rowid,title,contents,year,author,author_slug,published,url,topic 86,Flashless Animation,"Animation in a Flashless world When I splashed down in web design four years ago, the first thing I wanted to do was animate a cartoon in the browser. I’d been drawing comics for years, and I’ve wanted to see them come to life for nearly as long. Flash animation was still riding high, but I didn’t want to learn Flash. I wanted to learn JavaScript! Sadly, animating with JavaScript was limiting and resource-intensive. My initial foray into an infinitely looping background did more to burn a hole in my CPU than amaze my friends (although it still looks pretty cool). And there was still no simple way to incorporate audio. The browser technology just wasn’t there. Things are different now. CSS3 transitions and animations can do most of the heavy lifting and HTML5 audio can serve up the music and audio clips. You can do a lot without leaning on JavaScript at all, and when you lean on JavaScript, you can do so much more! In this project, I’m going to show you how to animate a simple walk cycle with looping audio. I hope this will inspire you to do something really cool and impress your friends. I’d love to see what you come up with, so please send your creations my way at rachelnabors.com! Note: Because every browser wants to use its own prefixes with CSS3 animations, and I have neither the time nor the space to write all of them out, I will use the W3C standard syntaxes; that is, going prefix-less. You can implement them out of the box with something like Prefixfree, or you can add prefixes on your own. If you take the latter route, I recommend using Sass and Compass so you can focus on your animations, not copying and pasting. The walk cycle Walk cycles are the “Hello world” of animation. One of the first projects of animation students is to spend hours drawing dozens of frames to complete a simple loopable animation of a character walking. Most animators don’t have to draw every frame themselves, though. They draw a few key frames and send those on to production animators to work on the between frames (or tween frames). This is meticulous, grueling work requiring an eye for detail and natural movement. This is also why so much production animation gets shipped overseas where labor is cheaper. Luckily, we don’t have to worry about our frame count because we can set our own frames-per-second rate on the fly in CSS3. Since we’re trying to impress friends, not animation directors, the inconsistency shouldn’t be a problem. (Unless your friend is an animation director.) This is a simple walk cycle I made of my comic character Tuna for my CSS animation talk at CSS Dev Conference this year: The magic lies here: animation: walk-cycle 1s steps(12) infinite; Breaking those properties down: animation: ; walk-cycle is a simple @keyframes block that moves the background sprite on .tuna around: @keyframes walk-cycle { 0% {background-position: 0 0; } 100% {background-position: 0 -2391px;} } The background sprite has exactly twelve images of Tuna that complete a full walk cycle. We’re setting it to cycle through the entire sprite every second, infinitely. So why isn’t the background image scrolling down the .tuna container? It’s all down to the timing function steps(). Using steps() let us tell the CSS to make jumps instead of the smooth transitions you’d get from something like linear. Chris Mills at dev.opera wrote in his excellent intro to CSS3 animation : Instead of giving a smooth animation throughout, [steps()] causes the animation to jump between a set number of steps placed equally along the duration. For example, steps(10) would make the animation jump along in ten equal steps. There’s also an optional second parameter that takes a value of start or end. steps(10, start) would specify that the change in property value should happen at the start of each step, while steps(10, end) means the change would come at the end. (Seriously, go read his full article. I’m not going to touch on half the stuff he does because I cannot improve on the basics any more than he already has.) The background A cat walking in a void is hardly an impressive animation and certainly your buddy one cube over could do it if he chopped up some of those cat GIFs he keeps using in group chat. So let’s add a parallax background! Yes, yes, all web designers signed a peace treaty to not abuse parallax anymore, but this is its true calling—treaty be damned. And to think we used to need JavaScript to do this! It’s still pretty CPU intensive but much less complicated. We start by splitting up the page into different layers, .foreground, .midground, and .background. We put .tuna in the .midground. .background has multiple background images, all set to repeat horizontally: background-image: url(background_mountain5.png), url(background_mountain4.png), url(background_mountain3.png), url(background_mountain2.png), url(background_mountain1.png); background-repeat: repeat-x; With parallax, things in the foreground move faster than those in the background. Next time you’re driving, notice how the things closer to you move out of your field of vision faster than something in the distance, like a mountain or a large building. We can imitate that here by making the background images on top (in the foreground, closer to us) wider than those on the bottom of the stack (in the distance). The different lengths let us use one animation to