rowid,title,contents,year,author,author_slug,published,url,topic 210,Stop Leaving Animation to the Last Minute,"Our design process relies heavily on static mockups as deliverables and this makes it harder than it needs to be to incorporate UI animation in our designs. Talking through animation ideas and dancing out the details of those ideas can be fun; but it’s not always enough to really evaluate or invest in animated design solutions. By including deliverables that encourage discussing animation throughout your design process, you can set yourself (and your team) up for creating meaningful UI animations that feel just as much a part of the design as your colour palette and typeface. You can get out of that “running out of time to add in the animation” trap by deliberately including animation in the early phases of your design process. This will give you both the space to treat animation as a design tool, and the room to iterate on UI animation ideas to come up with higher quality solutions. Two deliverables that can be especially useful for this are motion comps and animated interactive prototypes. Motion comps - an animation deliverable Motion comps (also called animatics or motion mock-ups) are usually video representation of UI animations. They are used to explore the details of how a particular animation might play out. And they’re most often made with timeline-based tools like Adobe After Effects, Adobe Animate, or Tumult Hype. The most useful things about motion comps is how they allow designers and developers to share the work of creating animations. (Instead of pushing all the responsibility of animation on one group or the other.) For example, imagine you’re working on a design that has a content panel that can either be open or closed. You might create a mockup like the one below including the two different views: the closed state and the open state. If you’re working with only static deliverables, these two artboards might be exactly what you handoff to developers along with the instruction to animate between the two. On the surface that seems pretty straight forward, but even with this relatively simple transition there’s a lot that those two artboards don’t address. There are seven things that change between the closed state and the open state. That’s seven things the developer building this out has to figure out how to move in and out of view, when, and in what order. And all of that is even before starting to write the code to make it work. By providing only static comps, all the logic of the animation falls on the developer. This might go ok if she has the bandwidth and animation knowledge, but that’s making an awful lot of assumptions. Instead, if you included a motion mock up like this with your static mock ups, you could share the work of figuring out the logic of the animation between design and development. Designers could work out the logic of the animation in the motion comp, exploring which items move at which times and in which order to create the opening and closing transitions. The motion comp can also be used to iterate on different possible animation approaches before any production code has to be committed too. Sharing the work and giving yourself time to explore animation ideas before you’re backed up again the deadline will lead to happier teammates and better design solutions. When to use motion comps I’m not a fan of making more deliverables just for the sake of having more things to make, so I find it helps to narrow down what question I’m trying answer before choosing which sort of deliverable to make to investigate. Motion comps can be most helpful for answering questions like: Exactly how should this animation look? Which items should move? Where? And when? Do the animation qualities reflect our brand or our voice and tone? One of the added bonuses of creating motion comps to answer these questions is that you’ll have a concrete thing to bring to design critiques or reviews to get others’ input on them as well. Using motion comps as handoff Motion comps are often used to handoff animation ideas from design to development. They can be super useful for this, but they’re even more useful when you include the details of the motion specs with them. (It’s difficult, if not impossible, to glean these details from playing back a video.) More specifically, you’ll want to include: Durations and the properties animated for each animation Easing curve values or spring values used Delay values and repeat counts In many cases you’ll have to collect these details up manually. But this isn’t necessarily something that that will take a lot of time. If you take note of them as you’re creating the motion comp, chances are most of these details will already be top of mind. (Also, if you use After Effects for your motion comps, the Inspector Spacetime plugin might be helpful for this task.) Animated prototypes - an interactive deliverable Making prototypes isn’t a new idea for web work by any stretch, but creating prototypes that include animation – or even creating prototypes specifically to investigate potential animation solutions – can go a long way towards having higher quality animations in your final product. Interactive prototypes are web or app-based, or displayed in a particular tool’s preview window to create a useable version of interactions that might end up in the end product. They’re often made with prototyping apps like Principle, Framer, or coded up in HTML, CSS and JS directly like the example below. See the Pen Prototype example by Val Head (@valhead) on CodePen. The biggest different between motion comps and animated prototypes is the interactivity. Prototypes can reposed to taps, drags or gestures, while motion comps can only play back in a linear fashion. Generally speaking, this makes prototypes a bit more of an effort to create, but they can also help you solve different problems. The interactive nature of prototypes can also make them useful for user testing to further evaluate potential solutions. When to use prototypes When it comes to testing out animation ideas, animated prototypes can be especially helpful in answering questions like these: How will this interaction feel to use? (Interactive animations often have different timing needs than animations that are passively viewed.) What will the animation be like with real data or real content? Does this animation fit the context of the task at hand? Prototypes can be used to investigate the same questions that motion comps do if you’re comfortable working in code or your prototyping tool of choice has capabilities to address high fidelity animation details. There are so many different prototyping tools out there at the moment, you’re sure to be able to find one that fits your needs. As a quick side note: If you’re worried that your coding skills might not be up to par to prototype in code, know that prototype code doesn’t have to be production quality code. Animated prototypes’ main concern is working out the animation details. Once you’ve arrived at a combination of animations that works, the animation specifics can be extracted or the prototype can be refactored for production. Motion comp or prototype? Both motion comps and prototypes can be extremely useful in the design process and you can use whichever one (or ones) that best fits your team’s style. The key thing that both offer is a way to make animation ideas visible and sharable. When you and your teammate are both looking at the same deliverable, you can be confident you’re talking about the same thing and discuss its pros and cons more easily than just describing the idea verbally. Motion comps tend to be more useful earlier in the design process when you want to focus on the motion without worrying about the underlying structure or code yet. Motion comps also be great when you want to try something completely new. Some folks prefer motion comps because the tools for making them feel more familiar to them which means they can work faster. Prototypes are most useful for animations that rely heavily on interaction. (Getting the timing right for interactions can be tough without the interaction part sometimes.) Prototypes can also be helpful to investigate and optimize performance if that’s a specific concern. Give them a try Whichever deliverables you choose to highlight your animation decisions, including them in your design reviews, critiques, or other design discussions will help you make better UI animation choices. More discussion around UI animation ideas during the design phase means greater buy-in, more room for iteration, and higher quality UI animations in your designs. Why not give them a try for your next project?",2017,Val Head,valhead,2017-12-08T00:00:00+00:00,https://24ways.org/2017/stop-leaving-animation-to-the-last-minute/,design 205,Why Design Systems Fail,"Design systems are so hot right now, and for good reason. They promote a modular approach to building a product, and ensure organizational unity and stability via reusable code snippets and utility styles. They make prototyping a breeze, and provide a common language for both designers and developers. A design system is a culmination of several individual components, which can include any or all of the following (and more): Style guide or visual pattern library Design tooling (e.g. Sketch Library) Component library (where the components live in code) Code usage guidelines and documentation Design usage documentation Voice and tone guideline Animation language guideline Design systems are standalone (internal or external) products, and have proven to be very effective means of design-driven development. However, in order for a design system to succeed, everyone needs to get on board. I’d like to go over a few considerations to ensure design system success and what could hinder that success. Organizational Support Put simply, any product, including internal products, needs support. Something as cross-functional as a design system, which spans every vertical project team, needs support from the top and bottom levels of your organization. What I mean by that is that there needs to be top-level support from project managers up through VP’s to see the value of a design system, to provide resources for its implementation, and advocate for its use company-wide. This is especially important in companies where such systems are being put in place on top of existing, crufty codebases, because it may mean there needs to be some time and effort put in the calendar for refactoring work. Support from the bottom-up means that designers and engineers of all levels also need to support this system and feel responsibility for it. A design system is an organization’s product, and everyone should feel confident contributing to it. If your design system supports external clients as well (such as contractors), they too can become valuable teammates. A design system needs support and love to be nurtured and to grow. It also needs investment. Investment To have a successful design system, you need to make a continuous effort to invest resources into it. I like to compare this to working out. You can work out intensely for 3 months and see some gains, but once you stop working out, those will slowly fade away. If you continue to work out, even if its less often than the initial investment, you’ll see yourself maintaining your fitness level at a much higher rate than if you stopped completely. If you invest once in a design system (say, 3 months of overhauling it) but neglect to keep it up, you’ll face the same situation. You’ll see immediate impact, but that impact will fade as it gets out of sync with new designs and you’ll end up with strange, floating bits of code that nobody is using. Your engineers will stop using it as the patterns become outdated, and then you’ll find yourself in for another round of large investment (while dreading going through the process since its fallen so far out of shape). With design systems, small incremental investments over time lead to big gains overall. With this point, I also want to note that because of how they scale, design systems can really make a large impact across the platform, making it extremely important to really invest in things like accessibility and solid architecture from the start. You don’t want to scale a brittle system that’s not easy to use. Take care of your design systems, and keep working on them to ensure their effectiveness. One way to ensure this is to have a dedicated team working on this design system, managing tickets and styling updates that trickle out to the rest of your company. Responsibility With some kind of team to act as an owner of a design system, whether it be the design team, engineering team, or a new team made of both designers and engineers (the best option), your company is more likely to keep a relevant, up-to-date system that doesn’t break. This team is responsible for a few things: Helping others get set up on the system (support) Designing and building components (development) Advocating for overall UI consistency and adherence (evangelism) Creating a rollout plan and update system (product management) As you can see, these are a lot of roles, so it helps to have multiple people on this team, at least part of the time, if you can. One thing I’ve found to be effective in the past is to hold office hours for coworkers to book slots within to help them get set up and to answer any questions about using the system. Having an open Slack channel also helps for this sort of thing, as well as for bringing up bugs/issues/ideas and being an channel for announcements like new releases. Communication Once you have resources and a plan to invest in a design system, its really important that this person or team acts as a bridge between design and engineering. Continuous communication is really important here, and the way you communicate is even more important. Remember that nobody wants to be told what to do or prescribed a solution, especially developers, who are used to a lot of autonomy (usually they get to choose their own tools at work). Despite how much control the other engineers have on the process, they need to feel like they have input, and feel heard. This can be challenging, especially since ultimately, some party needs to be making a final decision on direction and execution. Because it’s a hard balance to strike, having open communication channels and being as transparent as possible as early as possible is a good start. Buy-in For all of the reasons we’ve just looked over, good communication is really important for getting buy-in from your users (the engineers and designers), as well as from product management. Building and maintaining a design system is surprisingly a lot of people-ops work. To get buy-in where you don’t have a previous concensus that this is the right direction to take, you need to make people want to use your design system. A really good way to get someone to want to use a product is to make it the path of least resistance, to show its value. Gather examples and usage wins, because showing is much more powerful than telling. If you can, have developers use your product in a low-stakes situation where it provides clear benefits. Hackathons are a great place to debut your design system. Having a hackathon internally at DigitalOcean was a perfect opportunity to: Evangelize for the design system See what people were using the component library for and what they were struggling with (excellent user testing there) Get user feedback afterward on how to improve it in future iterations Let people experience the benefits of using it themselves These kinds of moments, where people explore on their own are where you can really get people on your side and using the design system, because they can get their hands on it and draw their own conclusions (and if they don’t love it — listen to them on how to improve it so that they do). We don’t always get so lucky as to have this sort of instantaneous user feedback from our direct users. Architecture I briefly mentioned the scalable nature of design systems. This is exactly why it’s important to develop a solid architecture early on in the process. Build your design system with growth and scalability in mind. What happens if your company acquires a new product? What happens when it develops a new market segment? How can you make sure there’s room for customization and growth? A few things we’ve found helpful include: Namespacing Use namespacing to ensure that the system doesn’t collide with existing styles if applying it to an existing codebase. This means prefixing every element in the system to indicate that this class is a part of the design system. To ensure that you don’t break parts of the existing build (which may have styled base elements), you can namespace the entire system inside of a parent class. Sass makes this easy with its nested structure. This kind of namespacing wouldn’t be necessary per se on new projects, but it is definitely useful when integrating new and old styles. Semantic Versioning I’ve used Semantic Versioning on all of the design systems I’ve ever worked on. Semantic versioning uses a system of Major.Minor.Patch for any updates. You can then tag released on Github with versioned updates and ensure that someone’s app won’t break unintentionally when there is an update, if they are anchored to a specific version (which they should be). We also use this semantic versioning as a link with our design system assets at DigitalOcean (i.e. Sketch library) to keep them in sync, with the same version number corresponding to both Sketch and code. Our design system is served as a node module, but is also provided as a series of built assets using our CDN for quick prototyping and one-off projects. For these built assets, we run a deploy script that automatically creates folders for each release, as well as a latest folder if someone wanted the always-up-to-date version of the design system. So, semantic versioning for the system I’m currently building is what links our design system node module assets, sketch library assets, and statically built file assets. The reason we have so many ways of consuming our design system is to make adoption easier and to reduce friction. Friction A while ago, I posed the question of why design systems become outdated and unused, and a major conclusion I drew from the conversation was: “If it’s harder for people to use than their current system, people just won’t use it” You have to make your design system the path of least resistance, lowering cognitive overhead of development, not adding to it. This is vital. A design system is intended to make development much more efficient, enforce a consistent style across sites, and allow for the developer to not worry as much about small decisions like naming and HTML semantics. These are already sorted out for them, meaning they can focus on building product. But if your design system is complicated and over-engineered, they may find it frustrating to use and go back to what they know, even if its not the best solution. If you’re a Sass expert, and base your system on complex mixins and functions, you better hope your user (the developer) is also a Sass expert, or wants to learn. This is often not the case, however. You need to talk to your audience. With the DigitalOcean design system, we provide a few options: Option 1 Users can implement the component library into a development environment and use Sass, select just the components they want to include, and extend the system using a hook-based system. This is the most performant and extensible output. Only the components that are called upon are included, and they can be easily extended using mixins. But as noted earlier, not everyone wants to work this way (including Sass a dependency and potentially needing to set up a build system for it and learn a new syntax). There is also the user who just wants to throw a link onto their page and have it look nice, and thats where our versioned built assets come in. Option 2 With Option 2, users pull in links that are served via a CDN that contain JS, CSS, and our SVG icon library. The code is a bit bigger than the completely customized version, but often this isn’t the aim when people are using Option 2. Reducing friction for adoption should be a major goal of your design system rollout. Conclusion Having a design system is really beneficial to any product, especially as it grows. In order to have an effective system, it’s important to primarily always keep your user in mind and garner support from your entire company. Once you have support and acceptance, this system will flourish and grow. Make sure someone is responsible for it, and make sure its built with a solid foundation from the start which will be carefully maintained toward the future. Good luck, and happy holidays!",2017,Una Kravets,unakravets,2017-12-14T00:00:00+00:00,https://24ways.org/2017/why-design-systems-fail/,process 196,Designing a Remote Project,"I came across an article recently, which I have to admit made my blood boil a little. Yes, I know it’s the season of goodwill and all that, and I’m going to risk sounding a little Scrooge-like, but I couldn’t help it. It was written by someone who’d tried out ‘telecommuting’ (big sigh) a.k.a. remote or distributed working. They’d tested it in their company and decided it didn’t work. Why did it enrage me so much? Well, this person sounded like they’d almost set it up to fail. To them, it was the latest buzzword, and they wanted to offer their employees a ‘perk’. But it was going to be risky, because, well, they just couldn’t trust their employees not to be lazy and sit around in their pyjamas at home, watching TV, occasionally flicking their mousepad to ‘appear online’. Sounds about right, doesn’t it? Well, no. This attitude towards remote working is baked in the past, where working from one office and people all sitting around together in a cosy circle singing kum-by-yah* was a necessity not an option. We all know the reasons remote working and flexibility can happen more easily now: fast internet, numerous communication channels, and so on. But why are companies like Yahoo! and IBM backtracking on this? Why is there still such a negative perception of this way of working when it has so much real potential for the future? *this might not have ever really happened in an office. So what is remote working? It can come in various formats. It’s actually not just the typical office worker, working from home on a specific day. The nature of digital projects has been changing over a number of years. In this era where organisations are squeezing budgets and trying to find the best value wherever they can, it seems that the days of whole projects being tackled by one team, in the same place, is fast becoming the past. What I’ve noticed more recently is a much more fragmented way of putting together a project – a mixture of in-house and agency, or multiple agencies or organisations, or working with an offshore team. In the past we might have done the full integrated project from beginning to end, now, it’s a piece of the pie. Which means that everyone is having to work with people who aren’t sat next to them even more than before. Whether that’s a freelancer you’re working with who’s not in the office, an offshore agency doing development or a partner company in another city tackling UX… the future is looking more and more like a distributed workplace. So why the negativity, man? As I’ve seen from this article, and from examples of large corporations changing their entire philosophy away from remote working, there’s a lot of negativity towards this way of working. Of course if you decide to let everyone work from home when they want, set them off and then expect them all to check in at the right time or be available 24/7 it’s going to be a bit of a mess. Equally if you just jump into work with a team on the other side of the world without any setup, should you expect anything less than a problematic project? Okay, okay so what about these people who are going to sit on Facebook all day if we let them work from home? It’s the age old response to the idea of working from home. I can’t see the person, so how do I know what they are doing? This comes up regularly as one of the biggest fears of letting people work remotely. There’s also the perceived lack of productivity and distractions at home. The limited collaboration and communication with distributed workers. The lack of availability. The lower response times. Hang on a second, can’t these all still be problems even if you’ve got your whole team sat in the same place? “They won’t focus on work.” How many people will go on Facebook or Twitter whilst sat in an office? “They won’t collaborate as much.” How many people sit in the office with headphones on to block out distractions? I think we have to move away from the idea that being sat next to people automatically makes them work harder. If the work is satisfying, challenging, and relevant to a person – surely we should trust them to do it, wherever they are sat? There’s actually a lot of benefits to remote working, and having distributed teams. Offering this as a way of working can attract and retain employees, due to the improved flexibility. There can actually be fewer distractions and disruptions at home, which leads to increased productivity. To paraphrase Jason Fried in his talk ‘Why work doesn’t happen at work’, at home there are voluntary distractions where you have to choose to distract yourself with something. At the office these distractions become involuntary. Impromptu meetings and people coming to talk to you all the time are actually a lot more disruptive. Often, people find it easier to focus away from the office environment. There’s also the big benefit for a lot of people of the time saved commuting. The employee can actually do a lot that’s beneficial to them in this time, rather than standing squeezed into people’s armpits on public transport. Hence increased job satisfaction. With a distributed team, say if you’re working with an off-shore team, there could be a wider range of talent to pick from and it also encourages diversity. There can be a wider range of cultural differences and opinions brought to a project, which encourages more diverse ways of thinking. Tackling the issues - or, how to set up a project with a remote team But that isn’t to say running projects with a distributed team or being a remote worker is easy, and can just happen, like that. It needs work – and good groundwork – to ensure you don’t set it up to fail. So how do you help create a smoother remote project? Start with trust First of all, the basis of the team needs to be trust. Yes I’m going to sound a little like a cheesy, self-help guru here (perhaps in an attempt to seem less Scrooge-like and inject some Christmas cheer) but you do need to trust the people working remotely as well as them trusting you. This extends to a distributed team. You can’t just tell the offshore team what to do, and micromanage them, scared they won’t do what you want, how you want it because you can’t see them. You need to give them ownership and let them manage the tasks. Remember, people are less likely to criticise their own work. Make them own the work and they are more likely to be engaged and productive. Set a structure Distributed teams and remote workers can fail when there is no structure – just as much as teams sitting together fail without it too. It’s not so much setting rules, as having a framework to work within. Eliminate blockers before they happen. Think about what could cause issues for the team, and think of ways to solve this. For example, what