@hagarsh) on CodePen.",2018,Hagar Shilo,hagarshilo,2018-12-02T00:00:00+00:00,https://24ways.org/2018/the-art-of-mathematics/,code 242,Creating My First Chrome Extension,"Writing a Chrome Extension isn’t as scary at it seems! Not too long ago, I used a Chrome extension called 20 Cubed. I’m far-sighted, and being a software engineer makes it difficult to maintain distance vision. So I used 20 Cubed to remind myself to look away from my screen and rest my eyes. I loved its simple interface and design. I loved it so much, I often forgot to turn it off in the middle of presentations, where it would take over my entire screen. Oops. Unfortunately, the developer stopped updating the extension and removed it from Chrome’s extension library. I was so sad. None of the other eye rest extensions out there matched my design aesthetic, so I decided to create my own! Want to do the same? Fortunately, Google has some respectable documentation on how to create an extension. And remember, Chrome extensions are just HTML, CSS, and JavaScript. You can add libraries and frameworks, or you can just code the “old-fashioned” way. Sky’s the limit! Setup But first, some things you’ll need to know about before getting started: Callbacks Timeouts Chrome Dev Tools Developing with Chrome extension methods requires a lot of callbacks. If you’ve never experienced the joy of callback hell, creating a Chrome extension will introduce you to this concept. However, things can get confusing pretty quickly. I’d highly recommend brushing up on that subject before getting started. Hyperbole and a Half Timeouts and Intervals are another thing you might want to brush up on. While creating this extension, I didn’t consider the fact that I’d be juggling three timers. And I probably would’ve saved time organizing those and reading up on the Chrome extension Alarms documentation beforehand. But more on that in a bit. On the note of organization, abstraction is important! You might have any combination of the following: The Chrome extension options page The popup from the Chrome Menu The windows or tabs you create The background scripts And that can get unwieldy. You might also edit the existing tabs or windows in the browser, which you’ll probably want as a separate script too. Note that this tutorial only covers creating your own customized window rather than editing existing windows or tabs. Alright, now that you know all that up front, let’s get going! Documentation TL;DR READ THE DOCS. A few things to get started: Read Google’s primer on browser extensions Have a look at their Getting started tutorial Check out their overview on Chrome Extensions This overview discusses the Chrome extension files, architecture, APIs, and communication between pages. Funnily enough, I only discovered the Overview page after creating my extension. The manifest.json file gives the browser information about the extension, including general information, where to find your extension files and icons, and API permissions required. Here’s what my manifest.json looked like, for example: https://github.com/jennz0r/eye-rest/blob/master/manifest.json Because I’m a visual learner, I found the images that describe the extension’s architecture most helpful. To clarify this diagram, the background.js file is the extension’s event handler. It’s constantly listening for browser events, which you’ll feed to it using the Chrome Extension API. Google says that an effective background script is only loaded when it is needed and unloaded when it goes idle. The Popup is the little window that appears when you click on an extension’s icon in the Chrome Menu. It consists of markup and scripts, and you can tell the browser where to find it in the manifest.json under page_action: { ""default_popup"": FILE_NAME_HERE }. The Options page is exactly as it says. This displays customizable options only visible to the user when they either right-click on the Chrome menu and choose “Options” under an extension. This also consists of markup and scripts, and you can tell the browser where to find it in the manifest.json under options_page: FILE_NAME_HERE. Content scripts are any scripts that will interact with any web windows or tabs that the user has open. These scripts will also interact with any tabs or windows opened by your extension. Debugging A quick note: don’t forget the debugging tutorial! Just like any other Chrome window, every piece of an extension has an inspector and dev tools. If (read: when) you run into errors (as I did), you’re likely to have several inspector windows open – one for the background script, one for the popup, one for the options, and one for the window or tab the extension is interacting with. For example, I kept seeing the error “This request exceeds the MAX_WRITE_OPERATIONS_PER_HOUR quota.” Well, it turns out there are limitations on how often you can sync stored information. Another error I kept seeing was “Alarm delay is less than minimum of 1 minutes. In released .crx, alarm “ALARM_NAME_HERE” will fire in approximately 1 minutes”. Well, it turns out there are minimum interval times for alarms. Chrome Extension creation definitely benefits from debugging skills. Especially with callbacks and listeners, good old fashioned console.log can really help! Me adding a ton of `console.log`s while trying to debug my alarms. Eye Rest Functionality Ok, so what is the extension I created? Again, it’s a way to rest your eyes every twenty minutes for twenty seconds. So, the basic functionality should look like the following: If the extension is running AND If the user has not clicked Pause in the Popup HTML AND If the counter in the Popup HTML is down to 00:00 THEN Open a new window with Timer HTML AND Start