move all the background images at different rates in the same interval of time: animation: parallax_bg linear 40s infinite; The shorter images have less distance to cover in the same amount of time as the longer images, so they move slower. Let’s have a look at the background’s animation: @keyframes parallax_bg { 0% { background-position: -2400px 100%, -2000px 100%, -1800px 100%, -1600px 100%, -1200px 100%; } 100% { background-position: 0 100%, 0 100%, 0 100%, 0 100%, 0 100%; } } At 0%, all the background images are positioned at the negative value of their own widths. Then they start moving toward background-position: 0 100%. If we wanted to move them in the reverse direction, we’d remove the negative values at 0% (so they would start at 2400px 100%, 2000px 100%, etc.). Try changing the values in the codepen above or changing background-repeat to none to see how the images play together. .foreground and .midground operate on the same principles, only they use single background images. The music After finishing the first draft of my original walk cycle, I made a GIF with it and posted it on YTMND with some music from the movie Paprika, specifically the track “The Girl in Byakkoya.” After showing it to some colleagues in my community, it became clear that this was a winning combination sure to drive away dresscode blues. So let’s use HTML5 to get a clip of that music looping in there! Warning, there is sound. Please adjust your volume or apply headphones as needed. We’re using HTML5 audio’s loop and autoplay abilities to automatically play and loop a sound file on page load: Unfortunately, you may notice there is a small pause between loops. HTML5 audio, thou art half-baked still. Let’s hope one day the Web Audio API will be able to help us out, but until things improve, we’ll have to hack our way around these shortcomings. Turns out there’s a handy little script called seamlessLoop.js which we can use to patch this. Mind you, if we were really getting crazy with the Cheese Whiz, we’d want to get out big guns like sound.js. But that’d be overkill for a mere loop (and explaining the Web Audio API might bore, rather than impress your friends)! Installing seamlessLoop.js will get rid of the pause, and now our walk cycle is complete. (I’ve done some very rough sniffing to see if the browser can play MP3 files. If not, we fall back to using .ogg formatted clips (Opera and Firefox users, you’re welcome).) Really impress your friends by adding a run cycle So we have music, we have a walk cycle, we have parallax. It will be a snap to bring them all together and have a simple, endless animation. But let’s go one step further and knock the socks off our viewers by adding a run cycle. The run cycle Tacking a run cycle on to our walk cycle will require a third animation sequence: a transitional animation of Tuna switching from walking to running. I have added all these to the sprite: Let’s work on getting that transition down. We’re going to use multiple animations on the same .tuna div, but we’re going to kick them off at different intervals using animation-delay—no JavaScript required! Isn’t that magical? It requires a wee bit of math (not much, it doesn’t hurt) to line them up. We want to: Loop the walk animation twice Play the transitional cycle once (it has a finite beginning and end perfectly drawn to pick up between the last frame of the walk cycle and the first frame of the run cycle—no looping this baby) RUN FOREVER. Using the pattern animation: , here’s what that looks like: animation: walk-cycle 1s steps(12) 2, walk-to-run .75s steps(12) 2s 1, run-cycle .75s steps(13) 2.75s infinite; I played with the times to get make the movement more realistic. You may notice that the running animation looks smoother than the walking animation. That’s because it has 13 keyframes running over .75 second instead of 12 running in one second. Remember, professional animation studios use super-high frame counts. This little animation isn’t even up to PBS’s standards! The music: extended play with HTML5 audio sprites My favorite part in the The Girl in Byakkoya is when the calm opening builds and transitions into a bouncy motif. I want to start with Tuna walking during the opening, and then loop the running and bounciness together for infinity. The intro lasts for 24 seconds, so we set our 1 second walk cycle to run for 24 repetitions: walk-cycle 1s steps(12) 24 We delay walk-to-run by 24 seconds so it runs for .75 seconds before… We play run-cycle at 24.75 seconds and loop it infinitely For the music, we need to think of it as two parts: the intro and the bouncy loop. We can do this quite nicely with audio sprites: using one HTML5 audio element and using JavaScript to change the play head location, like skipping tracks with a CD player. Although this technique will result in a small gap in music shifts, I think it’s worth using here to give you some ideas. // Get the audio element var byakkoya = document.querySelector('audio'); // create function to play and loop audio function song(a){ //start playing at 0 a.currentTime = 0; a.play(); //when we hit 64 seconds... setTimeout(function(){ // skip back to 24.5 seconds and keep playing... a.currentTime = 24.55; // then loop back when we hit 64 again, or every 59.5 seconds. setInterval(function(){ a.currentTime = 24.55; },39450); },64000); } The load screen I’ve put it off as long as I can, but now that the music and the CSS are both running