do you do if you won’t be able to get hold of someone for a few hours because of a time difference? Put together a contingency, e.g. is there someone else on your time zone you could go to with queries after assessing the priority? Would it be put aside until that person is back in? Define team roles and responsibilities clearly. Sit down at the beginning of the project and clearly set out expectations. Also ask the team, what are their expectations of you? There won’t be a one size fits all framework either. Think about your team, the people in it, the type of project you’re working with, the type of client and stakeholder. This should give you an idea of what sort of communications you’ll need on the project. Daily calls, video calls, Slack channels, the choice is yours. Decide on the tools To be honest, I could spend hours talking about the different tools you can use for communication. But you know them, right? And in the end it’s not the tool that’s important here - it’s the communication that’s being done on the tool. Tools need to match the type of communications needed for your team. One caveat here though, never rely solely on email! Emails are silos, and can become beasts to manage communications on. Transparency in communication Good communication is key. Make sure there are clear objectives for communication. Set up one time during the week where those people meet together, discuss all the work during that week that they’ve done. If decisions are made between team members who are together, make sure everyone knows what these are. But try to make collective decisions where you can, when it doesn’t impact on people’s time. Have a face-to-face kick off Yes, I know this might seem to counter my argument, but face-to-face comms are still really important. If it’s feasible, have an in-person meeting to kick off your project, and to kick off your team working together. An initial meeting, to break the ice, discuss ways of working, set the goals, can go a long way to making working with distributed teams successful. If this is really not viable, then hold a video call with the team. Try to make this a little more informal. I know, I know, not the dreaded cringey icebreakers… but something to make everyone relax and get to know each other is really important. Bring everybody together physically on a regular basis if you can, for example with quarterly meetings. You’ve got to really make sure people still feel part of a team, and it often takes a little more work with a remote team. Connect with new team members, one-on-one first, then you can have more of a ‘remote’ relationship. Get visual Visual communication is often a lot better tool to use than just a written sentence, and can help bring ideas to life. Encourage people to sketch things, take a photo and add this to your written communications. Or use a mockup tool to sketch ideas. But what about Agile projects? The whole premise of Agile projects is to have face-to-face contact I hear you cry. The Agile Manifesto itself states “The most efficient and effective method of conveying information to and within a development team is face-to-face conversation”. However, this doesn’t mean the death of remote working. In fact loads of successful companies still run Agile projects, whilst having a distributed team. With all the collaborative tools you can use for centralising code, tracking tasks, visualising products, it’s not difficult to still communicate in a way that works. Just think about how to replicate the principles of Agile remotely - working together daily, a supportive environment, trust, and simplicity. How can you translate these to your remote or distributed team? One last thought to leave you with before you run off to eat your mince pies (in your pyjamas, whilst working). A common mistake in working with a remote project team or working remotely yourself, is replacing distance with time. If you’re away from the office you think you need to always be ‘on’ – messaging, being online, replying to requests. If you have a distributed team, you might think a lot of meetings, calls, and messages will be good to foster communication. But don’t overload these meetings, calls, and communication. This can be disruptive in itself. Give people the gift of some uninterrupted time to actually do some work, and not feel like they have to check in every second.",2017,Suzanna Haworth,suzannahaworth,2017-12-06T00:00:00+00:00,https://24ways.org/2017/designing-a-remote-project/,business 198,Is Your Website Accidentally Sexist?,"Women make up 51% of the world’s population. More importantly, women make 85% of all purchasing decisions about consumer goods, 75% of the decisions about buying new homes, and 81% of decisions about groceries. The chances are, you want your website to be as attractive to women as it is to men. But we are all steeped in a male-dominated culture that subtly influences the design and content decisions we make, and some of those decisions can result in a website that isn’t as welcoming to women as it could be. Typography tells a story Studies show that we make consistent judgements about whether a typeface is masculine or feminine: Masculine typography has a square or geometric form with hard corners and edges, and is emphatically either blunt or spiky. Serif fonts are also considered masculine, as is bold type and capitals. Feminine typography favours slim lines, curling or flowing shapes with a lot of ornamentation and embellishment, and slanted letters. Sans-serif, cursive and script fonts are seen as feminine, as are lower case letters. The effect can be so subtle that even choosing between bold and regular styles within a single font family can be enough to indicate masculinity or femininity. If you want to appeal to both men and women, search for fonts that are gender neutral, or at least not too masculine. When you’re choosing groups of fonts that need to work harmoniously together, consider which fonts you are prioritising in your design. Is the biggest word on the page in a masculine or feminine font? What about the smallest words? Is there an imbalance between the prominence of masculine and feminine fonts, and what does this imply? Typography is a language in and of itself, so be careful what you say with it. Colour me unsurprised Colour also has an obvious gender bias. We associate pinks and purples, especially in combination, with girls and women, and a soft pink has become especially strongly related to breast cancer awareness campaigns. On the other hand, pale blue is strongly associated with boys and men, despite the fact that pastels are usually thought of as more feminine. These associations are getting stronger and stronger as more and more marketers use them to define products as “for girls” and “for boys”, setting expectations from an incredibly young age — children as young as four understand gender stereotypes. It should be obvious that using these highly gender-associated colours sends an incredibly strong message to your visitors about who you think your target audience is. If you want to appeal to both men and women, then avoid pinks and pale blues. But men and women also have different colour preferences. Men tend to prefer intense primary colours and deeper colours (shades), and tolerate greys better, whilst women prefer pastels (tints). When choosing colours, consider not just the hue itself, but also tint, tone and shade. Slightly counterintuitively, everyone likes blue, but no one seems to particularly like brown or orange. A picture is worth a thousand words, or none Stock photos are the quickest and easiest way to add a little humanity to your website, directly illustrating the kind of people you believe are in your audience. But the wrong photo can put a woman off before she’s even read your text. A website about a retirement home will, for example, obviously include photos of older people, and a baby clothes retailer will obviously show photos of babies. But, in the latter case, should they also show only photographs of mothers with their children, or should they include fathers too? It’s true that women take on the majority of childcare responsibilities, but that’s a cultural holdover from a previous era, rather than some rule of law. We are seeing increasing number of stay at home dads as well as single dads, so showing only photographs of women both enforces the stereotype that only women can care, as well as marginalising male carers. Equally, featuring prominent photographs of women on sites about male-dominated topics such as science, technology or engineering help women feel welcomed and appreciated in those fields. Photos really do speak volumes, so make sure that you also represent other marginalised groups, especially ethnic groups. If people do not see themselves represented on your site, they are not going to engage with it as much as they might. Another form of picture that we often ignore is the icon. When you do use icons, make sure that they are gender neutral. For example, avoid using a icon of a man to denote engineers, or of a woman to denote nurses. Avoid overly masculine or feminine metaphors, such as a hammer to denote DIY or a flower to denote gardens. Not only are these gendered, they’re also trite and unappealing, so come up with more exciting and novel metaphors. Use gender-neutral language Last, but not least, be very careful in your use of gender in language. Pronouns are an obvious pitfall. A lot of web content is written in the second person, using the cleary gender neutral ‘you’, but if you have to write in the third person, which uses ‘she’, ‘he’, ‘it’, and ‘they’, then be very careful which pronouns you use. The singular ‘they’ is becoming more widely acceptable, and is a useful gender-neutral option. If you must use generic ‘he’ and ‘she’, (as opposed to talking about a specific person), then vary the order that they come in, so don’t always put the male pronoun first. When you are talking about people, make sure that you use the same level of formality for both men and women. The tendency is to refer to men by their surname and women by their first name so, for example, when people are talking about Ada Lovelace and Charles Babbage, they often talk about “Ada and Babbage”, rather than “Lovelace and Babbage” or “Ada and Charles”. As a rule, it’s best to use people’s surnames in formal and semi-formal writing, and their first names only in very informal writing. It’s also very important to make sure that you respect people’s honorifics, especially academic titles such as Dr or Professor, and that you use titles consistently. Studies show that women and people of colour are the most likely to have their honorifics dropped, which is not only disrespectful, it gives readers the idea that women and people of colour are less qualified than white men. If you mention job titles, avoid old-fashioned gendered titles such as ‘chairman’, and instead look for a neutral version, like ‘chair’ or ‘chairperson’. Where neutral terms have strong gender associations, such as nurse or engineer, take special care that the surrounding text, especially pronouns, is diverse and/or neutral. Do not assume engineers are male and nurses female. More subtle intimations of gender can be found in the descriptors people use. Military metaphors and phrases, out-sized claims, competitive words, and superlatives are masculine, such as ‘ground-breaking’, ‘best’, ‘genius’, ‘world-beating’, or ‘killer’. Excessive unnecessary factual detail is also very masculine. Women tend to relate to more cooperative, non-competitive, future-focused, and warmer language, paired with more general information. Women’s language includes word like ’global’, ‘responsive’, ‘support’, ‘include’, ‘engage’ and ‘imagine’. Focus more on the kind of relationship you can build with your customers, how you can help make their lives easier, and less on your company or product’s status. Smash the patriarchy, one assumption at a time We’re all brought up in a cultural stew that prioritises men’s needs, feelings and assumptions over women’s. This is the patriarchy, and it’s been around for thousands of years. But given women’s purchasing power, adhering to the patriarchy’s norms is unlikely to be good for your business. If you want to tap into the female market, pay attention to the details of your design and content, and make sure that you’re not inadvertently putting women off. A gender neutral website that designs away gender stereotypes will attract both men and women, expanding your market and helping your business flourish.",2017,Suw Charman-Anderson,suwcharmananderson,2017-12-20T00:00:00+00:00,https://24ways.org/2017/is-your-website-accidentally-sexist/,content 202,Design Systems and CSS Grid,"Recently, my client has been looking at creating a few new marketing pages for their website. They currently have a design system in place but they’re looking to push this forward into 2018 with some small and possibly some larger changes. To start with we are creating a couple of new marketing pages. As well as making use of existing components within the design systems component library there are a couple of new components. Looking at the first couple of sketch files I felt this would be a great opportunity to use CSS Grid, to me the newer components need to be laid out on that page and grid would help with this perfectly. As well as this layout of the new components and the text within it, imagery would be used that breaks out of the grid and pushes itself into the spaces where the text is aligned. The existing grid system When the site was rebuilt in 2015 the team decided to make use of Sass and Susy, a “lightweight grid-layout engine using Sass”. It was built separating the grid system from the components that would be laid out on the page with a container, a row, an optional column, and a block. To make use of the grid system on a page for a component that would take the full width of the row you would have to write something like this:
Using a grid system similar to this can easily create quite the tag soup. It could fill the HTML full of divs that may become complex to understand and difficult to edit. Although there is this reliance on several
s to lay out the components on a page it does allow a tidy way to place the component code within that page. It abstracts the layout of the page to its own code, its own system, so the components can ‘fit’ where needed. The requirements of the new grid system Moving forward I set myself some goals for what I’d like to have achieved in this new grid system: It needs to behave like the existing grid systems We are not ripping up the existing grid system, it would be too much work, for now, to retrofit all of the existing components to work in a grid that has a different amount of columns, and spacing at various viewport widths. Allow full-width components Currently the grid system is a 14 column grid that becomes centred on the page when viewport is wide enough. We have, in the past, written some CSS that would allow for a full-width component, but his had always felt like a hack. We want the option to have a full-width element as part of the new grid system, not something that needs CSS to fight against. Less of a tag soup Ideally we want to end up writing less HTML to layout the page. Although the existing system can be quite clear as to what each element is doing, it can also become a little laborious in working out what each grid row or block is doing where. I would like to move the layout logic to CSS as much as is possible, potentially creating some utility classes or additional ‘layout classes’ for the components. Easier for people to use and author With many people using the existing design systems codebase we need to create a new grid system that is as easy or easier to use than the existing one. I think and hope this would be helped by removing as many
s as needed and would require new documentation and examples, and potentially some initial training. Separating layout from style There still needs to be a separation of layout from the styles for the component. To allow for the component itself to be placed wherever needed in the page we need to make sure that the CSS for the layout is a separate entity to the CSS for that styling. With these base requirements I took to CodePen and started working on some throwaway code to get started. Making the new grid(s) The Full-Width Grid To start with I created a grid that had three columns, one for the left, one for the middle, and one for the right. This would give the full-width option to components. Thankfully, one of Rachel Andrew’s many articles on Grid discussed this exact requirement of the new grid system to break out with Grid. I took some of the code in the examples and edited to make grid we needed. .container { display: grid; grid-template-columns: [full-start] minmax(.75em, 1fr) [main-start] minmax(0, 1008px) [main-end] minmax(.75em, 1fr) [full-end]; } We are declaring a grid, we have four grid column lines which we name and we define how the three columns they create react to the viewport width. We have a left and right column that have a minimum of 12px, and a central column with a maximum width of 1008px. Both left and right columns fill up any additional space if the viewport is wider that 1032px wide. We are also not declaring any gutters to this grid, the left and right columns would act as gutters at smaller viewports. At this point I noticed that older versions of Sass cannot parse the brackets in this code. To combat this I used Sass’ unquote method to wrap around the value of the grid-template-column. .container { display: grid; grid-template-columns: unquote("" [full-start] minmax(.75em, 1fr) [main-start] minmax(0, 1008px) [main-end] minmax(.75em, 1fr) [full-end] ""); } The existing codebase makes use of Sass variables, mixins and functions so to remove that would be a problem, but luckily the version of Sass used is up-to-date (note: example CodePens will be using CSS). The initial full-width grid displays on a webpage as below: The 14 column grid I decided to work out the 14 column grid as a separate prototype before working out how it would fit within the full-width grid. This grid is very similar to the 12 column grids that have been used in web design. Here we need 14 columns with a gutter between each one. Along with the many other resources on Grid, Mozilla’s MDN site had a page on common layouts using CSS Grid. This gave me the perfect CSS I needed to create my grid and I edited it as required: .inner { display: grid; grid-template-columns: repeat(14, [col-start] 1fr); grid-gap: .75em; } We, again, are declaring a grid, and we are splitting up the available space by creating 14 columns with 1 fr-unit and giving each one a starting line named col-start. This grid would display on web page as below: Bringing the grids together Now that we have got the two grids we need to help fulfil our requirements we need to put them together so that they are actually we we need. The subgrid There is no subgrid in CSS, yet. To workaround this for the new grid system we could nest the 14 column grid inside the full-width grid. In the HTML we nest the 14 column inner grid inside the full-width container.
So that the inner knows where to be laid out within the container we tell it what column to start and end with, with this code it would be the start and end of the main column. .inner { display: grid; grid-column: main-start / main-end; grid-template-columns: repeat(14, [col-start] 1fr); grid-gap: .75em; } The CSS for the container remains unchanged. This works, but we have added another div to our HTML. One of our requirements is to try and remove the potential for tag soup. The faux subgrid subgrid I wanted to see if it would be possible to place the CSS for the 14 column grid within the CSS for the full-width grid. I replaced the CSS for the main grid and added the grid-column-gap to the .container. .container { display: grid; grid-gap: .75em; grid-template-columns: [full-start] minmax(.75em, 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(.75em, 1fr) [full-end]; } What this gave me was a 16 column grid. I was unable to find a way to tell the main grid, the grid betwixt main-start and main-end to be a maximum of 1008px as required. I trawled the internet to find if it was possible to create our main requirement, a 14 column grid which also allows for full-width components. I found that we could not reverse minmax to minmax(1fr, 72px) as 1fr is not allowed as a minimum if there is a maximum. I tried working out if we could make the min larger than its max but in minmax it would be ignored. I was struggling, I was hoping for a cleaner version of the grid system we currently use but getting to the point where needing that extra
would be a necessity. At 3 in the morning, when I was failing to get to sleep, my mind happened upon an question: “Could you use calc?” At some point I drifted back to sleep so the next day I set upon seeing if this was possible. I knew that the maximum width of the central grid needed to be 1008px. The left and right columns needed to be however many pixels were left in the viewport divided by 2. In CSS it looked like I would need to use calc twice. The first time to takeaway 1008px from 100% of the viewport width and the second to divide that result by 2. calc(calc(100% - 1008px) / 2) The CSS above was part of the value that I would need to include in the declaration for the grid. .container { display: grid; grid-gap: .75em; grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; } We have created the grid required. A full-width grid, with a central 14 column grid, using fewer
elements. See the Pen Design Systems and CSS Grid, 6 by Stuart Robson (@sturobson) on CodePen. Success! Progressive enhancement Now that we have created the grid system required we need to back-track a little. Not all browsers support Grid, over the last 9 months or so this has gotten a lot better. However there will still be browsers that visit that potentially won’t have support. The effort required to make the grid system fall back for these browsers depends on your product or sites browser support. To determine if we will be using Grid or not for a browser we will make use of feature queries. This would mean that any version of Internet Explorer will not get Grid, as well as some mobile browsers and older versions of other browsers. @supports (display: grid) { /* Styles for browsers that support Grid */ } If a browser does not pass the requirements for @supports we will fallback to using flexbox where possible, and if that is not supported we are happy for the page to be laid out in one column. A website doesn’t have to look the same in every browser after all. A responsive grid We started with the big picture, how the grid would be at a large viewport and the grid system we have created gets a little silly when the viewport gets smaller. At smaller viewports we have a single column layout where every item of content, every component stacks atop each other. We don’t start to define a grid before we the viewport gets to 700px wide. At this point we have an 8 column grid and if the viewport gets to 1100px or wider we have our 14 column grid. /* * to start with there is no 'grid' just a single column */ .container { padding: 0 .75em; } /* * when we get to 700px we create an 8 column grid with * a left and right area to breakout of the grid. */ @media (min-width: 700px) { .container { display: grid; grid-gap: .75em; grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(8, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; padding: 0; } } /* * when we get to 1100px we create an 14 column grid with * a left and right area to breakout of the grid. */ @media (min-width: 1100px) { .container { grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; } } Being explicit in creating this there is some repetition that we could avoid, we will define the number of columns for the inner grid by using a Sass variable or CSS custom properties (more commonly termed as CSS variables). Let’s use CSS custom properties. We need to declare the variable first by adding it to our stylesheet. :root { --inner-grid-columns: 8; } We then need to edit a few more lines. First make use of the variable for this line. repeat(8, [col-start] 1fr) /* replace with */ repeat(var(--inner-grid-columns), [col-start] 1fr) Then at the 1100px breakpoint we would only need to change the value of the —inner-grid-columns value. @media (min-width: 1100px) { .container { grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; } } /* replace with */ @media (min-width: 1100px) { .container { --inner-grid-columns: 14; } } See the Pen Design Systems and CSS Grid, 8 by Stuart Robson (@sturobson) on CodePen. The final grid system We have finally created our new grid for the design system. It stays true to the existing grid in place, adds the ability to break-out of the grid, removes a
that could have been needed for the nested 14 column grid. We can move on to the new component. Creating a new component Back to the new components we are needing to create. To me there are two components one of which is a slight variant of the first. This component contains a title, subtitle, a paragraph (potentially paragraphs) of content, a list, and a call to action. To start with we should write the HTML for the component, something like this:

To place the component on the existing grid is fine, but as child elements are not affected by the container grid we need to define another grid for the features component. As the grid doesn’t get invoked until 700px it is possible to negate the need for a media query. .features { grid-column: col-start 1 / span 6; } @supports (display: grid) { @media (min-width: 1100px) { .features { grid-column-end: 9; } } } We can also avoid duplication of declarations by making use of the grid-column shorthand and longhand. We need to write a little more CSS for the variant component, the one that will sit on the right side of the page too. .features:nth-of-type(even) { grid-column-start: 4; grid-row: 2; } @supports (display: grid) { @media (min-width: 1100px) { .features:nth-of-type(even) { grid-column-start: 9; grid-column-end: 16; } } } We cannot place the items within features on the container grid as they are not direct children. To make this work we have to define a grid for the features component. We can do this by defining the grid at the first breakpoint of 700px making use of CSS custom properties again to define how many columns there will need to be. .features { grid-column: col-start 1 / span 6; --features-grid-columns: 5; } @supports (display: grid) { @media (min-width: 700px) { .features { display: grid; grid-gap: .75em; grid-template-columns: repeat(var(--features-grid-columns), [col-start] 1fr); } } } @supports (display: grid) { @media (min-width: 1100px) { .features { grid-column-end: 9; --features-grid-columns: 7; } } } See the Pen Design Systems and CSS Grid, 10 by Stuart Robson (@sturobson) on CodePen. Laying out the parts Looking at the spec and reading several articles I feel there are two ways that I could layout the text of this component on the grid. We could use the grid-column shorthand that incorporates grid-column-start and grid-column-end or we can make use of grid-template-areas. grid-template-areas allow for a nice visual way of representing how the parts of the component would be laid out. We can take the the mock of the features on the grid and represent them in text in our CSS. Within the .features rule we can add the relevant grid-template-areas value to represent the above. .features { display: grid; grid-template-columns: repeat(var(--features-grid-columns), [col-start] 1fr); grid-template-areas: "". title title title title title title"" "". subtitle subtitle subtitle subtitle subtitle . "" "". content content content content . . "" "". list list list . . . "" "". . . . link link link ""; } In order to make the variant of the component we would have to create the grid-template-areas for that component too. We then need to tell each element of the component in what grid-area it should be placed within the grid. .features__title { grid-area: title; } .features__subtitle { grid-area: subtitle; } .features__content { grid-area: content; } .features__list { grid-area: list; } .features__link { grid-area: link; } See the Pen Design Systems and CSS Grid, 12 by Stuart Robson (@sturobson) on CodePen. The other way would be to use the grid-column shorthand and the grid-column-start and grid-column-end we have used previously. .features .features__title { grid-column: col-start 2 / span 6; } .features .features__subtitle { grid-column: col-start 2 / span 5; } .features .features__content { grid-column: col-start 2 / span 4; } .features .features__list { grid-column: col-start 2 / span 4; } .features .features__link { grid-column: col-start 5 / span 3; } For the variant of the component we can use the grid-column-start property as it will inherit the span defined in the grid-column shorthand. .features:nth-of-type(even) .features__title { grid-column-start: col-start 1; } .features:nth-of-type(even) .features__subtitle { grid-column-start: col-start 1; } .features:nth-of-type(even) .features__content { grid-column-start: col-start 3; } .features:nth-of-type(even) .features__list { grid-column-start: col-start 3; } .features:nth-of-type(even) .features__link { grid-column-start: col-start 1; } See the Pen Design Systems and CSS Grid, 14 by Stuart Robson (@sturobson) on CodePen. I think, for now, we will go with using grid-column properties rather than grid-template-areas. The repetition needed for creating the variant feels too much where we can change the grid-column-start instead, keeping the components elements layout properties tied a little closer to the elements rather than the grid. Some additional decisions The current component library has existing styles for titles, subtitles, lists, paragraphs of text and calls to action. These are name-spaced so that they shouldn’t clash with any other components. Looking forward there will be a chance that other products adopt the component library, but they may bring their own styles for titles, subtitles, etc. One way that we could write our code now for that near future possibility is to make sure our classes are working hard. Using class-attribute selectors we can target part of the class attributes that we know the elements in the component will have using *=. .features [class*=""title""] { grid-column: col-start 2 / span 6; } .features [class*=""subtitle""] { grid-column: col-start 2 / span 5; } .features [class*=""content""] { grid-column: col-start 2 / span 4; } .features [class*=""list""] { grid-column: col-start 2 / span 4; } .features [class*=""link""] { grid-column: col-start 5 / span 3; } See the Pen Design Systems and CSS Grid, 15 by Stuart Robson (@sturobson) on CodePen. Although the component we have created have a title, subtitle, paragraphs, a list, and a call to action there may be a time where one ore more of these is not required or available. One thing I found out is that if the element doesn’t exist then grid will not create space for it. This may be obvious, but it can be really helpful in making a nice malleable component. We have only looked at columns, as existing components have their own spacing for the vertical rhythm of the page we don’t really want to have them take up equal space in the component and just take up the space as needed. We can do this by adding grid-auto-rows: min-content; to our .features. This is useful if you also need your component to take up a height that is more than the component itself. The grid of the future From prototyping this new grid and components in CSS Grid, I’ve found it a fantastic way to reimagine how we can create a layout or grid system for our sites. It gives us options to create the same layouts in differing ways that could suit a project and its needs. It allows us to carry on – if we choose to – using a
-based grid but swapping out floats for CSS Grid or to tie it to our components so they have specific places to go depending on what component is being used. Or we could have several ‘grid components’ in our design system that we could use to layout various components throughout a page. If you find yourself tasked with creating some new components for your design system try it. If you are starting from scratch I believe you really should start with CSS Grid for your layout. It really feels like the possibilities are endless in terms of layout for the web. Resources Here are just a few resources I have pawed over these last few weeks whilst getting acquainted with CSS Grid. A collection of CodePens from this article Grid by Example from Rachel Andrew A Complete Guide to CSS Grid on Codrops from Hui Jing Chen Rachel Andrew’s Blog Archive tagged: cssgrid CSS Grid Layout Examples MDN’s CSS Grid Layout A Complete Guide to Grid from CSS-Tricks CSS Grid Layout Module Level 1 Specification",2017,Stuart Robson,stuartrobson,2017-12-12T00:00:00+00:00,https://24ways.org/2017/design-systems-and-css-grid/,code 203,Jobs-to-Be-Done in Your UX Toolbox,"Part 1: What is JTBD? The concept of a “job” in “Jobs-To-Be-Done” is neatly encapsulated by a oft-quoted line from Theodore Levitt: “People want a quarter-inch hole, not a quarter inch drill”. Even so, Don Norman pointed out that perhaps Levitt “stopped too soon” at what the real customer goal might be. In the “The Design of Everyday Things”, he wrote: “Levitt’s example of the drill implying that the goal is really a hole is only partially correct, however. When people go to a store to buy a drill, that is not their real goal. But why would anyone want a quarter-inch hole? Clearly that is an intermediate goal. Perhaps they wanted to hang shelves on the wall. Levitt stopped too soon. Once you realize that they don’t really want the drill, you realize that perhaps they don’t really want the hole, either: they want to install their bookshelves. Why not develop methods that don’t require holes? Or perhaps books that don’t require bookshelves.” In other words, a “job” in JTBD lingo is a way to express a user need or provide a customer-centric problem frame that’s independent of a solution. As Tony Ulwick says: “A job is stable, it doesn’t change over time.” An example of a job is “tiding you over from breakfast to lunch.” You could hire a donut, a flapjack or a banana for that mid-morning snack—whatever does the job. If you can arrive at a clearly identified primary job (and likely some secondary ones too), you can be more creative in how you come up with an effective solution while keeping the customer problem in focus. The team at Intercom wrote a book on their application of JTBD. In it, Des Traynor cleverly characterised how JTBD provides a different way to think about solutions that compete for the same job: “Economy travel and business travel are both capable candidates applying for [the job: Get me face-to-face with my colleague in San Francisco], though they’re looking for significantly different salaries. Video conferencing isn’t as capable, but is willing to work for a far smaller salary. I’ve a hiring choice to make.” So far so good: it’s relatively simple to understand what a job is, once you understand how it’s different from a “task”. Business consultant and Harvard professor Clay Christensen talks about the concept of “hiring” a product to do a “job”, and firing it when something better comes along. If you’re a company that focuses solutions on the customer job, you’re more likely to succeed. You’ll find these concepts often referred to as “Jobs-to-be-Done theory”. But the application of Jobs-to-Be-Done theory is a little more complicated; it comprises several related approaches. I particularly like Jim Kalbach’s description of how JTBD is a “lens through which to understand value creation”. But it is also more. In my view, it’s a family of frameworks and methods—and perhaps even a philosophy. Different facets in a family of frameworks JTBD has its roots in market research and business strategy, and so it comes to the research table from a slightly different place compared to traditional UX or design research—we have our roots in human-computer interaction and ergonomics. I’ve found it helpful to keep in mind is that the application of JTBD theory is an evolving beast, so it’s common to find contradictions across different resources. My own use of it has varied from project to project. In speaking to others who have adopted it in different measures, it seems that we have all applied it in somewhat multifarious ways. As we like to often say in interviews: there are no wrong answers. Outcome Driven Innovation Tony Ulwick’s version of the JTBD history began with Outcome Driven Innovation (ODI), and this approach is best outlined in his seminal article published in the Harvard Business Review in 2002. To understand his more current JTBD approach in his new book “Jobs to Be Done: Theory to Practice”, I actually found it beneficial to read his approach in the original 2002 article for a clearer reference point. In the earlier article, Ulwick presented a rigorous approach that combines interviews, surveys and an “opportunity” algorithm—a sequence of steps to determine the business opportunity. ODI centres around working with “desired outcome statements” that you unearth through interviews, followed by a means to quantify the gap between importance and satisfaction in a survey to different types of customers. Since 2008, Ulwick has written about using job maps to make sense of what the customer may be trying to achieve. In a recent article, he describes the aim of the activity is “to discover what the customer is trying to get done at different points in executing a job and what must happen at each juncture in order for the job to be carried out successfully.” A job map is not strictly a journey map, however tempting it is to see it that way. From a UX perspective, is one of many models we can use—and as our research team at Clearleft have found, how we use model can depend on the nature of the jobs we’ve uncovered in interviews and the characteristics of the problem we’re attempting to solve. Figure 1. Universal job map Ulwick’s current methodology is outlined in his new book, where he describes a complete end-to-end process: from customer and competitor research to framing market and product strategy. The Jobs-To-Be-Done Interview Back in 2013, I attended a workshop by Chris Spiek and Bob Moesta from the ReWired Group on JTBD at the behest of a then-MailChimp colleague, and I came away excited about their approach to product research. It felt different from anything I’d done before and for the first time in years, I felt that I was genuinely adding something new to my research toolbox. A key idea is that if you focus on the stories of those who switched to you, and those who switch away from you, you can uncover the core jobs through looking at these opposite ends of engagement. This framework centres around the JTBD interview method, which harnesses the power of a narrative framework to elicit the real reasons why someone “hired” something to do a job—be it something physical like a new coffee maker, or a digital service, such as a to-do list app. As you interview, you are trying to unearth the context around the key moments on the JTBD timeline (Figure 2). A common approach is to begin from the point the customer might have purchased something, back to the point where the thought of buying this thing first occurred to them. Figure 2. JTBD Timeline Figure 3. The Four Forces The Forces Diagram (Figure 3) is a post-interview analysis tool where you can map out what causes customers to switch to something new and what holds them back. The JTBD interview is effective at identifying core and secondary jobs, as well as some context around the user need. Because this method is designed to extract the story from the interviewee, it’s a powerful way to facilitate recall. Having done many such interviews, I’ve noticed one interesting side effect: participants often remember more details later on after the conversation has formally ended. It is worth scheduling a follow-up phone call or keep the channels open. Strengths aside, it’s good to keep in mind that the JTBD interview is still primarily an interview technique, so you are relying on the context from the interviewee’s self-reported perspective. For example, a stronger research methodology combines JTBD interviews with contextual research and quantitative methods. Job Stories Alan Klement is credited for coming up with the term “job story” to describe the framing of jobs for product design by the team at Intercom: “When … I want to … so I can ….” Figure 4. Anatomy of a Job Story Unlike a user story that traditionally frames a requirement around personas, job stories frame the user need based on the situation and context. Paul Adams, the VP of Product at Intercom, wrote: “We frame every design problem in a Job, focusing on the triggering event or situation, the motivation and goal, and the intended outcome. […] We can map this Job to the mission and prioritise it appropriately. It ensures that we are constantly thinking about all four layers of design. We can see what components in our system are part of this Job and the necessary relationships and interactions required to facilitate it. We can design from the top down, moving through outcome, system, interactions, before getting to visual design.” Systems of Progress Apart from advocating using job stories, Klement believes that a core tenet of applying JTBD revolves around our desire for “self-betterment”—and that focusing on everyone’s desire for self-betterment is core to a successful strategy. In his book, Klement takes JTBD further to being a tool for change through applying systems thinking. There, he introduces the systems of progress and how it can help focus product strategy approach to be more innovative. Coincidentally, I applied similar thinking on mapping systemic change when we were looking to improve users’ trust with a local government forum earlier this year. It’s not just about capturing and satisfying the immediate job-to-be-done, it’s about framing the job so that you can a clear vision forward on how you can help your users improve their lives in the ways they want to. This is really the point where JTBD becomes a philosophy of practice. Part 2: Mixing It Up There has been some misunderstanding about how adopting JTBD means ditching personas or some of our existing design tools or research techniques. This couldn’t have been more wrong. Figure 5: Jim Kalbach’s JTBD model Jim Kalbach has used Outcome-Driven Innovation for around 10 years. In a 2016 article, he presents a synthesised model of how to think about that has key elements from ODI, Christensen’s theories and the structure of the job story. More interestingly, Kalbach has also combined the use of mental models with JTBD. Claire Menke of UDemy has written a comprehensive article about using personas, JTBD and customer journey maps together in order to communicate more complete story from the users’ perspective. Claire highlights an especially interesting point in her article as she described her challenges: “After much trial and error, I arrived at a foundational research framework to suit every team’s needs — allowing everyone to share the same holistic understanding, but extract the type of information most applicable to their work.” In other words, the organisational context you are in likely can dictate what works best—after all the goal is to arrive at the best user experience for your audiences. Intercom can afford to go full-on on applying JTBD theory as a dominant approach because they are a start-up, but a large company or organisation with multiple business units may require a mix of tools, outputs and outcomes. JTBD is an immensely powerful approach on many fronts—you’ll find many different references that lists the ways you can apply JTBD. However, in the context of this discussion, it might also be useful to we examine where it lies in our models of how we think about our UX and product processes. JTBD in the UX ecosystem Figure 6. The Elements of User Experience (source) There are many ways we have tried to explain the UX discipline but I think Jesse James Garrett’s Elements of User Experience is a good place to begin. I sometimes also use little diagram to help me describe the different levels you might work at when you work through the complexity of designing and developing a product. A holistic UX strategy needs to address all the different levels for a comprehensive experience: your individual product UI, product features, product propositions and brand need to have a cohesive definition. Figure 7. Which level of product focus? We could, of course, also think about where it fits best within the double diamond. Again, bearing in mind that JTBD has its roots in business strategy and market research, it is excellent at clarifying user needs, defining high-level specifications and content requirements. It is excellent for validating brand perception and value proposition —all the way down to your feature set. In other words, it can be extremely powerful all the way through to halfway of the second diamond. You could quite readily combine the different JTBD approaches because they have differences as much as overlaps. However, JTBD generally starts getting a little difficult to apply once we get to the details of UI design. The clue lies in JTBD’s raison d’être: a job statement is solution independent. Hence, once we get to designing solutions, we potentially fall into a existential black hole. That said, Jim Kalbach has a quick case study on applying JTBD to content design tucked inside the main article on a synthesised JTBD model. Alan Klement has a great example of how you could use UI to resolve job stories. You’ll notice that the available language of “jobs” drops off at around that point. Job statements and outcome statements provide excellent “mini north-stars” as customer-oriented focal points, but purely satisfying these statements would not necessarily guarantee that you have created a seamless and painless user experience. Playing well with others You will find that JTBD plays well with Lean, and other strategy tools like the Value Proposition Canvas. With every new project, there is potential to harness the power of JTBD alongside our established toolbox. When we need to understand complex contexts where cultural or socioeconomic considerations have to be taken into account, we are better placed with combining JTBD with more anthropological approaches. And while we might be able to evaluate if our product, website or app satisfies the customer jobs through interviews or surveys, without good old-fashioned usability testing we are unlikely to be able to truly validate why the job isn’t being represented as it should. In this case, individual jobs solved on the UI can be set up as hypotheses to be proven right or wrong. The application of Jobs-to-be-Done is still evolving. I’ve found it to be very powerful and I struggle to remember what my UX professional life was like before I encountered it—it has completely changed my approach to research and design. The fact JTBD is still evolving as a practice means we need to be watchful of dogma—there’s no right way to get a UX job done after all, it nearly always depends. At the end of the day, isn’t it about having the right tool for the right job?",2017,Steph Troeth,stephtroeth,2017-12-04T00:00:00+00:00,https://24ways.org/2017/jobs-to-be-done-in-your-ux-toolbox/,ux 201,Lint the Web Forward With Sonarwhal,"Years ago, when I was in a senior in college, much of my web development courses focused on two things: the basics like HTML and CSS (and boy, do I mean basic), and Adobe Flash. I spent many nights writing ActionScript 3.0 to build interactions for the websites that I would add to my portfolio. A few months after graduating, I built one website in Flash for a client, then never again. Flash was dying, and it became obsolete in my résumé and portfolio. That was my first lesson in the speed at which things change in technology, and what a daunting realization that was as a new graduate looking to enter the professional world. Now, seven years later, I work on the Microsoft Edge team where I help design and build a tool that would have lessened my early career anxieties: sonarwhal. Sonarwhal is a linting tool, built by and for the web community. The code is open source and lives under the JS Foundation. It helps web developers and designers like me keep up with the constant change in technology while simultaneously teaching how to code better websites. Introducing sonarwhal’s mascot Nellie Good web development is hard. It is more than HTML, CSS, and JavaScript: developers are expected to have a grasp of accessibility, performance, security, emerging standards, and more, all while refreshing this knowledge every few months as the web evolves. It’s a lot to keep track of.   Web development is hard Staying up-to-date on all this knowledge is one of the driving forces for developing this scanning tool. Whether you are just starting out, are a student, or you have over a decade of experience, the sonarwhal team wants to help you build better websites for all browsers. Currently sonarwhal checks for best practices in five categories: Accessibility, Interoperability, Performance, PWAs, and Security. Each check is called a “rule”. You can configure them and even create your own rules if you need to follow some specific guidelines for your project (e.g. validate analytics attributes, title format of pages, etc.). You can use sonarwhal in two ways: An online version, that provides a quick and easy way to scan any public website. A command line tool, if you want more control over the configuration, or want to integrate it into your development flow. The Online Scanner The online version offers a streamlined way to scan a website; just enter a URL and you will get a web page of scan results with a permalink that you can share and revisit at any time. The online version of sonarwal When my team works on a new rule, we spend the bulk of our time carefully researching each subject, finding sources, and documenting it rather than writing the rule’s code. Not only is it important that we get you the right results, but we also want you to understand why something is failing. Next to each failing rule you’ll find a link to its detailed documentation, explaining why you should care about it, what exactly we are testing, examples that pass and examples that don’t, and useful links to even more in-depth documentation if you are interested in the subject. We hope that between reading the documentation and continued use of sonarwhal, developers can stay on top of best practices. As devs continue to build sites and identify recurring issues that appear in their results, they will hopefully start to automatically include those missing elements or fix those pieces of code that are producing errors. This also isn’t a one-way communication: the documentation is not only available on the sonarwhal site, but also on GitHub for editing so you can help us make it even better! A results report The current configuration for the online scanner is very strict, so it might hurt your feelings (it did when I first tested it on my personal website). But you can configure sonarwhal to any level of strictness as well as customize the command line tool to your needs! Sonarwhal’s CLI  The CLI gives you full control of sonarwhal: what rules to use, tweaks to them, domains that are out of your control, and so on. You will need the latest node LTS (v8) or Stable (v9) and your favorite package manager, such as npm: npm install -g sonarwhal You can now run sonarwhal from anywhere via: sonarwhal https://example.com Using the CLI The configuration is done via a .sonarwhalrc file. When analyzing a site, if no file is available, you will be prompted to answer a series of questions: What connector do you want to use? Connectors are what sonarwhal uses to access a website and gather all the information about the requests, resources, HTML, etc. Currently it supports jsdom, Microsoft Edge, and Google Chrome. What formatter? This is how you want to see the results: summary, stylish, etc. Make sure to look at the full list. Some are concise for, perfect for a quick build assessment, while others are more verbose and informative. Do you want to use the recommended rules configuration? Rules are the things we are validating. Unless you’ve read the documentation and know what you are doing, first timers should probably use the recommended configuration. What browsers are you targeting? One of the best features of sonarwhal is that rules can adapt their feedback depending on your targeted browsers, suggesting to add or remove things. For example, the rule “Highest Document Mode” will tell you to add the “X-UA-Compatible” header if IE10 or lower is targeted or remove if the opposite is true. sonarwhal configuration generator questions Once you answer all these questions the scan will start and you will have a .sonarwhalrc file similar to the following: { ""connector"": { ""name"": ""jsdom"", ""options"": { ""waitFor"": 1000 } }, ""formatters"": ""stylish"", ""rulesTimeout"": 120000, ""rules"": { ""apple-touch-icons"": ""error"", ""axe"": ""error"", ""content-type"": ""error"", ""disown-opener"": ""error"", ""highest-available-document-mode"": ""error"", ""validate-set-cookie-header"": ""warning"", // ... } } You should see the scan initiate in the command line and within a few seconds the results should start to appear. Remember, the scan results will look different depending on which formatter you selected so try each one out to see which one you like best. sonarwhal results on my website and hurting my feelings 💔 Now that you have a list of errors, you can get to work improving the site! Note though, that when you scan your website, it scans all the resources on that page and if you’ve added something like analytics or fonts hosted elsewhere, you are unable to change those files. You can configure the CLI to ignore files from certain domains so that you are only getting results for files you are in control of. The documentation should give enough guidance on how to fix the errors, but if it’s insufficient, please help us and suggest edits or contribute back to it. This is a community effort and chances are someone else will have the same question as you. When I scanned both my websites, sonarwhal alerted me to not having an Apple Touch Icon. If I search on the web as opposed to using the sonarwhal documentation, the first top 3 results give me outdated information: I need to include many different icon sizes. I don’t need to include all the different size icons that target different devices. Declaring one icon sized 180px x 180px will provide a large enough icon for devices and it will scale down as appropriate for people on older devices. The information at the top of the search results isn’t always the correct answer to an issue and we don’t want you to have to search through outdated documentation. As sonarwhal’s capabilities expand, the goal is for it to be the one stop shop for helping preflight your website. The journey up until now and looking forward On the Microsoft Edge team, we’re passionate about empowering developers