a 20 sec countdown in Timer HTML AND Reset the Popup HTML counter to 20:00 If the Timer HTML is down to 0 sec THEN Close that window. Rinse. Repeat. Sounds simple enough, but wow, these timers became convoluted! Of all the Chrome extensions I decided to create, I decided to make one that’s heavily dependent on time, intervals, and having those in sync with each other. In other words, I made this unnecessarily complicated and didn’t realize until I started coding. For visual reference of my confusion, check out the GitHub repository for Eye Rest. (And yes, it’s a pun.) API Now let’s discuss the APIs that I used to build this extension. Alarms What even are alarms? I didn’t know either. Alarms are basically Chrome’s setTimeout and setInterval. They exist because, as Google says… DOM-based timers, such as window.setTimeout() or window.setInterval(), are not honored in non-persistent background scripts if they trigger when the event page is dormant. For more information, check out this background migration doc. One interesting note about alarms in Chrome extensions is that they are persistent. Garbage collection with Chrome extension alarms seems unreliable at best. I didn’t have much luck using the clearAll method to remove alarms I created on previous extension loads or installs. A workaround (read: hack) is to specify a unique alarm name every time your extension is loaded and clearing any other alarms without that unique name. Background Scripts For Eye Rest, I have two background scripts. One is my actual initializer and event listener, and the other is a helpers file. I wanted to share a couple of functions between my Background and Popup scripts. Specifically, the clearAndCreateAlarm function. I wanted my background script to clear any existing alarms, create a new alarm, and add remaining time until the next alarm to local storage immediately upon extension load. To make the function available to the Background script, I added helpers.js as the first item under background > scripts in my manifest.json. I also wanted my Popup script to do the same things when the user has unpaused the extension’s functionality. To make the function available to the Popup script, I just include the helpers script in the Popup HTML file. Other APIs Windows I use the Windows API to create the Timer window when the time of my alarm is up. The window creation is initiated by my Background script. One day, while coding late into the evening, I found it very confusing that the window.create method included url as an option. I assumed it was meant to be an external web address. A friend pondered that there must be an option to specify the window’s HTML. Until then, it hadn’t dawned on me that the url could be relative. Duh. I was tired! I pass the timer.html as the url option, as well as type, size, position, and other visual options. Storage Maybe you want to pass information back and forth between the Background script and your Popup script? You can do that using Chrome or local storage. One benefit of using local storage over Chrome’s storage is avoiding quotas and write operation maximums. I wanted to pass the time at which the latest alarm was set, the time to the next alarm, and whether or not the timer is paused between the Background and Popup scripts. Because the countdown should change every second, it’s quite complicated and requires lots of writes. That’s why I went with the user’s local storage. You can see me getting and setting those variables in my Background, Helper, and Popup scripts. Just search for date, nextAlarmTime, and isPaused. Declarative Content The Declarative Content API allows you to show your extension’s page action based on several type of matches, without needing to take a host permission or inject a content script. So you’ll need this to get your extension to work in the browser! You can see me set this in my Background script. Because I want my extension’s popup to appear on every page one is browsing, I leave the page matchers empty. There are many more APIs for Chrome apps and extensions, so make sure to surf around and see what features are available! The Extension Here’s what my original Popup looked like before I added styles. And here’s what it looks like with new styles. I guess I’m going for a Nickelodeon feel. And here’s the Timer window and Popup together! Publishing Publishing is a cinch. You just zip up your files, create a new or use an existing Google Developer account, upload the files, add some details, and pay a one time $5 fee. That’s all! Then your extension will be available on the Chrome extension store! Neato :D My extension is now available for you to install. Conclusion I thought creating a time based Chrome Extension would be quick and easy. I was wrong. It was more complicated than I thought! But it’s definitely achievable with some time, persistence, and good ole Google searches. Eventually, I’d like to add more interactive elements to Eye Rest. For example, hitting the YouTube API to grab a silly or cute video as a reward for looking away during the 20 sec countdown and not closing the timer window. This harkens back to one of my first web projects, Toothtimer, from 2012. Or maybe a way to change the background colors of the Timer and Popup! Either way, with Eye Rest’s framework built out, I’m feeling fearless about future feature adds! Building this Chrome extension took some broken nails, achy shoulders, and tired eyes, but now Eye Rest can tell me to give my eyes a break every 20 minutes.",2018,Jennifer Wong,jenniferwong,2018-12-05T00:00:00+00:00,https://24ways.org/2018/my-first-chrome-extension/,code 258,Mistletoe Offline,"It’s that time of year, when we gather together as families to celebrate