on their own separate clocks, it’s imperative that both images and music be fully downloaded and ready to run when we kick this thing off. So we need a load screen (also, it’s nice to give people a heads-up that you’re about to blast them with music, no matter how wonderful that music may be). Since the two timers are so closely linked, we’d best not run the animations until we run the music: * { animation-play-state: paused; } animation-play-state can be set to paused or running, and it’s the most useful thing you will learn today. First we use an event listener to see when the browser thinks we can play through from the beginning to end of the music without pause for buffering: byakkoya.addEventListener(""canplaythrough"", function () { }); (More on HTML5 audio’s media events at HTML5doctor.com) Inside our event listener, I use a bit of jQuery to add class of .playable to the body when we’re ready to enable the play button: $(""body"").addClass(""playable""); $(""#play-me"").html(""Play me."").click(function(){ song(byakkoya); $(""body"").addClass(""playing""); }); That .playing class is special because it turns on the animations at the same time we start playing the song: .playing * { animation-play-state: running; } The background We’re almost done here! When we add the background, it needs to speed up at the same time that Tuna starts running. The music picks up speed around 24.75 seconds in, and so we’re going to use animation-delay on those backgrounds, too. This will require some math. If you try to simply shorten the animation’s duration at the 24.75s mark, the backgrounds will, mid-scroll, jump back to their initial background positions to start the new animation! Argh! So let’s make a new @keyframe and calculate where the background position would be just before we speed up the animation. Here’s the formula: new 0% value = delay ÷ old duration × length of image new 100% value = new 0% value + length of image Here’s the formula put to work on a smaller scale: Voilà! The finished animation! I’ve always wanted to bring my illustrations to life. Then I woke up one morning and realized that I had all the tools to do so in my browser and in my head. Now I have fallen in love with Flashless animation. I’m sure there will be detractors who say HTML wasn’t meant for this and it’s a gross abuse of the DOM! But I say that these explorations help us expand what we expect from devices and software and challenge us in good ways as artists and programmers. The browser might not be the most appropriate place for animation, but is certainly a fun place to start. There is so much you can do with the spec implemented today, and so much of the territory is still unexplored. I have not yet begun to show you everything. In eight months I expect this demo will represent the norm, not the bleeding edge. I look forward to seeing the wonderful things you create. (Also, someone, please, do something about that gappy HTML5 audio looping. It’s a crying shame!)",2012,Rachel Nabors,rachelnabors,2012-12-06T00:00:00+00:00,https://24ways.org/2012/flashless-animation/,code 95,Giving Content Priority with CSS3 Grid Layout,"Browser support for many of the modules that are part of CSS3 have enabled us to use CSS for many of the things we used to have to use images for. The rise of mobile browsers and the concept of responsive web design has given us a whole new way of looking at design for the web. However, when it comes to layout, we haven’t moved very far at all. We have talked for years about separating our content and source order from the presentation of that content, yet most of us have had to make decisions on source order in order to get a certain visual layout. Owing to some interesting specifications making their way through the W3C process at the moment, though, there is hope of change on the horizon. In this article I’m going to look at one CSS module, the CSS3 grid layout module, that enables us to define a grid and place elements on to it. This article comprises a practical demonstration of the basics of grid layout, and also a discussion of one way in which we can start thinking of content in a more adaptive way. Before we get started, it is important to note that, at the time of writing, these examples work only in Internet Explorer 10. CSS3 grid layout is a module created by Microsoft, and implemented using the -ms prefix in IE10. My examples will all use the -ms prefix, and not include other prefixes simply because this is such an early stage specification, and by the time there are implementations in other browsers there may be inconsistencies. The implementation I describe today may well change, but is also there for your feedback. If you don’t have access to IE10, then one way to view and test these examples is by signing up for an account with Browserstack – the free trial would give you time to have a look. I have also included screenshots of all relevant stages in creating the examples. What is CSS3 grid layout? CSS3 grid layout aims to let developers divide up a design into a grid and place content on to that grid. Rather than trying to fabricate a grid from floats, you can declare an actual grid on a container element and then use that to position the elements inside. Most importantly, the source order of those elements does not matter. Declaring a grid We declare a grid using a new value for the display property: display: grid. As we are using the IE10 