to build great websites. Every day we see so many sites come through our issue tracker. (Thanks for filing those bugs, they help us make Microsoft Edge better and better!) Some issues we see over and over are honest mistakes or outdated ‘best practices’ that could be avoided, so we built this tool to help everyone help make the web a better place. When we decided to create sonarwhal, we wanted to create a tool that would help developers write better and more up-to-date code for their websites. We want sonarwhal to be useful to anyone so, early on, we defined three guiding principles we’ve used along the way: Community Driven. We build for the community’s best interests. The web belongs to everyone and this project should too. Not only is it open source, we’ve also donated it to the JS Foundation and have an inclusive governance model that welcomes the collaboration of anyone, individual or company. User Centric. We want to put the user at the center, making sonarwhal configurable for your needs and easy to use no matter what your skill level is. Collaborative. We didn’t want to reinvent the wheel, so we collaborated with existing tools and services that help developers build for the web. Some examples are aXe, snyk.io, Cloudinary, etc. This is just the beginning and we still have lots to do. We’re hard at work on a backlog of exciting features for future releases, such as: New rules for a variety of areas like performance, accessibility, security, progressive web apps, and more. A plug-in for Visual Studio Code: we want sonarwhal to help you write better websites, and what better moment than when you are in your editor. Configuration options for the online service: as we fine tune the infrastructure, the rule configuration for our scanner is locked, but we look forward to adding CLI customization options here in the near future. This is a tool for the web community by the web community so if you are excited about sonarwhal, making a better web, and want to contribute, we have a few issues where you might be able to help. Also, don’t forget to check the rest of the sonarwhal GitHub organization. PRs are always welcome and appreciated! Let us know what you think about the scanner at @NarwhalNellie on Twitter and we hope you’ll help us lint the web forward!",2017,Stephanie Drescher,stephaniedrescher,2017-12-02T00:00:00+00:00,https://24ways.org/2017/lint-the-web-forward-with-sonarwhal/,code 211,Automating Your Accessibility Tests,"Accessibility is one of those things we all wish we were better at. It can lead to a bunch of questions like: how do we make our site better? How do we test what we have done? Should we spend time each day going through our site to check everything by hand? Or just hope that everyone on our team has remembered to check their changes are accessible? This is where automated accessibility tests can come in. We can set up automated tests and have them run whenever someone makes a pull request, and even alongside end-to-end tests, too. Automated tests can’t cover everything however; only 20 to 50% of accessibility issues can be detected automatically. For example, we can’t yet automate the comparison of an alt attribute with an image’s content, and there are some screen reader tests that need to be carried out by hand too. To ensure our site is as accessible as possible, we will still need to carry out manual tests, and I will cover these later. First, I’m going to explain how I implemented automated accessibility tests on Elsevier’s ecommerce pages, and share some of the lessons I learnt along the way. Picking the right tool One of the hardest, but most important parts of creating our automated accessibility tests was choosing the right tool. We began by investigating aXe CLI, but soon realised it wouldn’t fit our requirements. It couldn’t check pages that required a visitor to log in, so while we could test our product pages, we couldn’t test any customer account pages. Instead we moved over to Pa11y. Its beforeScript step meant we could log into the site and test pages such as the order history. The example below shows the how the beforeScript step completes a login form and then waits for the login to complete before testing the page: beforeScript: function(page, options, next) { // An example function that can be used to make sure changes have been confirmed before continuing to run Pa11y function waitUntil(condition, retries, waitOver) { page.evaluate(condition, function(err, result) { if (result || retries < 1) { // Once the changes have taken place continue with Pa11y testing waitOver(); } else { retries -= 1; setTimeout(function() { waitUntil(condition, retries, waitOver); }, 200); } }); } // The script to manipulate the page must be run with page.evaluate to be run within the context of the page page.evaluate(function() { const user = document.querySelector('#login-form input[name=""email""]'); const password = document.querySelector('#login-form input[name=""password""]'); const submit = document.querySelector('#login-form input[name=""submit""]'); user.value = 'user@example.com'; password.value = 'password'; submit.click(); }, function() { // Use the waitUntil function to set the condition, number of retries and the callback waitUntil(function() { return window.location.href === 'https://example.com'; }, 20, next); }); } The waitUntil callback allows the test to be delayed until our test user is successfully logged in. Another thing to consider when picking a tool is the type of error messages it produces. aXe groups all elements with the same error together, so the list of issues is a lot easier to read, and it’s easier to identify the most commons problems. For example, here are some elements that have insufficient colour contrast: Violation of ""color-contrast"" with 8 occurrences! Ensures the contrast between foreground and background colors meets WCAG 2 AA contrast ratio thresholds. Correct invalid elements at: - #maincontent > .make_your_mark > div:nth-child(2) > p > span > span - #maincontent > .make_your_mark > div:nth-child(4) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(2) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(4) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(6) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(8) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(10) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(12) > p > span > span For details, see: https://dequeuniversity.com/rules/axe/2.5/color-contrast aXe also provides links to their site where they discuss the best way to fix the problem. In comparison, Pa11y lists each individual error which can lead to a very verbose list. However, it does provide helpful suggestions of how to fix problems, such as suggesting an alternative shade of a colour to use: • Error: This element has insufficient contrast at this conformance level. Expected a contrast ratio of at least 4.5:1, but text in this element has a contrast ratio of 2.96:1. Recommendation: change text colour to #767676. ⎣ WCAG2AA.Principle1.Guideline1_4.1_4_3.G18.Fail ⎣ #maincontent > div:nth-child(10) > div:nth-child(8) > p > span > span ⎣ Featured products: Integrating into our build pipeline We decided the perfect time to run our accessibility tests would be alongside our end-to-end tests. We have a Jenkins job that detects changes to our staging site and then triggers the end-to-end tests, and in turn our accessibility tests. Our Jenkins job retrieves the contents of a GitHub repository containing our Pa11y script file and npm package manifest. Once Jenkins has cloned the repository, it installs any dependencies and executes the tests via: npm install && npm test Bundling the URLs to be tested into our test script means we don’t have a command line style test where we list each URL we wish to test in the Jenkins CLI. It’s an effective method but can also be cluttered, and obscure which URLs are being tested. In the middle of the office we have a monitor displaying a Jenkins dashboard and from this we can see if the accessibility tests are passing or failing. Everyone in the team has access to the Jenkins logs and when the build fails they can see why and fix the issue. Fixing the issues As mentioned earlier, Pa11y can generate a long list of areas for improvement which can be very verbose and quite overwhelming. I recommend going through the list to see which issues occur most frequently and fix those first. For example, we initially had a lot of errors around colour contrast, and one shade of grey in particular. By making this colour darker, the number of errors decreased, and we could focus on the remaining issues. Another thing I like to do is to tackle the quick fixes, such as adding alt text to images. These are small things that allow us to make an impact instantly, giving us time to fix more detailed concerns such as addressing tabindex issues, or speaking to our designers about changing the contrast of elements on the site. Manual testing Adding automated tests to check our site for accessibility is great, but as I mentioned earlier, this can only cover 20-50% of potential issues. To improve on this, we need to test by hand too, either by ourselves or by asking others. One way we can test our site is to throw our mouse or trackpad away and interact with the site using only a keyboard. This allows us to check items such as tab order, and ensure menu items, buttons etc. can be used without a mouse. The commands may be different on different operating systems, but there are some great guides online for learning more about these. It’s tempting to add alt text and aria-labels to make errors go away, but if they don’t make any sense, what use are they really? Using a screenreader we can check that alt text accurately represents the image. This is also a great way to double check that our ARIA roles make sense, and that they correctly identify elements and how to interact with them. When testing our site with screen readers, it’s important to remember that not all screen readers are the same and some may interact with our site differently to others. Consider asking a range of people with different needs and abilities to test your site, too. People experience the web in numerous ways, be they permanent, temporary or even situational. They may interact with your site in ways you hadn’t even thought about, so this is a good way to broaden your knowledge and awareness. Tips and tricks One of our main issues with Pa11y is that it may find issues we don’t have the power to solve. A perfect example of this is the one pixel image Facebook injects into our site. So, we wrote a small function to go though such errors and ignore the ones that we cannot fix. const test = pa11y({ .... hideElements: '#ratings, #js-bigsearch', ... }); const ignoreErrors: string[] = [ '', '', '' ]; const filterResult = result => { if (ignoreErrors.indexOf(result.context) > -1) { return false; } return true; }; Initially we wanted to focus on fixing the major problems, so we added a rule to ignore notices and warnings. This made the list or errors much smaller and allowed us focus on fixing major issues such as colour contrast and missing alt text. The ignored notices and warnings can be added in later after these larger issues have been resolved. const test = pa11y({ ignore: [ 'notice', 'warning' ], ... }); Jenkins gotchas While using Jenkins we encountered a few problems. Sometimes Jenkins would indicate a build had passed when in reality it had failed. This was because Pa11y had timed out due to PhantomJS throwing an error, or the test didn’t go past the first URL. Pa11y has recently released a new beta version that uses headless Chrome instead of PhantomJS, so hopefully these issues will less occur less often. We tried a few approaches to solve these issues. First we added error handling, iterating over the array of test URLs so that if an unexpected error happened, we could catch it and exit the process with an error indicating that the job had failed (using process.exit(1)). for (const url of urls) { try { console.log(url); let urlResult = await run(url); urlResult = urlResult.filter(filterResult); urlResult.forEach(result => console.log(result)); } catch (e) { console.log('Error:', e); process.exit(1); } } We also had issues with unhandled rejections sometimes caused by a session disconnecting or similar errors. To avoid Jenkins indicating our site was passing with 100% accessibility, when in reality it had not executed any tests, we instructed Jenkins to fail the job when an unhandled rejection or uncaught exception occurred: process.on('unhandledRejection', (reason, p) => { console.log('Unhandled Rejection at:', p, 'reason:', reason); process.exit(1); }); process.on('uncaughtException', (err) => { console.log('Caught exception: ${err}n'); process.exit(1); }); Now it’s your turn That’s it! That’s how we automated accessibility testing for Elsevier ecommerce pages, allowing us to improve our site and make it more accessible for everyone. I hope our experience can help you automate accessibility tests on your own site, and bring the web a step closer to being accessible to all.",2017,Seren Davies,serendavies,2017-12-07T00:00:00+00:00,https://24ways.org/2017/automating-your-accessibility-tests/,code 214,Christmas Gifts for Your Future Self: Testing the Web Platform,"In the last year I became a CSS specification editor, on a mission to revitalise CSS Multi-column layout. This has involved learning about many things, one of which has been the Web Platform Tests project. In this article, I’m going to share what I’ve learned about testing the web platform. I’m also going to explain why I think you might want to get involved too. Why test? At one time or another it is likely that you have been frustrated by an issue where you wrote some valid CSS, and one browser did one thing with it and another something else entirely. Experiences like this make many web developers feel that browser vendors don’t work together, or they are actively doing things in a different way to one another to the detriment of those of us who use the platform. You’ll be glad to know that isn’t the case, and that the people who work on browsers want things to be consistent just as much as we do. It turns out however that interoperability, which is the official term for “works in all browsers”, is hard. Thanks to web-platform-tests, a test from another browser vendor just found genuine bug in our code before we shipped 😻— Brian Birtles (@brianskold) February 10, 2017 In order for W3C Specifications to move on to become W3C Recommendations we need to have interoperable implementations. 6.2.4 Implementation Experience Implementation experience is required to show that a specification is sufficiently clear, complete, and relevant to market needs, to ensure that independent interoperable implementations of each feature of the specification will be realized. While no exhaustive list of requirements is provided here, when assessing that there is adequate implementation experience the Director will consider (though not be limited to): is each feature of the current specification implemented, and how is this demonstrated? are there independent interoperable implementations of the current specification? are there implementations created by people other than the authors of the specification? are implementations publicly deployed? is there implementation experience at all levels of the specification’s ecosystem (authoring, consuming, publishing…)? are there reports of difficulties or problems with implementation? https://www.w3.org/2017/Process-20170301/#transition-reqs We all want interoperability, achieving interoperability is part of the standards process. The next question is, how do we make sure that we get it? Unimplemented vs uninteroperable implementations Before looking at how we can try to improve interoperability, I’d like to look at the reasons we don’t always meet that aim. There are a couple of reasons why browser X is not doing the same thing as browser Y. The first reason is that browser X has not implemented that feature yet. Relatively small teams of people work on browser engines, and their resources are spread as thinly as those of any company. Behind those browsers are business or organisational goals which may not match our desire for a shiny feature to be made available. There are ways in which we as the web community can help gently encourage implementations - by requesting the feature, by using it so it shows up in usage reports, or writing about it to show interest. However, there will always be some degree of lag based on priorities. A browser not supporting a feature at all, is reasonably easy to deal with these days. We can test for support with Feature Queries, and create sensible fallbacks. What is harder to deal with is when a feature is implemented in different ways by different browsers. In that situation you use the feature, perhaps referring to the specification to ensure that you are writing your CSS correctly. It looks exactly as you expect in one browser and it’s all broken when you test in another. A frequent cause of this kind of issue is that the specification is not well defined in a particular area or that the specification has changed since one or other browser implemented it. CSS specifications are not developed in a darkened room, then presented to browser vendors to implement as a completed document. It would be nice if it worked like that, however the web platform is a gnarly thing. Before we can be sure that a specification is correct, it needs implementing in order that we can get the interoperable implementations I described earlier. A circular process has to happen. Specifications have to be written, browsers have to implement and find the problems, and then the specification has to be revised. Many people reading this will be familiar with how flexbox changed three times in browsers, leaving us with a mess of incompatibilities and the need to use at least two versions of the spec. This story was an example of this circular process, in this case the specification was flagged as experimental using vendor prefixes. We had become used to using vendor prefixes in production and early adopters of flexbox were bitten by this. Today, specifications are developed behind experimental flags as we saw with CSS Grid Layout. Yet there has to come a time when implementations ship, and remove those flags, and it may be that knowingly or unknowingly some interop issues slip through. You will know these interop issues as “browser bugs”, perhaps you have even reported one (thank you!) and none of us want them, so how do we make the platform as robust as possible? How do we ensure we have interoperability? If you were working on a large web application, with several people committing code, it would be very easy for one person to make a change that inadvertently broke some part of the application. They might not realise the fact that their change would cause a problem, due to not having a complete understanding of the entire codebase. To prevent this from happening, it is accepted good practice to write tests as well as code. The tests can then be run before the application is deployed. Unless you start out from the beginning writing tests, and are very good at writing a test for every bit of code, it is likely that some issues do slip through from time to time. When this happens, a good approach is to not only fix the issue but also to write a test that would stop it ever happening again. That way the test suite improves over time and hopefully fewer issues happen. The web platform is essentially a giant, sprawling application, with a huge range of people working on it in different ways. There is therefore plenty of opportunity for issues to creep in, so it seems like having some way of writing tests and automating those tests on browsers would be a good thing. That, is what the Web Platform Tests project has set out to achieve. Web Platform Tests Web Platform Tests is the test suite for the web platform. It is set of tests for all parts of the web platform, which can be run in any browser and the results reported. This article mostly discusses CSS tests, because I work on CSS. You will find that there are tests covering the full platform, and you can look into whichever area you have the most interest and experience in. If we want to create a test suite for a CSS specification then we need to ensure that every feature of the specification has a related test. If a change is made to the spec, and a test committed that reflects that change, then it should be straightforward to run that test against each browser and see if it passes. Currently, at the CSS Working Group, specifications that are at Candidate Recommendation Status should commit at test with every normative change to the spec. To explain the terminology, a normative change is one that changes some of the normative text of a specification - text that contains instructions as to how a browser should render a certain thing. A Candidate Recommendation is the status at which the Working Group officially request implementations of the spec, therefore it is reasonable to assume that any change may cause an interoperability issue. It is usually the case that representatives from all browsers will have discussed the change, so anyone who needs to change code will be aware. In this case the test allows them to check that their change passes and matches everyone else. Tests would also highlight the situation where a change to the spec caused an issue in a browser that otherwise wouldn’t be aware if it. Just as a test suite for your web application should alert a person committing code, that their change will cause a problem elsewhere. Discovering the tests I’ve found that the more I have understood the effort that goes into interoperability, and the reasons why creating an interoperable web is so hard, running into browser issues has become less frustrating. I have somewhere to go, even if all I can do is log the bug. If you are even slightly interested in the subject, go have a poke around wpt.fyi. You can explore the various parts of the web platform and see how many tests have been committed. All the the CSS tests are under the directory /css where you will find each specification. Find a specification you are interested in, and look at the tests. Each test has a link to run it in your own browser to see if it passes. This can be useful in itself, if you are battling with an issue and have reduced it down to something specific, you can go and look to see if there is a test covering that and whether it appears to pass or fail in the browser you are battling with. If it turns out that the test fails, it’s probably not you! A test on the wpt.fyi dashboard Note: In some tests you will come across mention of a font called Ahem. This is a font designed for testing which contains consistent glyphs. You can read about how to use the font and download it here. Contributing to Web Platform Tests You can also become involved with Web Platform Tests. People often ask me how they can become involved in CSS, and I can think of no better way than by writing tests. You need to really understand a feature to accurately come up with a method of testing if it works or not in the different engines. This is not glamorous work, it is however a very useful thing to be involved with. In addition to helping yourself, and developing the sort of deep knowledge of the platform that enables contribution, you will really help the progress of specifications. There are only a very few people writing specs. If those people also have to write and review all of the tests it slows down their work. If you want a better, more interoperable web, and to massively improve your ability to have nerdy conversations about highly specific things, testing is the place to start. A local testing setup Your first stop should be to visit the home of Web Platform Tests. There is some documentation here, which does tend to assume you know about the tests and what you are looking for - having read this article you know as much as I do. To be able to work on tests you will want to: Clone the WPT repo, this is where all the tests are stored Install some tools so you can run up a local copy of the tests The instructions on the Readme in the repo should get you up and running, you can then load your own version of the test suite in a browser at http://web-platform-test:8000, or whichever port you set up. Running tests locally Finding things to test It’s currently not straightforward to locate low-hanging fruit in order to start committing tests. There are some issues flagged up as a good first issue in the GitHub repo, if any of those match your interest and knowledge. Otherwise, a good place to start is where you know of existing interoperability issues. If you are aware of a browser bug, have a look and see if there is a test that addresses it. If not, then a test highlights the interoperability issue, and if it is an issue that you are running into means that you have a nice way to see if it has been fixed! Talk to people There is an IRC channel at irc://irc.w3.org:6667/testing, where you will find people who are writing tests as well as people who are working on the test suite framework itself. They have always been very friendly, and are likely to welcome people with a real interest in creating tests. Gathering information First you need to read the spec. To be able to create a test you need to know and to understand what the specification says should be happening. As I mentioned, writing tests will improve your knowledge dramatically! In general I find that web developers assume their favourite browser has got it right, this isn’t about right or wrong however, or good browsers versus bad ones. The browser with the incorrect implementation may have had a perfect, as per the spec implementation, until something changed. Do some investigation and work out what the spec says, and which – if any – browser is doing it correctly. Another good place to look when trying to create a test for an interop issue, is to look at the browser issue trackers. It is quite likely that someone has already logged the issue, and detailed what it is, and even which browsers are as per the spec. This is useful information, as you then have a clue as to which browsers should pass your test. Remember to check version numbers - an issue may well be fixed in a pre-release version of Chrome for example, but not in the public release. Edge Issue Tracker Mozilla Issue Tracker WebKit Issue Tracker Chromium Issue Tracker Writing the test If you’ve ever created a Reduced Test Case to isolate a browser issue, you already have some idea of what we are trying to do with a test. We want to test one thing, in isolation, and to be able to confirm “yes this works as per the spec” or “no, this does not”. The main two types of test are: testharness.js tests reftests The testharness.js tests use JavaScript to test an assertion, this framework is designed as a way to test Web APIs and as this quickly gets fairly complicated - and I’m a complete beginner myself at writing these - I’ll refer you to the excellent tutorial Using testharness.js. Many CSS tests will be reftests. A reftest involves getting two pages to lay out in the same way, so that they are visually the same. For example, you can find a reftest for Grid Layout at:https://w3c-test.org/css/css-grid/alignment/grid-gutters-001.html or at http://web-platform.test:8000/css/css-grid/alignment/grid-gutters-001.html if you have run up your own copy of WPT. CSS Grid Layout Test: Support for gap shorthand property of row-gap and column-gap

The test passes if it has the same visual effect as reference.