the life of the greatest person in history. This man walked the Earth long before us, but he left behind words of wisdom. Those words can guide us every single day, but they are at the forefront of our minds during this special season. I am, of course, talking about Murphy, and the golden rule he gave unto us: Anything that can go wrong will go wrong. So true! I mean, that’s why we make sure we’ve got nice 404 pages. It’s not that we want people to ever get served a File Not Found message, but we acknowledge that, despite our best efforts, it’s bound to happen sometime. Murphy’s Law, innit? But there are some Murphyesque situations where even your lovingly crafted 404 page won’t help. What if your web server is down? What if someone is trying to reach your site but they lose their internet connection? These are all things than can—and will—go wrong. I guess there’s nothing we can do about those particular situations, right? Wrong! A service worker is a Murphy-battling technology that you can inject into a visitor’s device from your website. Once it’s installed, it can intercept any requests made to your domain. If anything goes wrong with a request—as is inevitable—you can provide instructions for the browser. That’s your opportunity to turn those server outage frowns upside down. Take those network connection lemons and make network connection lemonade. If you’ve got a custom 404 page, why not make a custom offline page too? Get your server in order Step one is to make …actually, wait. There’s a step before that. Step zero. Get your site running on HTTPS, if it isn’t already. You won’t be able to use a service worker unless everything’s being served over HTTPS, which makes sense when you consider the awesome power that a service worker wields. If you’re developing locally, service workers will work fine for localhost, even without HTTPS. But for a live site, HTTPS is a must. Make an offline page Alright, assuming your site is being served over HTTPS, then step one is to create an offline page. Make it as serious or as quirky as is appropriate for your particular brand. If the website is for a restaurant, maybe you could put the telephone number and address of the restaurant on the custom offline page (unsolicited advice: you could also put this on the home page, you know). Here’s an example of the custom offline page for this year’s Ampersand conference. When you’re done, publish the offline page at suitably imaginative URL, like, say /offline.html. Pre-cache your offline page Now create a JavaScript file called serviceworker.js. This is the script that the browser will look to when certain events are triggered. The first event to handle is what to do when the service worker is installed on the user’s device. When that happens, an event called install is fired. You can listen out for this event using addEventListener: addEventListener('install', installEvent => { // put your instructions here. }); // end addEventListener In this case, you want to make sure that your lovingly crafted custom offline page is put into a nice safe cache. You can use the Cache API to do this. You get to create as many caches as you like, and you can call them whatever you want. Here, I’m going to call the cache Johnny just so I can refer to it as JohnnyCache in the code: addEventListener('install', installEvent => { installEvent.waitUntil( caches.open('Johnny') .then( JohnnyCache => { JohnnyCache.addAll([ '/offline.html' ]); // end addAll }) // end open.then ); // end waitUntil }); // end addEventListener I’m betting that your lovely offline page is linking to a CSS file, maybe an image or two, and perhaps some JavaScript. You can cache all of those at this point: addEventListener('install', installEvent => { installEvent.waitUntil( caches.open('Johnny') .then( JohnnyCache => { JohnnyCache.addAll([ '/offline.html', '/path/to/stylesheet.css', '/path/to/javascript.js', '/path/to/image.jpg' ]); // end addAll }) // end open.then ); // end waitUntil }); // end addEventListener Make sure that the URLs are correct. If just one of the URLs in the list fails to resolve, none of the items in the list will be cached. Intercept requests The next event you want to listen for is the fetch event. This is probably the most powerful—and, let’s be honest, the creepiest—feature of a service worker. Once it has been installed, the service worker lurks on the user’s device, waiting for any requests made to your site. Every time the user requests a web page from your site, a fetch event will fire. Every time that page requests a style sheet or an image, a fetch event will fire. You can provide instructions for what should happen each time: addEventListener('fetch', fetchEvent => { // What happens next is up to you! }); // end addEventListener Let’s write a fairly conservative script with the following logic: Whenever a file is requested, First, try to fetch it from the network, But if that doesn’t work, try to find it in the cache, But if that doesn’t work, and it’s a request for a web page, show the custom offline page instead. Here’s how that translates into JavaScript: // Whenever a file is requested addEventListener('fetch', fetchEvent => { const request = fetchEvent.request; fetchEvent.respondWith( // First, try to fetch it from the network fetch(request) .then( responseFromFetch => { return responseFromFetch; }) // end fetch.then // But if that doesn't work .catch( fetchError => { // try to find it in the cache caches.match(request) .then( responseFromCache => { if (responseFromCache) { return responseFromCache; // But if that doesn't work } else { // and it's a request for a web page if (request.headers.get('Accept').includes('text/html')) { // show the custom offline