implementation here, we need to prefix that value: display: -ms-grid;. Once we have declared our grid, we set up the columns and rows using the grid-columns and grid-rows properties. .wrapper { display: -ms-grid; -ms-grid-columns: 200px 20px auto 20px 200px; -ms-grid-rows: auto 1fr; } In the above example, I have declared a grid on the .wrapper element. I have used the grid-columns property to create a grid with a 200 pixel-wide column, a 20 pixel gutter, a flexible width auto column that will stretch to fill the available space, another 20 pixel-wide gutter and a final 200 pixel sidebar: a flexible width layout with two fixed width sidebars. Using the grid-rows property I have created two rows: the first is set to auto so it will stretch to fill whatever I put into it; the second row is set to 1fr, a new value used in grids that means one fraction unit. In this case, one fraction unit of the available space, effectively whatever space is left. Positioning items on the grid Now I have a simple grid, I can pop items on to it. If I have a
with a class of .main that I want to place into the second row, and the flexible column set to auto I would use the following CSS: .content { -ms-grid-column: 3; -ms-grid-row: 2; -ms-grid-row-span: 1; } If you are old-school, you may already have realised that we are essentially creating an HTML table-like layout structure using CSS. I found the concept of a table the most helpful way to think about the grid layout module when trying to work out how to place elements. Creating grid systems As soon as I started to play with CSS3 grid layout, I wanted to see if I could use it to replicate a flexible grid system like this fluid 16-column 960 grid system. I started out by defining a grid on my wrapper element, using fractions to make this grid fluid. .wrapper { width: 90%; margin: 0 auto 0 auto; display: -ms-grid; -ms-grid-columns: 1fr (4.25fr 1fr)[16]; -ms-grid-rows: (auto 20px)[24]; } Like the 960 grid system I was using as an example, my grid starts with a gutter, followed by the first actual column, plus another gutter repeated sixteen times. What this means is that if I want to span two columns, as far as the grid layout module is concerned that is actually three columns: two wide columns, plus one gutter. So this needs to be accounted for when positioning items. I created a CSS class for each positioning option: column position; rows position; and column span. For example: .grid1 {-ms-grid-column: 2;} /* applying this class positions an item in the first column (the gutter is column 1) */ .grid2 {-ms-grid-column: 4;} /* 2nd column - gutter|column 1|gutter */ .grid3 {-ms-grid-column: 6;} /* 3rd column - gutter|column 1|gutter|column2|gutter */ .row1 {-ms-grid-row:1;} .row2 {-ms-grid-row:3;} .row3 {-ms-grid-row:5;} .colspan1 {-ms-grid-column-span:1;} .colspan2 {-ms-grid-column-span:3;} .colspan3 {-ms-grid-column-span:5;} I could then add multiple classes to each element to set the position on on the grid. This then gives me a replica of the fluid grid using CSS3 grid layout. To see this working fire up IE10 and view Example 1. This works, but… This worked, but isn’t ideal. I considered not showing this stage of my experiment – however, I think it clearly shows how the grid layout module works and is a useful starting point. That said, it’s not an approach I would take in production. First, we have to add classes to our markup that tie an element to a position on the grid. This might not be too much of a problem if we are always going to maintain the sixteen-column grid, though, as I will show you that the real power of the grid layout module appears once you start to redefine the grid, using different grids based on media queries. If you drop to a six-column layout for small screens, positioning items into column 16 makes no sense any more. Calculating grid position using LESS As we’ve seen, if you want to use a grid with main columns and gutters, you have to take into account the spacing between columns as well as the actual columns. This means we have to do some calculating every time we place an item on the grid. In my example above I got around this by creating a CSS class for each position, allowing me to think in sixteen rather than thirty-two columns. But by using a CSS preprocessor, I can avoid using all the classes yet still think in main columns. I’m using LESS for my example. My simple grid framework consists of one simple mixin. .position(@column,@row,@colspan,@rowspan) { -ms-grid-column: @column*2; -ms-grid-row: @row*2-1; -ms-grid-column-span: @colspan*2-1; -ms-grid-row-span: @rowspan*2-1; } My mixin takes four parameters: column; row; colspan; and rowspan. So if I wanted to place an item on column four, row three, spanning two columns and one row, I would write the following CSS: .box { .position(4,3,2,1); } The mixin would return: .box { -ms-grid-column: 8; -ms-grid-row: 5; -ms-grid-column-span: 3; -ms-grid-row-span: 1; } This saves me some typing and some maths. I could also add other prefixed values into my mixin as other browsers started to add support. We can see this in action creating a new grid. Instead of adding multiple classes to each element, I can add one class; that class uses the mixin to create the position. I have also played around with row spans using my mixin and you can see we end up with a quite complicated arrangement of boxes. Have a look at example two in IE10. I’ve used the JavaScript LESS parser