I am testing the new gap property (renamed grid-gap). The reference file can be found by looking for the line: In that file, I am using absolute positioning to mock up the way the file would look if gap is implemented correctly. CSS Grid Layout Reference: a square with a green cross
The tests are compared in an automated way by taking screenshots of the test and reference. These are relatively simple tests to write, you will find the work is not in writing the test however. The work is really in doing the research, and making sure you understand what is supposed to happen so you can write the test. Which is why, if you really want to get your hands dirty in the web platform, this is a good place to start. Committing a test Once you have written a test you can run the lint tool to make sure that everything is tidy. This tool is run automatically after you submit your pull request, and reviewers won’t accept a test with lint errors, so do this locally first to catch anything obvious. Tests are added as a pull request, once you have your test ready to go you can create a pull request to add it to the repository. Your test will be tested and it will then wait for a review. You may well then find yourself in a bit of a waiting game, as the test needs to be reviewed. How long that takes will depend on how active work is on that spec. People who are in the OWNERS file for that spec should be notified. You can always ask in IRC to see if someone is available who can look at and potentially merge your test. Usually the reviewer will have some comments as to how the test can be improved, in the same as the owner of an open source project you submit a PR to might ask you to change some things. Work with them to make your test as good as it can be, the things you learn on the first test you submit will make future ones easier. You can then bask in the glow of knowing you have done something towards the aim of a more interoperable web for all of us. Christmas gifts for your future self I have been a web developer for over 20 years. I have no idea what the web platform will look like in 20 more years, but for as long as I’m working on it I’ll keep on trying to make it better. Making the web more interoperable makes it a better place to be a web developer, storing up some Christmas gifts for my future self, while learning new things as I do so. Resources I rounded up everything I could find on WPT while researching this article. As well as some other links that might be helpful for you. These links are below. Happy testing! Web Platform Tests Using testharness.js IRC Channel irc://irc.w3.org:6667/testing Edge Issue Tracker Mozilla Issue Tracker WebKit Issue Tracker Chromium Issue Tracker Reducing an Issue - guide to created a reduced test case Effectively Using Web Platform Tests: Slides and Video An excellent walkthrough from Lyza Gardner on her working on tests for the HTML specification - Moving Targets: a case study on testing web standards. Improving interop with web-platform-tests: Slides and Video",2017,Rachel Andrew,rachelandrew,2017-12-10T00:00:00+00:00,https://24ways.org/2017/testing-the-web-platform/,code 199,Knowing the Future - Tips for a Happy Launch Day,"You’ve chosen your frameworks and libraries. You’ve learned how to write code which satisfies the buzzword and performance gods. Now you need to serve it to a global audience, and make things easy to preview, to test, to sign-off, and to evolve. But infrastructure design is difficult and boring for most of us. We just want to get our work out into the wild. If only we had tools which would let us go, “Oh yeah! It all deploys perfectly every time” and shout, “You need another release? BAM! What’s next?” A truth that can be hard to admit is that very often, the production environment and its associated deployment processes are poorly defined until late into a project. This can be a problem. It makes my palms sweaty just thinking about it. If like me, you have spent time building things for clients, you’ll probably have found yourself working with a variety of technical partners and customers who bring different constraints and opportunities to your projects. Knowing and proving the environments and the deployment processes is often very difficult, but can be a factor which profoundly impacts our ability to deliver what we promised. To say nothing of our ability to sleep at night or leave our fingernails un-chewed. Let’s look at this a little, and see if we can’t set you up for a good night’s sleep, with dry palms and tidy fingernails. A familiar problem You’ve been here too, right? The project development was tough, but you’re pleased with what you are running in your local development environments. Now you need to get the client to see and approve your build, and hopefully indicate with a cheery thumbs up that it can “go live”. Chances are that we have a staging environment where the client can see the build. But be honest, is this exactly the same as the production environment? It should be, but often it’s not. Often the staging environment is nothing more than a visible server with none of the optimisations, security, load balancing, caching, and other vital bits of machinery that we’ll need (and need to test) in “prod”. Often the production environment is still being “set up” and you’ll have to wait and see. In development, “wait and see” is the enemy. Instead of waiting to see, we need to make the provisioning of, and deployment to our different environments one of the very first jobs of our project. I’ve often needed to be the unpopular voice in the room who makes a big fuss when this is delayed. I’ve described it as being a “critical blocker” during project meetings and suggested that everything should halt until it is fixed. It is that important. Clients don’t often like hearing a wary, disruptive voice saying “whoa there Nelly!”, because the development should be able to continue while the production environment gets sorted out, right? Sure. But if it is not seen as a blocker, it is seen as something that can just happen later. And if it happens later, all the ugly surprises and unknowns surface later too. And later is when we’ll need to be thinking about other things. Not the plumbing. Trust me, it pays to face up to the issue right away rather than press on optimistically. The client will thank you later. Attitudes and expectations We should, I think, exhibit these four attitudes towards production deployment: Make it scripted Make it automated Make it real Make it first Make it scripted Let’s face it, we are going to need to deploy more than once over the course of the project. We are not going to get things perfect on our first shot. Nor should we expect to. And if we are going to repeat something, we want to be able to do it identically and predictably every time without needing to rely on our memories. Developers are great at scripting things which they would otherwise need to repeat. It makes us faster and it also helps us keep track of the steps we need to take. I’m not crazy enough to try suggest the best technology to script your builds or deployments (holy wars lie down that path). A lot will depend on your languages and your tastes. Some will like Fabric, others will prefer Gulp, you might prefer Make or NPM. It doesn’t really matter as long as you can script the process of building, packaging and deploying your project. Wait. Won’t we need to know everything about the build from the start in order to do this? Aren’t our dependencies likely to change over time? Yes. That would be ideal. But it’s ok. Like our code, our deployment script will evolve over the life of a project. So evolve it. Start by scripting what is needed to support the first iteration of the project, and then maintain that script. It will become a valuable “source of truth”, providing a form of documentation of what your project needs for a successful deployment. Another bonus. Make it automated If we have a scripted deployment which we can run by executing a single command, then we are in great shape to automate that process by triggering the build and deployment via suitable events. Again, I prefer not to offer one single suggestion of when this should occur. That will depend on your approach to the project, how your development team is organised, and how your QA team operate. You can tune this to suit. For one project I worked on, we chose to trigger the build and deployment to our production environment every time we used Git to tag the master branch of our version control repository. There were a few moving parts, and we needed to do some upfront work to get everything working, but that upfront effort was repaid many fold as we deployed time and time again, and exposed some issues with our environment long before we got to “launch day”. With a scripted and automated process, we can make deployments “cheap”. This is our goal. When there are minimal cognitive or time overheads associated with deploying, we’re likely to do it all the more often and become more confident that it will behave as expected. Make it real Alright, we have written scripts to build and deploy our projects. Anyone tagging our repo will trigger things to happen as if by magic, but where are we pushing things to? We need to target a real environment if this is to have any value. A useful pattern is to have all activity on our develop branch trigger deployments to our staging server. Meanwhile tagging master will deploy a version to the production environment. How we organise this will depend on our git branching approach. (I’ve seen as many ways of approaching Git Flow as I have seen ways of approaching “Agile”). It’s vital though, that we ensure that we are deploying to, and testing against, our real infrastructure. We want to see real results. That’s the best way to learn real lessons. Make it first Building our site to run in an environment not yet fully defined or available to test is like climbing without ropes – it’s possible, but we put ourselves at risk. And the higher we climb the greater the risk. So it is important to do this as early as we possibly can. Don’t have a certificate for our HTTPS yet? Fine, but let’s still deploy to this evolving production environment and introduce HTTPS as soon as we can. Before we know it we’ll be proving that this is set up correctly and we’ll not be surprised by mixed security alerts or other nasties further down the line. Mailchimp perfectly capture the anxiety of sending emails to gazillions of people for a campaign. But we’re lucky. Launching a site doesn’t need to be like performing a mailshot. We can do things to banish that sweaty hand. Doing preparation work upfront means that by the time we need to launch the site into the wild, we have exercised the deployment mechanics, and tested the production environment so rigorously that this task will be boring. (It won’t be boring. Launching should always be exciting because the world will finally get to see our beautiful, painstaking work. But nor should it be terrifying. Especially as a result of not knowing for certain if our processes and environments are going to work or burst into flames on the big day.) What tools exist? Well this all sounds lovely. But how should we tackle this? Where are the tools for us to use? As it happens, there are many service and tools that we can use to work this way. Hosting All of the big players like Amazon, Azure and Google offer tools which can help us here. Google for example, can host multiple deployed versions of your project in parallel and you can manage them via their App Engine console. Each build receives its own URL which you can use to access any deployed version of your site. Having immutable deployments which stick around in perpetuity (or until you bin them) is a key feature which unlocks the ability to confidently direct your traffic to any version of your site. With that comes the capacity to test any version or feature in its real environment, and then promote a version, or rollback to a previous version whenever you want. A liberating power to have. Continuous integration In order to create all of those different versions, we’ll need somewhere to run our build and deployment scripts. Jenkins has been a popular Continuous Integration (CI) option for some time, and can be configured to perform all sorts of tasks, giving you extensive control over your deployment pipeline. You need to host Jenkins yourself, but it provides some simple ways to do that. The landscape for CI is getting richer and richer. With many hosted services like Circle CI providing this kind of automation up in the cloud. One stop shop Netlify combines both hosting and continuous integration services. It monitors your git repositories and automatically runs your build in a container on its servers when it finds changes. Each branch and pull request in your git repository will result in an immutable version of your site with its own URL. Netlify is unlike Google Cloud, AWS or Azure in that it cannot host a dynamic server-side application for you. Instead it specialises in hosting static, or so called JAMstack sites. Personally, I find that its simplicity makes it an approachable option, and a good place to learn and adopt some of these valuable habits. Full disclosure: I’m a Netlify employee. But before I was, I was an avid customer, and it was through using Netlify that I first encountered some of these principles in practice. Conclusion. It’s all about the approach No matter what tools or services you use (and there are many which can support these practices), the most important thing is to adopt an approach which lets you prove your environments as quickly as possible. Front-loading this effort will cast light onto the issues that you’ll need to address early and often, leaving no infrastructure surprises to spoil things for you on launch day. Automating the process will mean that when you do find things that you need to fix or to improve later (and you will), issuing another release will be trivial. It is a lovely feeling when you have confidence that releasing v1.0.0 will be no more stressful v0.0.1. In fact it should actually be less stressful, as you’ll have been down this road many times by then. Fixing the potholes and smoothing the way as you went. From here, it should be a smooth ride.",2017,Phil Hawksworth,philhawksworth,2017-12-21T00:00:00+00:00,https://24ways.org/2017/knowing-the-future/,process 197,Designing for Mobile Performance,"Last year, some colleagues at Google ran a research study titled “The Need for Mobile Speed” to find out what the impact of performance and perception of speed had on the way people use the web on their mobile devices. That’s not a trivial distinction; when considering performance, how fast something feels is often more important than how fast it actually is. When dealing with sometimes underpowered mobile devices and slow mobile networks, designing experiences that feel fast is exceptionally important. One of the most startling numbers we found in the study was that 53% of mobile site visits are abandoned if pages take longer than 3 seconds to load. We wanted to find out more, so following on from this study, we conducted research to define what the crucial elements of speed are. We took into consideration the user experience (UX), overall perception of speed, and how differing contexts the user finds themselves in can alter how fast a user thinks something loaded. To understand speed and load times first we must understand that user mobile web behaviour is broken down into three buckets; Intention Location State of mind Let’s look at each of those in turn. Intention Users browse sites on a mobile device for many different reasons. To be able to effectively design a performant user experience for them, it’s important to understand what those reasons might be. When asked to describe their reason for visiting a site, approximately 30% of people asked by the study claimed that they were simply browsing without a particular purpose in mind. Looking deeper, we found that this number increased slightly (34%) for retail sites. 30% said they were just there to find out some information for a future task or action, such as booking a flight. Interestingly, the research shows that users are actually window shopping using their mobile browser. Only 29% actually said they had a specific goal or intent in mind, and this number increases significantly for financial services like banking sites (57%). This goes against a traditionally held view of users wanting to perform simple actions efficiently on their mobile device. Sure, some users are absolutely doing that, but many are just browsing around without a goal in mind, just like they would on a desktop browser. This gives great insight into the user’s intentions. It tells us that users are actively using sites on their mobile, but a large majority do not intend to do anything instantly. There’s no goal they’re under pressure to achieve. If a site’s performance is lousy or janky, this will only reaffirm to the user to that they can hold off on completing a task, so they might just give up. However, if a site is quick to load, sophisticated in expressing its value proposition quickly, and enables the user to perform their actions seamlessly, then turning that “browsing user” into a “buying user” becomes all that much easier. When the user has no goal, there’s more opportunity to convert, and you stand a greater chance of doing that if the performance is good enough so they stick around. Location Obviously, mobile devices by their nature can be used in many different locations. This is an interesting consideration, because it’s not something we traditionally need to take into account designing experiences for static platforms like desktop computers. The in the study, we found that 82% of users browse the web on their mobile phone while in their home. In contrast, only 7% do the same while at work. This might come across as a bit of a shock, but when you look at mobile usage – in particular app usage – most of the apps being used are either a social network or some sort of entertainment or media app. Due to the unreliability of network connections, users will often alternate between these two types of apps. The consequence being that if a site doesn’t work offline, or otherwise compensate for bad network connectivity in some way by providing opportunities to allow users to browse their site, then it becomes a self-fulfilling prophecy as to why users mostly view the mobile web from the comfort of their homes where there is a strong WiFi connection. They’re using mobile devices, but they’re not actually mobile themselves. Another thing to bear in mind is how users alternate between devices, a study by comScore found that 80% of transactions take place on desktop while 69% of the browsing takes place on mobile. Any given user might access from more than one location - they might visit one day from a bus queue on their phone, and then next day from a laptop at home. State of mind One more thing we need to take into consideration is the user’s state of mind. Whilst browsing at home, users tend to be more relaxed, and in the research 76% stated they were generally calmer at home. The user’s state of mind can have quite a big impact on how they perceive things. The calmer they are, the quicker a site might appear to load. If the user is anxious and impatiently drumming their fingers on the table, things seem to take longer, and even a small wait can feel like an eternity. This is quite key. Over 40% of sites take longer than 4 seconds to load for users who are are out and about and using a mobile data connection. Coupled with our perception, and amplified by a potentially less-than-calm state of mind, this can seem like an age. What does this all mean? I think we can all agree that users prefer strong, steady connections and comfort when completing transactions. It seems like common sense when we say it out loud. Recreating these feelings and sensations of comfort and predictability under all circumstances therefore becomes paramount. Equally, when asked in the study, users all claimed that speed was the most important factor impacting their mobile web usage. Over 40%, in fact, said it was the most important UX feature of a site, and nobody asked considered it to be of no importance at all. The meaning of speed When it comes to performance, speed is measured in two ways – real speed; as measured on a clock, and perceived speed; how responsive an interaction feels. We can, of course, improve how quickly a site loads by simply making files smaller. Even then, the study showed that 32% of users felt a site can feel slow even when it loads in less than 4 seconds. This gets even worse when you look at it by age group, with 50% if young people (18-24 year olds) thinking a site was slower than it actually was. When you add to the mix that users think a site loaded faster when they are sitting compared to when they are standing up, then you are in a world of trouble if your site doesn’t have any clear indicators to let the user know the loading state of you website or app. So what can we do about this to improve our designs? How to fix / hack user perception There are some golden rules of speed, the first thing is hacking response time. If a page takes more than 3 seconds to load, you will certainly start to lose your users. However, if that slowness is part of a UX flow such as processing information, the user understands it might take a little time. Under those circumstances, a load time of under 5 seconds is acceptable, but even then, you should take caution. Anything above 8 seconds and you are in very real danger of losing your audience completely. Load time User impression 200 ms Feels instant 1 s Feels it is performing smoothly 5 s Part of user flow 8 s Lose attention Remove the tap delay Mobile browsers often use a 300-350ms delay between the triggering of the touchend and click events. This delay was added so the browser could determine if there was going to be a double-tap triggered or not, since double-tap is a common gesture used to zoom into text. This delay can have the side effect of making interactions feel laggy, and therefore giving the user the impression that the site is slow, even if it’s their own browser causing the problem. Fortunately there’s a way to remove the delay. Add following in the of your page, and the delay no longer takes effect: You can also use touch-action: manipulation in newer browsers to eliminate click delay. For old browsers, FastClick by FT Labs uses touch events to trigger clicks faster and remove the double-tap gesture. Make use of Skeleton Screens A skeleton layout is a wireframe version of your app that displays while content is being loaded. This demonstrates to the user that content is about to be loaded, giving the impression that something is happening more quickly than it really is. Consider also using a preloader UI as well, with a text label informing the user that the app is loading. One example would be to pulsate the wireframe content giving the app the feeling that it is alive and loading. This reassures the user that something is happening and helps prevent resubmissions or refreshes of your app. Razvan Caliman created a Codepen example of how to create this effect in purely CSS. One thing to consider though, if data doesn’t load then you might need to create a fallback 404 or error page to let the user know what happened. Example by Owen-Campbell Moore Responsive Touch Feedback Carefully designing the process by which items load is one aspect of increasing the perceived speed of your page, but reassuring the user that an action they have taken is in process is another. At Google we use something called a Ripple, which is is animating dot that expands or ripples in order to confirm to the user that their input has been triggered. This happens immediately, expanding outward from the point of touch. This reaffirms to the user that their input has been received and is being acted on, even before the site has had a chance to process or respond to the action. From the user’s point of view, they’ve tapped and the page has responded immediately, so it feels really quick and satisfying. You can mimic this same behavior using our Material Design Components Web GitHub repo. Progress bars These UI elements have existed for a very long time, but research conducted by Chris Harrison and published in New Scientist found that the style of a progress bar can alter the perception of speed drastically. As a matter of fact, progress bars with ripples that animate towards the left appear like they are loading faster by at least 11% percent. So when including them in your site, take into consideration that ripples and progress bars that pulsate faster as they get to the end will make your sites seem quicker. Faster Progress Bars: Manipulating Perceived Duration with Visual Augmentations Navigation The speed with which a user can locate navigational items or call to actions adds to their perceived performance of a site. If the user’s next action is quick to spot on the screen, they don’t spend time hunting around the interface with their eyes and fingers. So no matter how quickly your code runs, hiding items behind a nav bar will make a site feel slower than it actually is. Facebook found that switching to using bottom navigation saw an increase in engagement, satisfaction, revenue, speed, and importantly, perception of speed. If the user sees the navigation items they’re looking for quickly, the interaction feels fast. What’s more, end-to-end task completion is quicker too, as the interface not only feels quicker, but actually measures quicker as well. Similar reactions were found with Spotify and Redbooth. Luke Wroblewski gave a talk last year in Ireland titled “Obvious Always Wins” which he demonstrated through the work he did with Google+. Luke’s message is that by making the core features of your app obvious to your user, you will see engagement go up. This again seems obvious, right? However, it is important to note that adding bottom navigation doesn’t just mean a black bar at the bottom of your screen like some kind of performance magic bullet. The goal is to make the items clear to the user so they know what they need