page instead return caches.match('/offline.html'); } // end if } // end if/else }) // end match.then }) // end fetch.catch ); // end respondWith }); // end addEventListener I am fully aware that I may have done some owl-drawing there. If you need a more detailed breakdown of what’s happening at each point in the code, I’ve written a whole book for you. It’s the perfect present for Murphymas. Hook up your service worker script You can publish your service worker script at /serviceworker.js but you still need to tell the browser where to look for it. You can do that using JavaScript. Put this in an existing JavaScript file that you’re calling in to every page on your site, or add this in a script element at the end of every page’s HTML: if (navigator.serviceWorker) { navigator.serviceWorker.register('/serviceworker.js'); } That tells the browser to start installing the service worker, but not without first checking that the browser understands what a service worker is. When it comes to JavaScript, feature detection is your friend. You might already have some JavaScript files in a folder like /assets/js/ and you might be tempted to put your service worker script in there too. Don’t do that. If you do, the service worker will only be able to handle requests made to for files within /assets/js/. By putting the service worker script in the root directory, you’re making sure that every request can be intercepted. Go further! Nicely done! You’ve made sure that if—no, when—a visitor can’t reach your website, they’ll get your hand-tailored offline page. You have temporarily defeated the forces of chaos! You have briefly fought the tide of entropy! You have made a small but ultimately futile gesture against the inevitable heat-death of the universe! This is just the beginning. You can do more with service workers. What if, every time you fetched a page from the network, you stored a copy of that page in a cache? Then if that person tries to reach that page later, but they’re offline, you could show them the cached version. Or, what if instead of reaching out the network first, you checked to see if a file is in the cache first? You could serve up that cached version—which would be blazingly fast—and still fetch a fresh version from the network in the background to pop in the cache for next time. That might be a good strategy for images. So many options! The hard part isn’t writing the code, it’s figuring out the steps you want to take. Once you’ve got those steps written out, then it’s a matter of translating them into JavaScript. Inevitably there will be some obstacles along the way—usually it’s a misplaced curly brace or a missing parenthesis. Don’t be too hard on yourself if your code doesn’t work at first. That’s just Murphy’s Law in action.",2018,Jeremy Keith,jeremykeith,2018-12-04T00:00:00+00:00,https://24ways.org/2018/mistletoe-offline/,code 263,Securing Your Site like It’s 1999,"Running a website in the early years of the web was a scary business. The web was an evolving medium, and people were finding new uses for it almost every day. From book stores to online auctions, the web was an expanding universe of new possibilities. As the web evolved, so too did the knowledge of its inherent security vulnerabilities. Clever tricks that were played on one site could be copied on literally hundreds of other sites. It was a normal sight to log in to a website to find nothing working because someone had breached its defences and deleted its database. Lessons in web security in those days were hard-earned. What follows are examples of critical mistakes that brought down several early websites, and how you can help protect yourself and your team from the same fate. Bad input validation: Trusting anything the user sends you Our story begins in the most unlikely place: Animal Crossing. Animal Crossing was a 2001 video game set in a quaint town, filled with happy-go-lucky inhabitants that co-exist peacefully. Like most video games, Animal Crossing was the subject of many fan communities on the early web. One such unofficial web forum was dedicated to players discussing their adventures in Animal Crossing. Players could trade secrets, ask for help, and share pictures of their virtual homes. This might sound like a model community to you, but you would be wrong. One day, a player discovered a hidden field in the forum’s user profile form. Normally, this page allows users to change their name, their password, or their profile photo. This person discovered that the hidden field contained their unique user ID, which identifies them when the forum’s backend saves profile changes to its database. They discovered that by modifying the form to change the user ID, they could make changes to any other player’s profile. Needless to say, this idyllic online community descended into chaos. Users changed each other’s passwords, deleted each other’s messages, and attacked each-other under the cover of complete anonymity. What happened? There aren’t any official rules for developing software on the web. But if there were, my golden rule would be: Never trust user input. Ever. Always ask yourself how users will send you data that isn’t what it seems to be. If the nicest community of gamers playing the happiest game on earth can turn on each other, nowhere on the web is safe. Make sure you validate user input to make sure it’s of the correct type (e.g. string, number, JSON string) and that it’s the length that you were expecting. Don’t forget that user input doesn’t become safe once it is stored in your database; any data that originates from outside your network can still be dangerous and must be escaped before it is inserted into HTML. Make sure to check a user’s actions