so that you can view the actual LESS that I use. Note that I have needed to escape the -ms prefixed properties with ~"""" to get LESS to accept them. This is looking better. I don’t have direct positioning information on each element in the markup, just a class name – I’ve used grid(x), but it could be something far more semantic. We can now take the example a step further and redefine the grid based on screen width. Media queries and the grid This example uses exactly the same markup as the previous example. However, we are now using media queries to detect screen width and redefine the grid using a different number of columns depending on that width. I start out with a six-column grid, defining that on .wrapper, then setting where the different items sit on this grid: .wrapper { width: 90%; margin: 0 auto 0 auto; display: ~""-ms-grid""; /* escaped for the LESS parser */ -ms-grid-columns: ~""1fr (4.25fr 1fr)[6]""; /* escaped for the LESS parser */ -ms-grid-rows: ~""(auto 20px)[40]""; /* escaped for the LESS parser */ } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... see example for all declarations ... */ Using media queries, I redefine the grid to nine columns when we hit a minimum width of 700 pixels. @media only screen and (min-width: 700px) { .wrapper { -ms-grid-columns: ~""1fr (4.25fr 1fr)[9]""; -ms-grid-rows: ~""(auto 20px)[50]""; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } Finally, we redefine the grid for 960 pixels, back to the sixteen-column grid we started out with. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~"" 1fr (4.25fr 1fr)[16]""; -ms-grid-rows:~"" (auto 20px)[24]""; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } If you view example three in Internet Explorer 10 you can see how the items reflow to fit the window size. You can also see, looking at the final set of blocks, that source order doesn’t matter. You can pick up a block from anywhere and place it in any position on the grid. Laying out a simple website So far, like a toddler on Christmas Day, we’ve been playing with boxes rather than thinking about what might be in them. So let’s take a quick look at a more realistic layout, in order to see why the CSS3 grid layout module can be really useful. At this time of year, I am very excited to get out of storage my collection of odd nativity sets, prompting my family to suggest I might want to open a museum. Should I ever do so, I’ll need a website, and here is an example layout. As I am using CSS3 grid layout, I can order my source in a logical manner. In this example my document is as follows, though these elements could be in any order I please:
...
...
...
...
For wide viewports I can use grid layout to create a sidebar, with the important information about opening times on the top righ,t with the ads displayed below it. This creates the layout shown in the screenshot above. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~"" 1fr (4.25fr 1fr)[16]""; -ms-grid-rows:~"" (auto 20px)[24]""; } .welcome { .position(1,1,12,1); padding: 0 5% 0 0; } .info { .position(13,1,4,1); border: 0; padding:0; } .main { .position(1,2,12,1); padding: 0 5% 0 0; } .ads { .position(13,2,4,1); display: block; margin-left: 0; } } In a floated layout, a sidebar like this often ends up being placed under the main content at smaller screen widths. For my situation this is less than ideal. I want the important information about opening times to end up above the main article, and to push the ads below it. With grid layout I can easily achieve this at the smallest width .info ends up in row two and .ads in row five with the article between. .wrapper { display: ~""-ms-grid""; -ms-grid-columns: ~""1fr (4.25fr 1fr)[4]""; -ms-grid-rows: ~""(auto 20px)[40]""; } .welcome { .position(1,1,4,1); } .info { .position(1,2,4,1); border: 4px solid #fff; padding: 10px; } .content { .position(1,3,4,5); } .main { .position(1,3,4,1); } .ads { .position(1,4,4,1); } Finally, as an extra tweak I add in a breakpoint at 600 pixels and nest a second grid on the ads area, arranging those three images into a row when they sit below the article at a screen width wider than the very narrow mobile width but still too narrow to support a sidebar. @media only screen and (min-width: 600px) { .ads { display: ~""-ms-grid""; -ms-grid-columns: ~""20px 1fr 20px 1fr 20px 1fr""; -ms-grid-rows: ~""1fr""; margin-left: -20px; } .ad:nth-child(1) { .position(1,1,1,1); } .ad:nth-child(2) { .position(2,1,1,1); } .ad:nth-child(3) { .position(3,1,1,1); } } View example four in Internet Explorer 10. This is a very simple example to show how we can use CSS grid layout without needing to add a lot of classes to our document. It also demonstrates how we can mainpulate the content depending on the context in which the user is viewing it. Layout, source order and the idea of content priority CSS3 grid layout isn’t the only module that starts to move us away from the issue of visual layout being linked to source order. However, with good support in Internet Explorer 10, it is a nice way to start looking at how this might work. If you look at the grid layout module as something to be used in conjunction with the flexible box layout module and the very interesting CSS regions and exclusions specifications, we have, tantalizingly on the horizon, a powerful set of tools for layout. I am particularly keen on the potential separation of source order from layout as it dovetails rather neatly into