to be doing, and how you achieve that could be different from one interface to the next. Google keeps experimenting with different navigation styles, but finally settled with the below when they conducted user research and testing. Conclusion By utilizing a collection of UI patterns and speed optimisation techniques, you can improve not only the actual speed of a site, but the perception of how quickly a user thinks your site is loading. It is critical to remember that users will not always be using your site in a calm and relaxed manner and that even their age can impact how they will use or not use your site. By improving your site’s stability, you increase the likelihood of positive user engagement and task completion. You can learn more about techniques to hack user perception and improve user speed by taking a look at an E-Book we published with Awwwards.com called Speed Matters: Design for Mobile Performance.",2017,Mustafa Kurtuldu,mustafakurtuldu,2017-12-18T00:00:00+00:00,https://24ways.org/2017/designing-for-mobile-performance/,ux 212,Refactoring Your Way to a Design System,"I love refactoring code. Absolutely love it. There’s something about taking a piece of UI or a bit of code and reworking it in a way that is simpler, modular, and reusable that makes me incredibly happy. I also love design systems work. It gives hybrids like me a home. It seems like everyone is talking about design systems right now. Design systems teams are perfect for those who enjoy doing architectural work and who straddle the line between designer and developer. Una Kravets recently identified some of the reasons that design systems fail, and chief among them are lack of buy-in, underlying architecture, and communication. While it’s definitely easier to establish these before project work begins, that doesn’t mean it is the only path to success. It’s a privilege to work on a greenfield project, and one that is not afforded to many. Companies with complex and/or legacy codebases may not be able to support a full rewrite of their product. In addition, many people feel overwhelmed at the thought of creating a complete system and are at a loss of how or where to even begin the process. This is where refactoring comes into play. According to Martin Fowler, “refactoring is the process of changing a software system in such a way that it does not alter the external behavior of the code yet improves its internal structure.” It’s largely invisible work, and if you do it right, the end user will never know the difference. What it will do is provide a decent foundation to begin more systematic work. Build a solid foundation When I was first asked to create Pantsuit, the design system for Hillary for America, I was tasked with changing our codebase to be more modular and scalable, without changing the behavior or visual design of the UI. We needed a system in place that would allow for the rapid creation of new projects while maintaining a consistent visual language. In essence, I was asked to refactor our code into a design system. During that refactor, I focused the majority of my efforts on creating a scalable architecture based on the UI components in a single workflow. Since I needed to maintain a 1:1 parity with production, the only changes I could create were under-the-hood. I started with writing coding standards and deciding on a CSS architecture that I would then use as I rewrote sections of the codebase. If you already have these in place, great! If not, then this is an excellent place to start. Even if your dream of a design system is never fully realized, having a coding philosophy and architecture in place will still have far-reaching benefits and implications. I want to note that if your refactor includes creating new coding standards or a CSS architecture, don’t try to switch everything over right away. Instead, focus on a single new feature and isolate/encapsulate your work from the rest of the codebase. Focus on the features The key principle to cleaning up a complex codebase is to always refactor in the service of a feature. — Max Kanat-Alexander Refactoring for the sake of refactoring can easily lead to accusations of misused time and lack of results. Another danger of refactoring is that it can turn into yak-shaving if you aren’t disciplined in your approach. To that end, tying your refactored components to feature work is a great way to limit scope and reduce the rest of unintended changes. For example, the initial work on Pantsuit focused only on components related to the donations flow. Every line of code I wrote was in service to improving the maintainability and modularity of that UI. Because we didn’t have any standards in place, I started with those. From there, I identified all the components present in every step of the donations flow, which included some type styles, buttons, form inputs and error states. Then came the refactor of each individual component. Finally, I reintegrated the newly refactored components into the existing donations flow and tested it against production, checking for visual and behavioral diffs. At the end of this process, I had the beginning of a design system that would grow to serve over 50 applications, and a case study to demonstrate its effectiveness. Ideally, you’ll want to get buy-in from your stakeholders and product owners before you begin any design systems work. However, in the absence of buy-in, linking your work to new feature development is a good way to both limit the scope of your refactor and jump start component creation. In addition, if you’re still trying to convince your team of the benefits of a design system, starting small and using the newly refactored, feature-driven work as a case study is one way showcase a design systems’ value. By providing a concrete example of how working towards a design system contributed to the project’s success, you’re gathering the data necessary to secure buy-in for a larger-scale effort. It’s a great way to show value, rather than just talking about it. Show, don’t tell Perhaps the most important thing you can do for any design system is to document it. The key is to create a frictionless way to keep the documentation up-to-date, otherwise no one will contribute to it, and in turn, it will become obsolete and useless. There are lots of tools out there to help you get started documenting your new system. One of my favorites is KSS, which parses comments in the code and uses them to generate a style guide. For Pantsuit, I used the node version of KSS, along with a template to quickly spin up a documentation site. I’ve listed just a few tools below; for even more, check out the tools sections of styleguides.io. Fractal Pattern Lab Drizzle Fabricator Astrum Catalog Regardless of what tool you settle on, it needs to integrate well with your current workflow. Conclusion: always be refactoring If you’re not lucky enough to be able to start a new design system from scratch, you can start small and work on a single feature or component. With each new project comes a new opportunity to flesh out a new part of the system, and another potential case study to secure buy-in and showcase its value. Make sure to carefully and thoroughly document each new portion of the system as it’s built. After a few projects, you’ll find yourself with a decent start to a design system. Good luck, and happy holidays! Further reading: Why Design Systems Fail CSS Architecture for Design Systems Refactoring: Improving the Design of Existing Code Refactoring CSS: The Three I’s Refactoring is About Features",2017,Mina Markham,minamarkham,2017-12-23T00:00:00+00:00,https://24ways.org/2017/refactoring-your-way-to-a-design-system/,code 213,Accessibility Through Semantic HTML,"Working on Better, a tracker blocker, I spend an awful lot of my time with my nose in other people’s page sources. I’m mostly there looking for harmful tracking scripts, but often notice the HTML on some of the world’s most popular sites is in a sad state of neglect. What does neglected HTML look like? Here’s an example of the markup I found on a news site just yesterday. There’s a bit of text, a few links, and a few images. But mostly it’s div elements.
Some text more text
divs and spans, why do we use them so much? While I find tracking scripts completely inexcusable, I do understand why people write HTML like the above. As developers, we like to use divs and spans as they’re generic elements. They come with no associated default browser styles or behaviour except that div displays as a block, and span displays inline. If we make our page up out of divs and spans, we know we’ll have absolute control over styles and behaviour cross-browser, and we won’t need a CSS reset. Absolute control may seem like an advantage, but there’s a greater benefit to less generic, more semantic elements. Browsers render semantic elements with their own distinct styles and behaviours. For example, button looks and behaves differently from a. And ul is different from ol. These defaults are shortcuts to a more usable and accessible web. They provide consistent and well-tested components for common interactions. Semantic elements aid usability A good example of how browser defaults can benefit the usability of an element is in the as a popover-style menu. On a touchscreen, Safari overlays the same menu over the lower half of the screen as a “picker view.” Option menu in Safari on macOS. Option menu picker in Safari on iOS. The iOS picker is a much better experience than struggling to pick from a complicated interface inside the page. The menu is shown more clearly than in the confined space on the page, which makes the options easier to read. The required swipe and tap gestures are consistent with the rest of the operating system, making the expected interaction easier to understand. The whole menu is scaled up, meaning the gestures don’t need such fine motor control. Good usability is good accessibility. When we choose to use a div or span over a more semantic HTML element, we’re also doing hard work the browser could be doing for us. We don’t need to tie ourselves in knots making a custom div into a keyboard navigable option menu. Using select passes the bulk of the responsibility over to the browser.  Letting the browser do most of the work is also more future-friendly. More devices, with different expected interactions, will be released in the future. When that happens, the devices’ browsers can adapt our sites according to those interactions. Then we can spend our time doing something more fun than rewriting cross-browser JavaScript for each new device. HTML’s impact on accessibility Assistive technology also uses semantic HTML to understand how best to convey each element to its user. For screen readers Semantic HTML gives context to screen readers. Screen readers are a type of assistive technology that reads the content of the screen to the person using it. All sites have a linear page source. Sighted visitors can use visual cues on the page to navigate to their desired content in a non-linear fashion. As screen readers output audio (and sometimes braille), those visual cues aren’t usable in the same way. Screen readers provide alternative means of navigation, enabling people to jump between different types of content, such as links, forms, headings, lists, and paragraphs. If all our content is marked up using divs and spans, we’re not giving screen readers a chance to index the valuable content. For keyboard navigation Keyboard-only navigation is also aided by semantic HTML. Forms, option menus, navigation, video, and audio are particularly hard for people relying on a keyboard to access. For instance, option menus and navigation can be very fiddly if you need to use a mouse to hover a menu open and move to select the desired item at the same time.  Again, we can leave much of the interaction to the browser through semantic HTML. Semantic form elements can convey if a check box has been checked, or which label is associated with which input field. These default behaviours can make the difference between a person being able to use a form or leaving the site out of frustration. Did I convince you yet? I hope so. Let’s finish with some easy guidelines to follow. 1. Use the most semantic HTML element for the job When you reach for a div, first check if there’s a better element to do the job. What is the role of that element? How should a person be interacting with the element? Are you using class names like nav, header, or main? There are HTML5 elements for those sections! Using specific elements can also make writing CSS simpler, and ensure a consistent design with minimal effort. 2. Separate structure and style Don’t choose HTML elements based on how they’re styled in your CSS. Nowadays, common practice is to use class names rather than elements for CSS selectors. You’re unlikely to wrap all your page content in an

element because you want all the text to be big and bold. Still, it can be easy to choose an HTML element because it will be the easiest to style. Focusing on content without style will help us choose the most semantic HTML element without that temptation. For example, you could add a class of .btn to a div to make it look like a button. But we all know that only a button will really behave like a button. 3. Use progressive enhancement for enhanced functionality Airbnb and Groupon recently proved we’re not past the laziness of “this site only works in X browser.” Baffling disregard for the open web aside, making complex interactive experiences work cross-browser and cross-device is not easy. We can use progressive enhancement to layer fancy or unsupported features on top of a baseline “it works” experience.  We should build the baseline experience on a foundation of accessible, semantic HTML. Then, if you really want to add a specific feature for a proprietary browser, you can layer that on top, without breaking the underlying experience. 4. Test your work Validators are always valuable for checking the browser will be able to correctly interpret your markup. Document outline checkers can be valuable for testing your structure, but be aware that the HTML5 document outline is not actually implemented in browsers. Once you’ve got something resembling a web page, test the experience! Ensure that semantic HTML element you chose looks and behaves in a predictable manner consistent with its use across the web. Test cross-browser, test cross-device, and test with assistive technology. Testing with assistive technology is not as expensive as it used to be, you can even use your smartphone for testing on iOS and Android. Your visitors will thank you! Further reading Accessibility For Everyone by Laura Kalbag HTML5 Doctor HTML5 Accessibility An overview of HTML5 Semantics HTML reference on MDN  Heydon Pickering’s Inclusive Design Checklist The Paciello Group’s Inclusive Design Principles",2017,Laura Kalbag,laurakalbag,2017-12-15T00:00:00+00:00,https://24ways.org/2017/accessibility-through-semantic-html/,code 194,Design Systems and Hybrids,"The other day on Twitter, I saw a thread started by Dorian Taylor about why design systems are so hot right now. In the thread, he made the case that they’ve been around for ages and some folks were just slow to catch up. It was an interesting thread, and not the first time I’ve seen folks discuss this. “Design systems are so hot right now” was even used recently in this very publication. And yes it’s true that they’ve been around for ages. Design artefact collectors’ obsession with reprints of old graphic standards manuals of the past are a reminder. Sometimes old things become new again, either through a rediscovery or awakening (wow, that sounds really deep). But I think that’s definitely what happened here. Some very opinionated answers that come to mind for me are: The need for them has increased with the needs of software development. With the increasing number of devices (phones, tablets, watches, etc.), scaling design has required the need to double down on systems thinking and processes. Investments with huge cost-saving returns. The time investment it takes to onboard new people as you staff up large teams (and the time it takes to fix bugs and inconsistencies) could be better spent building up a system that lets you ship at a faster pace. It also gives you more time to focus on the bigger picture instead of what color a button border is. If you do have to onboard new designers, the design system is a great educational resource to get up to speed quickly on your organization’s design principles, materials/tools, and methods. “Here’s the simple truth: you can’t innovate on products without first innovating the way you build them.” — Alex Schleifer, The Way We Build These are just some of the reasons. But there is another answer, and a personal conclusion that I’ve reached. It relates to the way I work and what I love working on, but I don’t see it talked about much. Hybrids Have a Home I’m a hybrid designer. I code in HTML & CSS (with a preference for Sass). But I don’t call myself a frontend developer. I used to back in the day (I was a UI frontend developer at Apple over a decade ago, but all I wrote was HTML & CSS). I identify with designer because that’s my training and interest, but the ideas of what a frontend developer can do has changed quite a ton over the years. Setting things up in build tools and processes are not my skill. And I know a lot of designers who share this experience with me. There are also hybrid developers who identify as developers, but have excellent design skills. Buddies like my pal Brandon Ferrua who was on my team at Salesforce is a great example of this. And we worked fantastically together. Sometimes, companies don’t know how to deal with hybrids. I’ve been told to choose a side, and have even been made to join a development team simply because I could code my designs (and then when I couldn’t deliver the same type of code my teammates could, and I felt like I wasn’t able to use my talents in the most effective way). There are a lot more folks out there I know of who identify as a hybrid, and many have found ourselves working on design systems. Una Kravets recently had a thread discussing this as well. At Clarity, this came up a lot in hallway conversations, breaks, and the after parties. I think that this job is a haven for folks who often find themselves in the middle. For companies that get it, these people find joy in getting to use a wider variety of skills and being bridges; advocates that can speak to designers and developers, helping bring 
unity to an organization. They can wireframe, throw together a prototype, create color systems, architect naming conventions for design tokens. Design systems are their perfect home. I think this has contributed to the uptick in discussions and interest on this subject (in addition to the team- and company-focused reasons). Keep Design Systems Teams Cross-Functional Speaking of teams, something some larger companies fall prey to is creating walls and silos where they need not be. If you place all your visual designers in one place, all your coders in another, and so on, you’re not doing yourselves any favors. Meanwhile, your hybrids are caught in the middle not knowing exactly where they belong. Design systems teams should have representatives (whether on a core team, or a virtual/federated team) that bring different skillsets. Design, code, writing, accessibility, product management, and so on. You’ll have a stronger vision on where to take your design system and to make it succeed. Siloing defeats the whole purpose of what design systems are meant for. Happy holidays, and may the force be with you. Further Reading Why Design Systems Fail Design Systems are for People Design Systems Handbook",2017,Jina Anne,jina,2017-12-22T00:00:00+00:00,https://24ways.org/2017/design-systems-and-hybrids/,process 200,Care and Feeding of Burnout,"You’ve been doing too much for too long. And it’s broken you. You’re burned out. You’re done. Illustration by Kate Holden Occupational burnout is a long-documented effect of stretching yourself further than the limits of your mental and physical health can carry you. And when it finally catches up with you, it can feel like the end of the world. But things can get better. With focused self care, reworking your priorities and lots of time, you can slog through burnout. What is burnout? The Tl;dr linkdump tour In this article, we’ll be looking at what you can do when you’re burned out. We’ll be skipping past a lot of information on what burnout is, what causes it and how it impacts the tech industry. We’re able to skip past this because many technologists have already created valuable content targeted to our industry. The videos and writing below may be helpful for readers who are less familiar with burnout. A Wikipedia article may be a great starting point for learning about occupational burnout. Understanding burnout: Brandon West This conference talk by Brandon West covers a lot of burnout 101, from the perspective of a developer relations/community professional. April Wensel writes about the need for the tech industry to move from the Valley’s burnout culture to a more sustainable model. Catching Burnout [as] early [as possible] One of the most challenging things about burnout is that it develops slowly and gradually. Many impacted don’t notice the water warming around them until it’s been brought to a boil, causing a crisis that can’t be overlooked. Catching burnout and taking steps to deal with it as early as possible can help limit the length and severity of your burnout. Getting in the habit of checking in with yourself regularly about your stress and energy levels can be an effective habit for assessing burnout and for general wellness. The Mayo Clinic recommends asking yourself the following questions to determine if you might be suffering from burnout. Have you become cynical or critical at work? Do you drag yourself to work and have trouble getting started once you arrive? Have you become irritable or impatient with co-workers, customers or clients? Do you lack the energy to be consistently productive? Do you lack satisfaction from your achievements? Do you feel disillusioned about your job? Are you using food, drugs or alcohol to feel better or to simply not feel? Have your sleep habits or appetite changed? Are you troubled by unexplained headaches, backaches or other physical complaints? According to the Mayo Clinic, answering yes to more than one of these questions can be a sign that you need to take corrective action. We’ll look in more detail about the corrective actions you can take in the rest of this article. Do less. Now. To start getting things back on track, you’ll need to start doing less. Less work, less stress, less everything. Many technologists impacted by burnout have written or spoken on taking months or even years off work to give themselves time to recover. This can be a fantastic route back to wellness for those fortunate enough to have the professional and financial security to allow them to take large stretches of time off work. For the much larger group of burned out workers that need to balance earning a paycheck with their wellness, this can be more challenging. For those of us who need to stay in the cycle of work to fund our daily needs, finding ways to do less can feel like adding another daunting task to the pile. To properly assess where and how you can cut back on your commitments, you’ll need to find a short stretch of time clear of stressors and responsibilities to take stock of what can be scaled back. A long weekend, weekend or even a few hours of time dedicated to looking only at how you can cut back on work and stress can be an effective way to take stock of your responsibilities. Make a list of stressors and activities to begin to triage. Anything that would damage or seriously disrupt your life if not attended to (doing your taxes, showing up at work, paying rent) should be marked as essential. Grade other activities in your life, marking the ones that aren’t essential and working to temporarily reduce these or remove them from your life. It can feel difficult to let go of things while recovering from burnout. This process can benefit from a second opinion, if you’re working with a coach, therapist or trusted friend to manage your burnout. Reducing your workload and stressors can let you begin to recover from burnout. You can reintroduce things back into your schedule and life. Reintroduce stressors and activities back into your life slowly, to minimize risk of relapse. Keeping a journal will let you keep tabs on how different activities are impacting your energy levels and state of mind. Remove toxicity Toxic people or settings can drain you faster than overwork alone can. While you work to reduce your workload and stress, coworkers, friends, family or bosses who are toxic influences can act as a multiplier for the stressors that remain. Identifying these people and limiting your interactions with them during your recovery can help you get back on track faster and happier. A journal can be an important tool in tracking how interactions with different people impact your wellness and state of mind. If the toxic presence in your life is someone you can avoid or cut out without penalty, burnout is a great reason to finally replace them with healthier relationships. If you can’t remove them from your life, minimizing the impact toxic people have on your wellness is vital. Work to identify what aspect of the relationship is draining or damaging and create interventions around damaging interactions. While a chronically complaining coworker’s negativity can be stopped short with setting firm conversational boundaries and redirection, a combative boss can be a harder challenge. Seeking allies and advice can make you feel less alone in your battles and provide healthy emotional support. Ask for help Trying to find your way back to health and wellness after burning out can be a daunting task. Seeking help from health care professionals, trusted peers or both can give you backup on your journey back to feeling better. With symptoms that can mirror those of depression, burnout can be the precursor to a number of mental and physical ailments. Talk to your doctor immediately