against what they are allowed to do. Create a clear access control policy that defines what actions a user may take, and to whose data they are allowed access to. For example, a newly-registered user should not be allowed to change the user profile of a web forum’s owner. Finally, never rely on client-side validation. Validating user input in the browser is a convenience to the user, not a security measure. Always assume the user has full control over any data sent from the browser and make sure you validate any data sent to your backend from the outside world. SQL injection: Allowing the user to run their own database queries A long time ago, my favourite website was a web forum dedicated to the Final Fantasy video game series. Like the users of the Animal Crossing forum, I’d while away many hours arguing with other people on the internet about my favourite characters, my favourite stories, and the greatest controversies of the day. One day, I noticed people were acting strangely. Users were being uncharacteristically nasty and posting in private areas of the forum they wouldn’t normally have access to. Then messages started disappearing, and user accounts for well-respected people were banned. It turns out someone had discovered a way of logging in to any other user account, using a secret password that allowed them to do literally anything they wanted. What was this password that granted untold power to those who wielded it? ' OR '1'='1 SQL is a computer language that is used to query databases. When you fill out a login form, just like the one above, your username and your password are usually inserted into an SQL query like this: SELECT COUNT(*) FROM USERS WHERE USERNAME='Alice' AND PASSWORD='hunter2' This query selects users from the database that match the username Alice and the password hunter2. If there is at least one user matching record, the user will be granted access. Let’s see what happens when we use our magic password instead! SELECT COUNT(*) FROM USERS WHERE USERNAME='Admin' AND PASSWORD='' OR '1'='1' Does the password look like part of the query to you? That’s because it is! This password is a deliberate attempt to inject our own SQL into the query, hence the term SQL injection. The query is now looking for users matching the username Admin, with a password that is blank, or 1=1. In an SQL query, 1=1 is always true, which makes this query select every single record in the database. As long as the forum software is checking for at least one matching user, it will grant the person logging in access. This password will work for any user registered on the forum! So how can you protect yourself from SQL injection? Never build SQL queries by concatenating strings. Instead, use parameterised query tools. PHP offers prepared statements, and Node.JS has the knex package. Alternatively, you can use an ORM tool, such as Propel or sequelize. Expert help in the form of language features or software tools is a key ally for securing your code. Get all the help you can! Cross site request forgery: Getting other users to do your dirty work for you Do you remember Netflix? Not the Netflix we have now, the Netflix that used to rent you DVDs by mailing them to you. My next story is about how someone managed to convince Netflix users to send him their DVDs - free of charge. Have you ever clicked on a hyperlink, only to find something that you weren’t expecting? If you were lucky, you might have just gotten Rickrolled. If you were unlucky… Let’s just say there are older and fouler things than Rick Astley in the dark places of the web. What if you could convince people to visit a page you controlled? And what if those people were Netflix users, and they were logged in? In 2006, Dave Ferguson did just that. He created a harmless-looking page with an image on it: Did you notice the source URL of the image? It’s deliberately crafted to add a particular DVD to your queue. Sprinkle in a few more requests to change the user’s name and shipping address, and you could ship yourself DVDs completely free of charge! This attack is possible when websites unconditionally trust a user’s session cookies without checking where HTTP requests come from. The first check you can make is to verify that a request’s origin and referer headers match the location of the website. These headers can’t be programmatically set. Another check you can use is to add CSRF tokens to your web forms, to verify requests have come from an actual form on your website. Tokens are long, unpredictable, unique strings that are generated by your server and inserted into web forms. When users complete a form, the form data sent to the server can be checked for a recently generated token. This is an effective deterrent of CSRF attacks because CSRF tokens aren’t stored in cookies. You can also set SameSite=Strict when setting cookies with the Set-Cookie HTTP header. This communicates to browsers that cookies are not to be sent with cross-site requests. This is a relatively new feature, though it is well supported in evergreen browsers. Cross site scripting: Someone else’s code running on your website In 2005, Samy Kamkar became famous for having lots of friends. Lots and lots of friends. Samy enjoyed using MySpace which, at the time, was the world’s largest social network. Social networks at that time were more limited than today. For instance, MySpace let you upload photos to your photo gallery, but capped the limit at twelve. Twelve photos. At least you didn’t have to wade through photos of avocado toast back then… Samy discovered that MySpace also locked down the kinds of content that you could post on your MySpace page. He discovered he could inject and
tags into his headline, but