something I spend a lot of time thinking about. As a CMS developer, working on larger scale projects as well as our CMS product Perch, I am interested in how we better enable content editors to create content for the web. In particular, I search for better ways to help them create adaptive content; content that will work in a variety of contexts rather than being tied to one representation of that content. If the concept of adaptive content is new to you, then Karen McGrane’s presentation Adapting Ourselves to Adaptive Content is the place to start. Karen talks about needing to think of content as chunks, that might be used in many different places, displayed differently depending on context. I absolutely agree with Karen’s approach to content. We have always attempted to move content editors away from thinking about creating a page and previewing it on the desktop. However at some point content does need to be published as a page, or a collection of content if you prefer, and bits of that content have priority. Particularly in a small screen context, content gets linearized, we can only show so much at a time, and we need to make sure important content rises to the top. In the case of my example, I wanted to ensure that the address information was clearly visible without scrolling around too much. Dropping it with the entire sidebar to the bottom of the page would not have been so helpful, though neither would moving the whole sidebar to the top of the screen so a visitor had to scroll past advertising to get to the article. If our layout is linked to our source order, then enabling the content editor to make decisions about priority is really hard. Only a system that can do some regeneration of the source order on the server-side – perhaps by way of multiple templates – can allow those kinds of decisions to be made. For larger systems this might be a possibility; for smaller ones, or when using an off-the-shelf CMS, it is less likely to be. Fortunately, any system that allows some form of custom field type can be used to pop a class on to an element, and with CSS grid layout that is all that is needed to be able to target that element and drop it into the right place when the content is viewed, be that on a desktop or a mobile device. This approach can move us away from forcing editors to think visually. At the moment, I might have to explain to an editor that if a certain piece of content needs to come first when viewed on a mobile device, it needs to be placed in the sidebar area, tying it to a particular layout and design. I have to do this because we have to enforce fairly strict rules around source order to make the mechanics of the responsive design work. If I can instead advise an editor to flag important content as high priority in the CMS, then I can make decisions elsewhere as to how that is displayed, and we can maintain the visual hierarchy across all the different ways content might be rendered. Why frustrate ourselves with specifications we can’t yet use in production? The CSS3 grid layout specification is listed under the Exploring section of the list of current work of the CSS Working Group. While discussing a module at this stage might seem a bit pointless if we can’t use it in production work, there is a very real reason for doing so. If those of us who will ultimately be developing sites with these tools find out about them early enough, then we can start to give our feedback to the people responsible for the specification. There is information on the same page about how to get involved with the disussions. So, if you have a bit of time this holiday season, why not have a play with the CSS3 grid layout module? I have outlined here some of my thoughts on how grid layout and other modules that separate layout from source order can be used in the work that I do. Likewise, wherever in the stack you work, playing with and thinking about new specifications means you can think about how you would use them to enhance your work. Spot a problem? Think that a change to the specification would improve things for a specific use case? Then you have something you could post to www-style to add to the discussion around this module. All the examples are on CodePen so feel free to play around and fork them.",2012,Rachel Andrew,rachelandrew,2012-12-18T00:00:00+00:00,https://24ways.org/2012/css3-grid-layout/,code 76,Giving CSS Animations and Transitions Their Place,"CSS animations and transitions may not sit squarely in the realm of the behaviour layer, but they’re stepping up into this area that used to be pure JavaScript territory. Heck, CSS might even perform better than its JavaScript equivalents in some cases. That’s pretty serious! With CSS’s new tricks blurring the lines between presentation and behaviour, it can start to feel bloated and messy in our CSS files. It’s an uncomfortable feeling. Here are a pair of methods I’ve found to be pretty helpful in keeping the potential bloat and wire-crossing under control when CSS has its hands in both presentation and behaviour. Same eggs, more baskets Structuring your CSS to have separate files for layout, typography, grids, and so on is a fairly common approach these days. But which one do you put your transitions and animations in? The initial answer, as always, is “it depends”. Small effects here and there will likely sit just fine with your other styles. When you move into more involved effects that require