if you’re experiencing symptoms of depression or any other health concerns. Being open with your trusted friends about burnout can let you access valuable support and help explain why you may need extra care and consideration while you recover. Many suffering from burnout report finding maintaining relationships a challenge. Letting your loved ones know what you’re going through and why you may be less available invites them to be more understanding of cancelled plans or other issues while you’re recovering. Burnout can impact memory and cognitive function. Letting your support network assist in decision making during burnout can help add perspective to counterbalance these deficits. Talking to your friends and peers about your health and needs can offer valuable support. But those who are pushed to a mental or physical health crisis by burnout should work with healthcare professionals to plan their recovery. Sufferers of mild to moderate burnout can also benefit from planning their return to wellness with an experienced practitioner. Medical or counseling professionals may prescribe medicines, talk therapy, group sessions or other therapeutic intervention. Go easy on yourself Recovering from burnout is a process that takes energy, time and compassion for yourself. In the same way that toxic people or workplaces can set you back, negative repetitive thoughts will harm your recovery. Recognizing that burnout’s impact on you is a temporary state that isn’t your fault can help you begin to manage your feelings and expectations for yourself. Sufferers often report feeling stupid, lazy or that they lack the skills to do their job. This is natural, as burnout can severely limit your cognitive function, your energy levels and resilience while dramatically increasing your cognitive load. Working with a counselor may help if you’re finding it difficult to be patient with your progress back to health or are troubled by persistent intrusive thoughts. Burnout can seriously limit the amount of energy you have. Spend as little of the energy you have left beating yourself up as possible. You’re going to be ok. It’s all going to be ok. This article doesn’t offer one-size-fits all fixes for burnout or overwork, but aims to provide a framework with points to consider that may help shape your wellness. No article can act as a substitute for professionally administered healthcare or robust self care.",2017,Jessica Rose,jessicarose,2017-12-16T00:00:00+00:00,https://24ways.org/2017/care-and-feeding-of-burnout/,process 208,All That Glisters,"Tradition has it that at this time of year, families gather together, sit, eat and share stories. It’s an opportunity for the wisdom of the elders to be passed down to the younger members of the tribe. Tradition also has it that we should chase cheese downhill and dunk the nice lady to prove she’s a witch, so maybe let’s not put too much stock in that. I’ve been building things on the web professionally for about twenty years, and although the web has changed immeasurably, it’s probably not changed as much as I have. While I can happily say I’m not the young (always right, always arrogant) developer that I once was, unfortunately I’m now an approaching-middle-age developer who thinks he’s always right and on top of it is extremely pompous. What can you do? Nature has devised this system with the distinct advantage of allowing us to always be right, and only ever wrong in the future or in the past. So let’s roll with it. Increasingly, there seems to be a sense of fatigue within our industry. Just when you think you’ve got a handle on whatever the latest tool or technology is, something new comes out to replace it. Suddenly you find that you’ve invested precious time learning something new and it’s already old hat. The pace of change is so rapid, that new developers don’t know where to start, and experienced developers don’t know where it ends. With that in mind, here’s some fireside thoughts from a pompous old developer, that I hope might bring some Christmas comfort. Reliable and boring beats shiny and new There are so many new tools, frameworks, techniques, styles and libraries to learn. You know what? You don’t have to use them. You’re not a bad developer if you use Grunt even though others have switched to Gulp or Brunch or Webpack or Banana Sandwich. It’s probably misguided to spend lots of project time messing around with build tool fashions when your so last year build tool is already doing what you need. Just a little reminder that it’s about 100 times more important what you build than how you build it.— Chris Coyier (@chriscoyier) December 10, 2017 I think it helps if we understand why so many new solutions exist. Most developers are predisposed to enjoy creating new things more than improving established systems. It’s natural, because it’s actually much easier and more exciting to create something new that works exactly how you think it should be than to improve an existing, imperfect solution. Improving and refactoring a system is hard, and it takes real chops, much more than just building something new. The consequence of this is that new tools appear all the time. A developer will get a fresh new idea of how to tackle a problem – usually out of dissatisfaction with an existing solution, and figure the best way to implement that idea is to build something new around it. Often, that something new will do the same job as something old that already exists; it will just do it in a different way. Sometimes in a better way. Sometimes, just different. xkcd: Standards That’s not to say new tools are bad, and it’s not bad that they exist. We shouldn’t be crushing new ideas, and it’s not wrong to adopt a new solution over an old one, but you know what? There’s no imperative to switch right away. The next time you hit a pain point with your current solution, or have time to re-evaluate, check out what’s new and see how the latest generation of tools and technologies can help. There’s no prize for solving problems you don’t have yet, and heading further into the desert in search of water is a survival tactic, not an aspiration. New is better, but also worse Software, much like people, is born with a whole lot of potential and not much utility. Newborns — both digital and meaty — are exciting and cute but they also lead to sleepless nights and pools of vomit. New technology contains lots of useful new features, but it’s also more likely to contain bugs and be subject to more rapid change. Jumping on a new framework is great, right until there are API changes and you need to refactor your entire project to be able to update. More mature solutions have a higher weight of existing projects on their shoulders, and so the need to maintain backward compatibility is stronger. Things still move forward, but in a more controlled way. So how do we balance the need to move technology forward with the need to provide mature and stable solutions for the projects we work on? I think there’s a couple of good ways to do that. Get personal Use all the new shiny tools on your side-projects, personal projects, seasonal throw-aways and anywhere where the stakes are low. If you know you can patch around problems without much consequence, go for it. Build your personal blog on a CMS that stores data in the woven bark of a silver birch. Find where it breaks. Find where it excels. Find yourself if you like. When it comes to high-stakes projects, you’ll hopefully have enough experience to know what you’re getting into. Focus on the unique problem That’s not to say you should never risk using a new technology for ‘real’ work. Instead, distinguish the areas of your project where a new technology solves a specifically identified, measurable business objective, verses those where it won’t. A brand new web application framework might be fun to use, but are you in the business of solving a web application framework problem? That new web server made of taffeta might increase static file throughput slightly, but are you in the business of serving static assets, or would it be better to just run up nginx and never have to think about that problem again. (Clue: it’s the nginx one.) But when it comes to building that live sports interface for keeping fans up to date with the blow-by-blow of the big game, that’s where it might make sense to take a risk on an amazing-looking new JavaScript realtime interface framework. That’s the time to run up a breakthrough new message queue server that can deliver jobs to workers via extrasensory perception and keep the score updates flowing instantaneously. Those are the risks worth taking, as those new technologies have the potential to help you solve your core problems in a markedly improved way. Unproven technology is worth the risk if it solves a specific business objective. If it doesn’t, don’t make work for yourself - use something mature and stable. Pick the right tools Our job as developers is to solve problems using code, and do so in an effective and responsible way. You’ve been hired to use your expertise in picking the right tools for the job, and a big part of that is weighing up the risk verse the reward of each part of the system. The best tools for the job might be something cutting edge, but ‘best’ can also mean most stable, reliable or easy-to-hire-for. Go out and learn (and create!) new tools and experiment with them. Understand what problems they solve and what the pitfalls are. Use them in production for low-stakes projects to get real experience, and then once you really know their character, then think about using them when the stakes are higher. The rest of the time? The tools you’re using now are solid and proven and you know their capabilities and pitfalls well. They might not always be the fashionable candidate, but they often make for a very solid choice.",2017,Drew McLellan,drewmclellan,2017-12-24T00:00:00+00:00,https://24ways.org/2017/all-that-glisters/,business 207,Want to Break Out of Comparison Syndrome? Do a Media Detox,"“Comparison is the thief of joy.” —Theodore Roosevelt I grew up in an environment of perpetual creativity and inventiveness. My father Dennis built and flew experimental aircraft as a hobby. During my entire childhood, there was an airplane fuselage in the garage instead of a car. My mother Deloria was a self-taught master artisan who could quickly acquire any skills that it took to work with fabric and weaving. She could sew any garment she desired, and was able to weave intricate wall hangings just by looking at a black and white photos in magazines. My older sister Diane blossomed into a consummate fine artist who drew portraits with uncanny likeness, painted murals, and studied art and architecture. In addition, she loved good food and had a genius for cooking and baking, which converged in her creating remarkable art pieces out of cake that were incredibly delicious to boot. Yes. This was the household in which I grew up. While there were countless positives to being surrounded by people who were compelled to create, there was also a downside to it. I incessantly compared myself to my parents and older sister and always found myself lacking. It wasn’t a fair comparison, but tell that to a sensitive kid who wanted to fit in to her family by being creative as well. From my early years throughout my teens, I convinced myself that I would never understand how to build an airplane or at least be as proficient with tools as my father, the aeronautical engineer. Even though my sister was six years older than I was, I lamented that I would never be as good a visual artist as she was. And I marveled at my mother’s seemingly magical ability to make and tailor clothes and was certain that I would never attain her level of mastery. This habit of comparing myself to others grew over the years, continuing to subtly and effectively undermine my sense of self. I had almost reached an uneasy truce with my comparison habit when social media happened. As an early adopter of Twitter, I loved staying connected to people I met at tech conferences. However, as I began to realize my aspirations of being an author and a speaker, Twitter became a dreaded hall of mirrors where I only saw distorted reflections of my lack of achievement in other people’s success. Every person announcing a publishing deal caused me to drown under waves of envy over the imagined size of her or his book advance as I struggled to pay my mortgage. Every announcement I read of someone speaking at a conference led to thoughts of, “I wish I were speaking at that conference – I must not be good enough to be invited.” Twitter was fertile ground for my Inner Critic to run rampant. One day in 2011, my comparisons to people who I didn’t even know rose to a fever pitch. I saw a series of tweets that sparked a wave of self-loathing so profound that I spent the day sobbing and despondent, as I chastised myself for being a failure. I had fallen into the deep pit of Comparison Syndrome, and to return to anything close to being productive took a day or two of painstakingly clawing my way out. Comparison Syndrome Takes Deficiency Anxiety to Eleven Do any of these scenarios ring true? You frequently feel like a failure when viewing the success of others. You feel dispirited and paralyzed in moving forward with your own work because it will never measure up to what others have done. You discount your ideas because you fear that they aren’t as good as those of your colleagues or industry peers. Are you making yourself miserable by thinking thoughts like these? “I’m surrounded by people who are so good at what they do, how can I possibly measure up?” “Compared to my partner, my musical ability is childish – and music is no longer fun.” “Why haven’t I accomplished more by now? My peers are so much more successful than I am.” Unenviable Envy Many people use the terms envy and jealousy interchangeably, but they are two distinct emotions. Jealousy is the fear of losing someone to a perceived rival: a threat to an important relationship and the parts of the self that are served by that relationship. Jealousy is always about the relationship between three people. Envy is wanting what another has because of a perceived shortcoming on your part. Envy is always based on a social comparison to another.1 Envy is a reaction to the feeling of lacking something. Envy always reflects something we feel about ourselves, about how we are somehow deficient in qualities, possessions, or success.2 It’s based on a scarcity mentality: the idea that there is only so much to go around, and another person got something that should rightfully be yours.3 A syndrome is a condition characterized by a set of associated symptoms. I call it Comparison Syndrome because a perceived deficiency of some sort – in talent, accomplishments, success, skills, etc. – is what initially sparks it. While at the beginning you may merely feel inadequate, the onset of the syndrome will bring additional symptoms. Lack of self-trust and feelings of low self-worth will fuel increased thoughts of not-enoughness and blindness to your unique brilliance. If left unchecked, Deficiency Anxieties can escalate to full-blown Comparison Syndrome: a form of the Inner Critic in which we experience despair from envy and define ourselves as failures in light of another’s success. The irony is that when we focus so much on what we lack, we can’t see what we have in abundance that the other person doesn’t have. And in doing so, we block what is our birthright: our creative expression. Envy shackles our creativity, keeps us trapped in place, and prevents forward movement. The Inner Critic in the form of Comparison Syndrome caused by envy blocks us from utilizing our gifts, seeing our path clearly, and reveling in our creative power. In order to keep a grip on reality and not fall into the abyss of Comparison Syndrome, we’ll quell the compulsion to compare before it happens: we will free the mental bandwidth to turn our focus inward so we can start to see ourselves clearly. Break the Compulsion to Compare “Why compare yourself with others? No one in the entire world can do a better job of being you than you.” — Krystal Volney, poet and author At some point in time, many of us succumb to moments of feeling that we are lacking and comparing ourselves unfavorably to others. As social animals, much of our self-definition comes from comparison with others. This is how our personalities develop. We learn this behavior as children, and we grow up being compared to siblings, peers, and kids in the media. Because of this, the belief that somehow, someway, we aren’t good enough becomes deeply ingrained. The problem is that whenever we deem ourselves to be “less than,” our self-esteem suffers. This creates a negative feedback loop where negative thoughts produce strong emotions that result in self-defeating behaviors that beget more negative thoughts. Couple this cycle with the messages we get from society that only “gifted” people are creative, and it’s no wonder that many of us will fall down the rabbit hole of Comparison Syndrome like I did on that fated day while reading tweets. Comparing ourselves to others is worse than a zero-sum game, it’s a negative-sum game. No one wins, our self-esteem deteriorates, and our creative spark dies out. With effort, we can break the compulsion to compare and stop the decline into Comparison Syndrome by turning the focus of comparison inward to ourselves and appreciating who we’ve become. But first, we need to remove some of the instances that trigger our comparisons in the first place. Arrest: Stop the Triggers “Right discipline consists, not in external compulsion, but in the habits of mind which lead spontaneously to desirable rather than undesirable activities.” — Bertrand Russell, philosopher After my Twitter post meltdown, I knew had to make a change. While bolstering my sense of self was clearly a priority, I also knew that my ingrained comparison habit was too strong to resist and that I needed to instill discipline. I decided then and there to establish boundaries with social media. First, to maintain my sanity, I took this on as my mantra: “I will not compare myself to strangers on the Internet or acquaintances on Facebook.” If you find yourself sliding down the slippery slope of social media comparison, you can do the same: repeat this mantra to yourself to help put on the brakes. Second, in order to reduce my triggers, I stopped reading the tweets of the people I followed. However, I continued to be active on Twitter through sharing information, responding to mentions, crowdsourcing, and direct messaging people. It worked! The only time I’d start to slip into darkness were the rare instances when I would break my rules and look at my Twitstream. But we can do even more than calm ourselves with helpful mantras. Just like my example of modifying my use of Twitter, and more recently, of separating myself from Facebook, you can get some distance from the media that activates your comparison reflex and start creating the space for other habits that are more supportive to your being to take its place. Creative Dose: Trigger-free and Happy Purpose: To stop comparison triggers in their tracks Mindfulness is a wonderful tool, but sometimes you have to get hardcore and do as much as you can to eliminate distractions so that you can first hear your own thoughts in order to know which ones you need to focus on. Here are four steps to becoming trigger-free and happier. Step 1: Make a List Pay attention when you get the most triggered and hooked. Is it on Twitter, Facebook, Instagram, or Snapchat? Is it YouTube, TV shows, or magazines? Make list of your top triggers. My primary trigger is:______________________________________ My second trigger is:______________________________________ My third trigger is:______________________________________ Now that you have your list, you need to get an idea just how often you’re getting triggered. Step 2: Monitor It’s easy to think that we should track our activity on the computer, but these days, it’s no longer our computer use that is the culprit: most of us access social media and news from our phones. Fortunately, there are apps that will track the usage for both. Seeing just how much you consume media from either or both will show you how much of an accomplice the use of devices is to your comparison syndrome, and how much you need to modify your behavior accordingly. For tracking both computer use and tablet use, this app works great: RescueTime.com tracks app usage and sends a productivity report at the end of the week via email. For your phone, there are many for either platform.4 Although I recommend fully researching what is available and will work for you best, here are a few recommendations: For both platforms: Offtime, Breakfree, Checky For Android only: Flipd, AppDetox, QualityTime, Stay On Task For iOS only: Moment Install your app of choice, and see what you find. How much time are you spending on sites or apps that compel you to compare? Step 3: Just Say No Now that you know what your triggers are and how much you’re exposing yourself to them, it’s time to say No. Put yourself on a partial social media and/or media detox for a specified period of time; consider even going for a full media detox.5 I recommend starting with one month. To help you to fully commit, I recommend writing this down and posting it where you can see it. I, ___________________, commit to avoiding my comparison triggers of ___________________, ___________________, and ___________________ for the period of ___________________, starting on ___________________ and ending on ___________________ . To help you out, I’ve created a social media detox commitment sheet for you. Step 4: Block When I decided to reduce my use of Twitter and Facebook to break my comparison habit, initially I tried to rely solely on self-discipline, which was only moderately successful. Then I realized that I could use the power of technology to help. Don’t think you have to rely upon sheer willpower to block, or at least limit, your exposure to known triggers. If your primary access to the items that cause you to compare yourself to others is via computers and other digitalia, use these devices to help maintain your mental equilibrium. Here are some apps and browser extensions that you can use during your media detox to help keep yourself sane and stay away from sites that could throw you into a comparison tailspin. These apps are installed onto your computer: RescueTime.com works on both computer and mobile devices, and does a lot more than just prevent you from going to sites that will ruin your concentration, it will also track your apps usage and give you a productivity report at the end of the week. Focus and SelfControl (Mac-only) To go right to the source and prevent you from visiting sites through your browser, there are browser extensions. Not only can you put in the list of the URLs that are your points of weakness, but you can also usually set the times of the day you need the self-control the most. Google Chrome: StayFocusd, Strict Workflow, and Website Blocker Firefox: Idderall and Leechblock Safari: WasteNoTime and MindfulBrowsing Edge (or Explorer): Unfortunately, there are currently no website blocking extensions for these browsers. I currently use a browser extension to block me from using Facebook between 9:00am – 6:00pm. It’s been a boon for my sanity: I compare tons less. A bonus is that it’s been terrific for my productivity as well. Which tool will you use for your media detox time? Explore them all and then settle upon the one(s) that will work the best for you. Install it and put it to work. Despite the tool, you will still need to exercise discipline. Resist the urge to browse Instagram or Facebook while waiting for your morning train. You can do it! Step 5: Relax Instead of panicking from FOMO (Fear of Missing Out), take comfort from this thought: what you don’t know won’t affect you. Start embracing JOMO (Joy of Missing Out), and the process of rebuilding and maintaining your sanity. What will you do instead of consuming the media that compels you to compare? Here are some ideas: Read a book Go for a walk Have dinner with a friend Go watch a movie Learn how to play the harmonica Take an improv class Really, you could do anything. And depending on how much of your time and attention you’ve devoted to media, you could be recapturing a lot of lost moments, minutes, hours, and days. Step 6: Reconnect Use your recovered time and attention to focus on your life and reconnect with your true value-driven goals, higher aspirations, and activities that you’ve always wanted to do. This article is an excerpt from the book Banish Your Inner Critic by Denise Jacobs, and has been reprinted with permission. If you’d like to read more, you can find the book on Amazon. Shane Parrish, “Mental Model: Bias from Envy and Jealousy,” Farnam Street, accessed February 9, 2017. ↩ Parrish, “Mental Model: Bias from Envy and Jealousy.” ↩ Henrik Edberg, “How to Overcome Envy: 5 Effective Tips,” Practical Happiness Advice That Works | The Positivity Blog, accessed February 9, 2017. ↩ Jeremy Golden, “6 Apps to Stop Your Smartphone Addiction,” Inc.com, accessed February 10, 2017. ↩ Emily Nickerson, “How to Silence the Voice of Doubt,” The Muse, accessed February 8, 2017. ↩",2017,Denise Jacobs,denisejacobs,2017-12-19T00:00:00+00:00,https://24ways.org/2017/do-a-media-detox/,process 195,Levelling Up for Junior Developers,"If you are a junior developer starting out in the web industry, things can often seem a little daunting. There are so many things to learn, and as soon as you’ve learnt one framework or tool, there seems to be something new out there. I am lucky enough to lead a team of developers building applications for the web. During a recent One to One meeting with one of our junior developers, he asked me about a learning path and the basic fundamentals that every developer should know. After a bit of digging around, I managed to come up with a (not so exhaustive) list of principles that was shared with him. In this article, I will share the list with you, and hopefully help you level up from junior developer and become a better developer all round. This list doesn’t focus on an particular programming