multiple animations and some logic support from JavaScript, it’s probably time to choose none of the above, and create a separate CSS file just for them. Putting all your animations in one file is a huge help for code organization. Even if you opt for a name less literal than animations.css, you’ll know exactly where to go for anything CSS animation related. That saves time and effort when it comes to editing and maintenance. Keeping track of which animations are still currently used is easier when they’re all grouped together as well. And as an added bonus, you won’t have to look at all those horribly unattractive and repetitive prefixed @-keyframe rules unless you actually need to. An animations.css file might look something like the snippet below. It defines each animation’s keyframes and defines a class for each variation of that animation you’ll be using. Depending on the situation, you may also want to include transitions here in a similar way. (I’ve found defining transitions as their own class, or mixin, to be a huge help in past projects for me.) // defining the animation @keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } @-webkit-keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } @-moz-keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } @-ms-keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } … // class that assigns the animation .catsBackground { height: 100%; background: transparent url(../endlessKittens.png) 0 0 repeat-y; animation: catFall 1s linear infinite; -webkit-animation: catFall 1s linear infinite; -moz-animation: catFall 1s linear infinite; -ms-animation: catFall 1s linear infinite; } If we don’t need it, why load it? Having all those CSS animations and transitions in one file gives us the added flexibility to load them only when we want to. Loading a whole lot of things that will never be used might seem like a bit of a waste. While CSS has us impressed with its motion chops, it falls flat when it comes to the logic and fine-grained control. JavaScript, on the other hand, is pretty good at both those things. Chances are the content of your animations.css file isn’t acting alone. You’ll likely be adding and removing classes via JavaScript to manage your CSS animations at the very least. If your CSS animations are so entwined with JavaScript, why not let them hang out with the rest of the behaviour layer and only come out to play when JavaScript is supported? Dynamically linking your animations.css file like this means it will be completely ignored if JavaScript is off or not supported. No JavaScript? No additional behaviour, not even the parts handled by CSS. This technique comes up in progressive enhancement techniques as well, but it can help here to keep your presentation and behaviour nicely separated when more than one language is involved. The aim in both cases is to avoid loading files we won’t be using. If you happen to be doing something a bit fancier – like 3-D transforms or critical animations that require more nuanced fallbacks – you might need something like modernizr to step in to determine support more specifically. But the general idea is the same. Summing it all up Using a couple of simple techniques like these, we get to pick where to best draw the line between behaviour and presentation based on the situation at hand, not just on what language we’re using. The power of when to separate and how to reassemble the individual pieces can be even greater if you use preprocessors as part of your process. We’ve got a lot of options! The important part is to make forward-thinking choices to save your future self, and even your current self, unnecessary headaches.",2012,Val Head,valhead,2012-12-08T00:00:00+00:00,https://24ways.org/2012/giving-css-animations-and-transitions-their-place/,code 75,A Harder-Working Class,"Class is only becoming more important. Focusing on its original definition as an attribute for grouping (or classifying) as well as linking HTML to CSS, recent front-end development practices are emphasizing class as a vessel for structured, modularized style packages. These patterns reduce the need for repetitive declarations that can seriously bloat file sizes, and instil human-readable understanding of how the interface, layout, and aesthetics are constructed. In the next handful of paragraphs, we will look at how these emerging practices – such as object-oriented CSS and SMACSS – are pushing the relevance of class. We will also explore how HTML and CSS architecture can be further simplified, performance can be boosted, and CSS utility sharpened by combining class with the attribute selector. A primer on attribute selectors While attribute selectors were introduced in the CSS 2 spec, they are still considered rather exotic. These well-established and well-supported features give us vastly improved flexibility in targeting elements in CSS, and offer us opportunities for smarter markup. With an attribute selector, you can directly style an element based on any of its unique – or uniquely shared – attributes, without the need for an ID or extra classes. Unlike pseudo-classes, pseudo-elements, and other exciting features of CSS3, attribute selectors do not require any browser-specific syntax or prefix, and are even supported in Internet Explorer 7. For example, say we want to target all anchor tags on a page that link to our homepage. Where otherwise we might need to manually identify and add classes