language, but rather coding concepts as a whole. The idea behind this list is that whether you are a front-end developer, back-end developer, full stack developer or just a curious one, these principles apply to everyone that writes code. I have tried to be technology agnostic, so that you can use these tips to guide you, whatever your tech stack might be. Without any further ado and in no particular order, let’s get started. Refactoring code like a boss The Boy Scouts have a rule that goes “always leave the campground cleaner than you found it.” This rule can be applied to code too and ensures that you leave code cleaner than you found it. As a junior developer, it’s almost certain that you will either create or come across older code that could be improved. The resources below are a guide that will help point you in the right direction. My favourite book on this subject has to be Clean Code by Robert C. Martin. It’s a must read for anyone writing code as it helps you identify bad code and shows you techniques that you can use to improve existing code. If you find that in your day to day work you deal with a lot of legacy code, Improving Existing Technology through Refactoring is another useful read. Design Patterns are a general repeatable solution to a commonly occurring problem in software design. My friend and colleague Ranj Abass likes to refer to them as a “common language” that helps developers discuss the way that we write code as a pattern. My favourite book on this subject is Head First Design Patterns which goes right back to the basics. Another great read on this topic is Refactoring to Patterns. Working Effectively With Legacy Code is another one that I found really valuable. Improving your debugging skills A solid understanding of how to debug code is a must for any developer. Whether you write code for the web or purely back-end code, the ability to debug will save you time and help you really understand what is going on under the hood. If you write front-end code for the web, one of my favourite resources to help you understand how to debug code in Chrome can be found on the Chrome Dev Tools website. While some of the tips are specific to Chrome, these techniques apply to any modern browser of your choice. At Settled, we use Node.js for much of our server side code. Without a doubt, our most trusted IDE has to be Visual Studio Code and the built-in debuggers are amazing. Regardless of whether you use Node.js or not, there are a number of plugins and debuggers that you can use in the IDE. I recommend reading the website of your favourite IDE for more information. As a side note, it is worth mentioning that Chrome Developer Tools actually has functionality that allows you to debug Node.js code too. This makes it a seamless transition from front-end code to server-side code debugging. The Debugging Mindset is an informative online article by Devon H. O’Dell and discusses the the psychology of learning strategies that lead to effective problem-solving skills. A good understanding of relational databases and NoSQL databases Almost all developers will need to persist data at some point in their career. Even if you don’t write SQL queries in your day to day job, a solid understanding of how they work will help you become a better developer. If you are a complete newbie when it comes to databases, I recommend checking out Code Academy. They offer a free online course that can help you get your head around how relational databases work. The course is quite basic, but is a useful hands-on approach to learning this topic. This article provides a great explainer for the difference between the SQL and NoSQL databases, and this Stackoverflow answer goes a little deeper into the subject of the two database types. If you’d like to learn more about NoSQL queries, I would recommend starting with this article on MongoDB queries. Unfortunately, there isn’t one overall course as most NoSQL databases have their own syntax. You may also have noticed that I haven’t included other types of databases such as Graph or In-memory; it’s worth focussing on the basics before going any deeper. Performance on the web If you build for the web today, it is important to understand how the browser receives and renders the content that you send it. I am pretty passionate about Web Performance, and hope that everyone can learn how to make websites faster and more efficient. It can be fun at the same time! Steve Souders High Performance Websites is the godfather of web performance books. While it was created a few years ago and many of the techniques might have changed slightly, it is the original book on the subject and set up many of the ground rules that we know about web performance today. A free online resource on this topic is the Google Developers website. The site is an up to date guide on the best web performance techniques for your site. It is definitely worth a read. The network plays a key role in delivering data to your users, and it plays a big role in performance on the web. A fantastic book on this topic is Ilya Grigorik’s High Performance Browser Networking. It is also available to read online at hpbn.co. Understand the end to end architecture of your software project I find that one of the best ways to improve my knowledge is to learn about the architecture of the software at the company I work at. It gives you a good understanding as to why things are designed the way they are, why certain decisions were made, and gives you an understanding of how you might do things differently with hindsight. Try and find someone more senior, such as a Technical Lead or Software Architect, at your company and ask them to explain the overall architecture and draw a few high-level diagrams for you. Not to mention that they will be impressed with your willingness to learn. I recommend reading Clean Architecture: A Craftsman’s Guide to Software Structure and Design for more detail on this subject. Far too often, software projects can be over-engineered and over-architected, it is worth reading Just Enough Software Architecture. The book helps developers understand how the smallest of changes can affect the outcome of your software architecture. How are things deployed A big part of creating software is actually shipping it! How is the software at your company released into the wild? Does your company do Continuous Integration? Continuous Deployment? Even if you answered no to any of these questions, it is worth finding someone with the knowledge in your company to explain these things to you. If it is not already documented, perhaps you could start a wiki to document everything you’re learning about the system - this is a great way to level up and be appreciated and invaluable. A streamlined deployment process is a beautiful thing, and understanding how they work can help you grow your knowledge as a developer. Continuous Integration is a practical read on the ins and outs of implementing this deployment technique. Docker is another great tool to use when it comes to software deployment. It can be tricky at first to wrap your head around, but it is definitely worth learning about this great technology. The documentation on the website will teach and guide you on how to get started using Docker. Writing Tests Testing is an essential tool in the developer bag of skills. They help you to make big refactoring changes to your code, and feel a lot more confident knowing that your changes haven’t broken anything. There are so many benefits to testing, which make it so important for developers at every level to become acquainted with it/them. The book that started it all for me was Roy Osherove’s The Art of Unit Testing. The code in the book is written in C#, but the principles apply to every language. It’s a great, easy-to-understand read. Another great read is How Google Tests Software and covers exactly what it says on the tin. It covers many different testing techniques such as exploratory, black box, white box, and acceptance testing and really helps you understand how large organisations test their code. Soft skills Whilst reading through this article, you’ve probably noticed that a large chunk of it focusses on code and technical ability. Without a doubt, I’d say that it is even more important to be a good teammate. If you look up the definition of soft skills in the dictionary, it is defined as “personal attributes that enable someone to interact effectively and harmoniously with other people” and I think that it sums this up perfectly. Working on your “soft skills” is something that can truly help you level up in your career. You may be the world’s greatest coder, but if you colleagues can’t get along with you, your coding skills won’t matter! While you may not learn how to become the perfect co-worker overnight, I really try and live by the motto “don’t be an arsehole”. Think about how you like to be treated and then try and treat your co-workers with the same courtesy and respect. The next time you need to make a decision at work, ask yourself “is this something an arsehole would do”? If you answered yes to that question, you probably shouldn’t do it! Summary Levelling up as a junior developer doesn’t have to be scary. Focus on the fundamentals and they should hold you in good stead, regardless of the new things that come along. Software engineering is built on these great principles that have stood the test of time. Whilst researching for this article, I came across a useful Github repo that is worth mentioning. Things Every Programmer Should Know is packed with useful information. I have to admit, I didn’t know everything on there! I hope that you have found this list helpful. Some of the topics I have mentioned might not be relevant for you at this stage in your career, but should give a nudge in the right direction. After all, knowledge is power! If you are a junior developer reading this article, what would you add to it?",2017,Dean Hume,deanhume,2017-12-05T00:00:00+00:00,https://24ways.org/2017/levelling-up-for-junior-developers/,code 204,Cascading Web Design with Feature Queries,"Feature queries, also known as the @supports rule, were introduced as an extension to the CSS2 as part of the CSS Conditional Rules Module Level 3, which was first published as a working draft in 2011. It is a conditional group rule that tests if the browser’s user agent supports CSS property:value pairs, and arbitrary conjunctions (and), disjunctions (or), and negations (not) of them. The motivation behind this feature was to allow authors to write styles using new features when they were supported but degrade gracefully in browsers where they are not. Even though the nature of CSS already allows for graceful degradation, for example, by ignoring unsupported properties or values without disrupting other styles in the stylesheet, sometimes we need a bit more than that. CSS is ultimately a holistic technology, in that, even though you can use properties in isolation, the full power of CSS shines through when used in combination. This is especially evident when it comes to building web layouts. Having native feature detection in CSS makes it much more convenient to build with cutting-edge CSS for the latest browsers while supporting older browsers at the same time. Browser support Opera first implemented feature queries in November 2012, both Chrome and Firefox had it since May 2013. There have been several articles about feature queries written over the years, however, it seems that awareness of its broad support isn’t that well-known. Much of the earlier coverage on feature queries was not written in English, and perhaps that was a limiting factor. @supports ― CSSのFeature Queries by Masataka Yakura, August 8 2012 Native CSS Feature Detection via the @supports Rule by Chris Mills, December 21 2012 CSS @supports by David Walsh, April 3 2013 Responsive typography with CSS Feature Queries by Aral Balkan, April 9 2013 How to use the @supports rule in your CSS by Lea Verou, January 31 2014 CSS Feature Queries by Amit Tal, June 2 2014 Coming Soon: CSS Feature Queries by Adobe Web Platform Team, August 21 2014 CSS feature queries mittels @supports by Daniel Erlinger, November 27 2014 As of December 2017, all current major browsers and their previous 2 versions support feature queries. Feature queries are also supported on Opera Mini, UC Browser and Samsung Internet. The only browsers that do not support feature queries are Internet Explorer and Blackberry Mobile, but that may be less of an issue than you might think. Can I Use css-featurequeries? Data on support for the css-featurequeries feature across the major browsers from caniuse.com. Granted, there is still a significant number of organisations that require support of Internet Explorer. Microsoft still continues to support IE11 for the life-cycle of Windows 7, 8 and 10. They have, however, stopped supporting older versions since January 12, 2016. It is inevitable that there will be organisations that, for some reason or another, make it mandatory to support IE, but as time goes on, this number will continue to shrink. Jen Simmons wrote an extensive article called Using Feature Queries in CSS which discussed a matrix of potential situations when it comes to the usage of feature queries. The following image is a summary of the aforementioned matrix. The most tricky situation we have to deal with is the box in the top-left corner, which are “browsers that don’t support feature queries, yet do support the feature in question”. For cases like those, it really depends on the specific CSS feature you want to use and a subsequent evaluation of the pros and cons of not including that feature in spite of the fact the browser (most likely Internet Explorer) supports it. The basics of feature queries As with any conditional, feature queries operate on boolean logic, in other words, if the query resolves to true, apply the CSS properties within the block, or else just ignore the entire block altogether. The syntax of a simple feature query is as follows: .selector { /* Styles that are supported in old browsers */ } @supports (property:value) { .selector { /* Styles for browsers that support the specified property */ } } Note that the parentheses around the property:value pair are mandatory and the rule is invalid without them. Styles that apply to older browsers, i.e. fallback styles, should come first, followed by the newer properties, which are contained within the @supports conditional. Because of the cascade, fallback styles will be overridden by the newer properties in the modern browsers that support them. main { background-color: red; } @supports (display:grid) { main { background-color: green; } } In this example, browsers that support CSS grid will have a main element with a green background colour because the conditional resolves to true, while browsers that do not support grid will have a main element with a red background colour. The implication of such behaviour means that we can layer on enhanced styles based on the features we want to use and these styles will show up in browsers that support them. But for those that do not, they will get a more basic look that still works anyway. And that will be our approach moving forward. Boolean operators for feature queries The and operator allows us to test for support of multiple properties within a single conditional. This would be useful for cases where the desired output requires multiple cutting-edge features to be supported at the same time to work. All the property:value pairs listed in the conditional must resolve to true for the styles within the rule to be applied. @supports (transform: rotate(45deg)) and (writing-mode: vertical-rl) { /* Some CSS styles */ } The or operator allows us to list multiple property:value pairs in the conditional and as long as one of them resolves to true, the styles within the block will be applied. A relevant use-case would be for properties with vendor-prefixes. @supports (background: -webkit-gradient(linear, left top, left bottom, from(white), to(black))) or (background: -o-linear-gradient(top, white, black)) or (background: linear-gradient(to bottom, white, black)) { /* Some CSS styles */ } The not operator negates the resolution of the property:value pair in the conditional, resolving to false when the property is supported and vice versa. This is useful when there are two distinct sets of styles to be applied depending on the support of a specific feature. However, we do need to keep in mind the case where a browser does not support feature queries, and handle the styles for those browsers accordingly. @supports not (shape-outside: polygon(100% 80%,20% 0,100% 0)) { /* Some CSS styles */ } To avoid confusion between and and or, these operators must be explicitly declared as opposed to using commas or spaces. To prevent confusion caused by precedence rules, and, or and not operators cannot be mixed without a layer of parentheses. This rule is not valid and the styles within the block will be ignored. @supports (transition-property: background-color) or (animation-name: fade) and (transform: scale(1.5)) { /* Some CSS styles */ } To make it work, parentheses must be added either around the two properties adjacent to the or or the and operator like so: @supports ((transition-property: background-color) or (animation-name: fade)) and (transform: scale(1.5)) { /* Some CSS styles */ } @supports (transition-property: background-color) or ((animation-name: fade) and (transform: scale(1.5))) { /* Some CSS styles */ } The current specification states that whitespace is required after a not and on both sides of an and or or, but this may change in a future version of the specification. It is acceptable to add extra parentheses even when they are not needed, but omission of parentheses is considered invalid. Cascading web design I’d like to introduce the concept of cascading web design, an approach made possible with feature queries. Browser update cycles are much shorter these days, so new features and bug fixes are being pushed out a lot more frequently as compared to the early days of the web. With the maturation of web standards, browser behaviour is less unpredictable than before, but each browser will still have their respective quirks. Chances are, the latest features will not ship across all browsers at the same time. But you know what? That’s perfectly fine. If we accept this as a feature of the web, instead of a bug, we’ve just opened up a lot more web design possibilities. The following example is a basic, responsive grid layout of items laid out with flexbox, as viewed on IE11. We can add a block of styles within an @supports rule to apply CSS grid properties for browsers that support them to enhance this layout, like so: The web is not a static medium. It is dynamic and interactive and we manipulate this medium by writing code to tell the browser what we want it to do. Rather than micromanaging the pixels in our designs, maybe it’s time we cede control of our designs to the browsers that render them. This means being okay with your designs looking different across browsers and devices. As mentioned earlier, CSS works best when various properties are combined. It’s one of those things whose whole is greater than the sum of its parts. So feature queries, when combined with media queries, allow us to design layouts that are most effective in the environment they have to perform in. Such an approach requires interpolative thinking, on multiple levels. As web designers and developers, we don’t just think in one fixed dimension, we get to think about how our design will morph on a narrow screen, or on an older browser, in addition to how it will appear on a browser with the latest features. In the following example, the layout on the left is what IE11 users will see, the one in the middle is what Firefox users will see, because Firefox doesn’t support CSS shapes yet, but once it does, it will then look like the layout on the right, which is what Chrome users see now. With the release of CSS Grid this year, we’ve hit another milestone in the evolution of the web as a medium. The beauty of the web is its backwards compatibility and generous fault tolerance. Browser features are largely additive, holding onto the good parts and building on top of them, while deprecating the bits that didn’t work well. Feature queries allow us to progressively enhance our CSS, establishing a basic level of user experience across the widest range of browsers, while building in more advanced functionality for browsers who can use them. And hopefully, this will allow more of us to create designs that truly embrace the nature of the web.",2017,Chen Hui Jing,chenhuijing,2017-12-01T00:00:00+00:00,https://24ways.org/2017/cascading-web-design/,code 216,Styling Components - Typed CSS With Stylable,"There’s been a lot of debate recently about how best to style components for web apps so that styles don’t accidentally ‘leak’ out of the component they’re meant for, or clash with other styles on the page. Elaborate CSS conventions have sprung up, such as OOCSS, SMACSS, BEM, ITCSS, and ECSS. These work well, but they are methodologies, and require everyone in the team to know them and follow them, which can be a difficult undertaking across large or distributed teams. Others just give up on CSS and put all their styles in JavaScript. Now, I’m not bashing JS, especially so close to its 22nd birthday, but CSS-in-JS has problems of its own. Browsers have 20 years experience in optimising their CSS engines, so JavaScript won’t be as fast as using real CSS, and in any case, this requires waiting for JS to download, parse, execute then render the styles. There’s another problem with CSS-in-JS, too. Since Responsive Web Design hit the streets, most designers no longer make comps in Photoshop or its equivalents; instead, they write CSS. Why hire an expensive design professional and require them to learn a new way of doing their job? A recent thread on Twitter asked “What’s your biggest gripe with CSS-in-JS?”, and the replies were illuminating: “Always having to remember to camelCase properties then spending 10min pulling hair out when you do forget”, “the cryptic domain-specific languages that each of the frameworks do just ever so slightly differently”, “When I test look and feel in browser, then I copy paste from inspector, only to have to re-write it as a JSON object”, “Lack of linting, autocomplete, and css plug-ins for colors/ incrementing/ etc”. If you’re a developer, and you’re still unconvinced, I challenge you to let designers change the font in your IDE to Zapf Chancery and choose a new colour scheme, simply because they like it better. Does that sound like fun? Will that boost your productivity? Thought not. Some chums at Wix Engineering and I wanted to see if we could square this circle. Wix-hosted sites have always used CSS-in-JS (the concept isn’t new; it was in Netscape 4!) but that was causing performance problems. Could we somehow devise a method of extending CSS (like SASS and LESS do) that gives us styles that are guaranteed not to leak or clash, that is compatible with code editors’ autocompletion, and which could be pre-processed at build time to valid, cross-browser, static CSS? After a few months and a few proofs of concept later (drumroll), yes – we could! We call it Stylable. Introducing Stylable Stylable is a CSS pre-processor, like SASS or LESS. It uses CSS syntax so all your development tools will work. At build time, the Stylable CSS extensions are transpiled to flat, valid, cross-browser vanilla CSS for maximum performance. There’s quite a bit to it, and this is a short article, so let’s look at the basic concepts. Components all the way down Stylable is designed for component-based systems. Imagine you have a Gallery component. Within that, there is a Navigation component (for example, containing a ‘next’, ‘previous’, ‘show all thumbnails’, and ‘show all albums’ controls), and within that there are NavButton components. Each component is discrete, used elsewhere in the system in different contexts, perhaps maintained by different team members or even different organisations — you can use Stylable to add a typed interface to non-Stylable component libraries, as well as using it to build an app from scratch. Firstly, Stylable will automatically namespace styles so they only apply inside that component, by rewriting them at build time with a unique (but human-readable) prefix. So, for example,
might be re-written as
. So far, so BEM-like (albeit without the headache of remembering a convention). But what else can it do? Custom pseudo-elements An important feature of Stylable is the ability to reach into a component and style it from the outside, without having to know about its internal structure. Let’s see the guts of a simple JSX button component in the file button.jsx: render () { return ( ); } (Note:className is the JSX way of setting a class on an element; this example uses React, but Stylable itself is framework-agnostic.) I style it using a Stylable stylesheet (the .st.css suffix tells the preprocessor to process this file): /* button.st.css */ /* note that the root class is automatically placed on the root HTML element by Stylable React integration */ .root { background: #b0e0e6; } .icon { display: block; height: 2em; background-image: url('./assets/btnIcon.svg'); } .label { font-size: 1.2em; color: rgba(81, 12, 68, 1.0); } Note that Stylable allows all the CSS that you know and love to be included. As Drew Powers wrote in his review: with Stylable, you get CSS, and every part of CSS. This seems like a “duh” observation, but this is significant if you’ve ever battled with a CSS-in-JS framework over a lost or “hacky” implementation of a basic CSS feature. I can import my Button component into another component - this time, panel.jsx: /* panel.jsx */ import * as React from 'react'; import {properties, stylable} from 'wix-react-tools'; import {Button} from '../button'; import style from './panel.st.css'; export const Panel = stylable(style)(() => (
)); In panel.st.css: /* panel.st.css */ :import { -st-from: './button.st.css'; -st-default: Button; } /* cancelBtn is of type Button */ .cancelBtn { -st-extends: Button; background: cornflowerblue; } /* targets the label of