to the HTML for these specific links, we could simply write: [href=index.html] { } This selector reads: target every element that has an href attribute of “index.html”. Attribute selectors are more faceted, though, as they also give us some very simple regular expression-like logic that helps further narrow (or widen) a selector’s scope. In our previous example, what if we wanted to also give indicative styles to any anchor tag linking to an external site? With no way to know what the exact href value would be for every external link, we need to use an expression to match a common aspect of those links. In this case, we know that all external links need to start with “http”, so we can use that as a hook: [href^=http] { } The selector here reads: target every element that has an href attribute that begins with “http” (which will also include “https”). The ^= means “starts with”. There are a few other simple expressions that give us a lot of flexibility in targeting elements, and I have found that a deep understanding of these and other selector types to be very useful. The class-attribute selector By matching classes with the attribute selector, CSS can be pushed to accomplish some exciting new feats. What I call a class-attribute selector combines the advantages of classes with attribute selectors by targeting the class attribute, rather than a specific class. Instead of selecting .urgent, you could select [class*=urgent]. The latter may seem like a more verbose way of accomplishing the former, but each would actually match two subtly different groups of elements. Eric Meyer first explored the possibility of using classes with attribute selectors over a decade ago. While his interest in this technique mostly explored the different facets of the syntax, I have found that using class-attribute selectors can have distinct advantages over either using an attribute selector or a straightforward class selector. First, let’s explore some of the subtleties of why we would target class before other attributes: Classes are ubiquitous. They have been supported since the HTML 4 spec was released in 1999. Newer attributes, such as the custom data attribute, have only recently begun to be adopted by browsers. Classes have multiple ways of being targeted. You can use the class selector or attribute selector (.classname or [class=classname]), allowing more flexible specificity than resorting to an ID or !important. Classes are already widely used, so adding more classes will usually require less markup than adding more attributes. Classes were designed to abstractly group and specify elements, making them the most appropriate attribute for styling using object-oriented methods (as we will learn in a moment). Also, as Meyer pointed out, we can use the class-attribute selector to be more strict about class declarations. Of these two elements:

…only the second h2 would be selected by [class=urgent], while .urgent would select both. The use of = matches any element with the exact class value of “urgent”. Eric explores these nuances further in his series on attribute selectors, but perhaps more dramatic is the added power that class-attribute selectors can bring to our CSS. More object-oriented, more scalable and modular Nicole Sullivan has been pushing abstracted, object-oriented thinking in CSS development for years now. She has shared stacks of knowledge on how behemoth sites have seen impressive gains in maintenance overhead and CSS file sizes by leaning heavier on classes derived from common patterns. Jonathan Snook also speaks, writes and is genuinely passionate about improving our markup by using more stratified and modular class name conventions. With SMACSS, he shows this to be highly useful across sites – both complex and simple – that exhibit repeated design patterns. Sullivan and Snook both push the use of class for styling over other attributes, and many front-end developers are fast advocating such thinking as best practice. With class-attribute selectors, we can further abstract our CSS, pushing its scalability. In his chapter on modules, Snook gives the example of a .pod class that might represent a certain set of styles. A .pod style set might be used in varying contexts, leading to CSS that might normally look like this: .pod { } form .pod { } aside .pod { } According to Snook, we can make these styles more portable by targeting more verbose classes, rather than context: .pod { } .pod-form { } .pod-sidebar { } …resulting in the following HTML:
This divorces the
’s styles from its context, making it applicable to any situation in which it is needed. The markup is clean and portable, and the classes are imbued with meaning as to what module they belong to. Using class-attribute selectors, we can simplify this further: [class*=pod] { } .pod-form { } .pod-sidebar { } The *= tells the browser to look for any element with a class attribute containing “pod”, so it matches “pod”, “pod-form”, “pod-sidebar”, etc. This allows only one class per element, resulting in simpler HTML:
We could further abstract the concept of “form” and “sidebar” adjustments if we knew that each of those alterations would always need the same treatment. /* Modules */ [class*=pod] { } [class*=btn] { } /* Alterations */ [class*=-form] { } [class*=-sidebar] { } In this case, all elements with classes appended “-form” or “-sidebar” would be altered in the same manner, allowing the markup to stay simple: