rowid,title,contents,year,author,author_slug,published,url,topic 236,Extreme Design,"Recently, I set out with twelve other designers and developers for a 19th century fortress on the Channel Island of Alderney. We were going to /dev/fort, a sort of band camp for geeks. Our cohort’s mission: to think up, build and finish something – without readily available internet access. Alderney runway, photo by Chris Govias Wait, no internet? Well, pretty much. As the creators of /dev/fort James Aylett and Mark Norman Francis put it: “Imagine a place with no distractions – no IM, no Twitter”. But also no way to quickly look up a design pattern, code sample or source material. Like packing for camping, /dev/fort means bringing everything you’ll need on your back or your hard drive: from long johns to your favourite icon set. We got to work the first night discussing ideas for what we wanted to build. By the time breakfast was cleared up the next morning, we’d settled on Russ’s idea to make the Apollo 13 (PDF) transcript accessible. Days two and three were spent collaboratively planning (KJ style) what features we wanted to build, and unravelling the larger UX challenges of the project. The next five days were spent building it. Within 36 hours of touchdown at Southampton Airport, we launched our creation: spacelog.org The weather was cold, the coal fire less than ideal, food and supplies a hike away, and the process lightning-fast. A week of designing under extreme circumstances called for an extreme process. Some of this was driven by James’s and Norm’s experience running these things, but a lot of it materialised while we were there – especially for our three-strong design team (myself, Gavin O’ Carroll and Chris Govias) who, though we knew each other, had never worked together as a group in this kind of scenario before. The outcome was a pretty spectacular process, with a some key takeaways useful for any small group trying to build something quickly. What it’s like inside the fort /dev/fort has the pressure and pace of a hack day without being a hack day – primarily, no workshops or interruptions‚ but also a different mentality. While hack days are typically developer-driven with a ‘hack first, design later (if at all)’ attitude, James was quick to tell the team to hold off from writing any code until we had a plan. This put a healthy pressure on the design and product folks to slash through the UX problems before we started building. While the fort had definitely more of a hack day feel, all of us were familiar with Agile methods, so we borrowed a few useful techniques such as morning stand-ups and an emphasis on teamwork. We cut some really good features to make our launch date, and chunked the work based on user goals, iterating as we went. What made this design process work? A golden ratio of teams My personal experience both professionally and in free-form situations like this, is a tendency to get/hire a designer. Leaders of businesses, founders of start-ups, organisers of events: one designer is not enough! Finding one ace-blooded designer who can ‘do everything’ will always result in bottleneck and burnout. Like the nuances between different development languages, design is a multifaceted discipline, and very few can claim to be equally strong in every aspect. Overlap in skill set will result in a stronger, more robust interface. More importantly, however, having lots of designers to go around meant that we all had the opportunity to pair with developers, polishing the details that don’t usually get polished. As soon as we launched, the public reception of the design and UX was overwhelmingly positive (proof!). But also, a lot of people asked us who the designer was, attributing it to one person. While it’s important to note that everyone in our team was multitalented (and could easily shift between roles, helping us all stay unblocked), the golden ratio James and Norm devised was two product/developer folks, three interaction designers and eight developers. photo by Ben Firshman Equality inside the fortress walls Something magical about the fort is how everyone leaves the outside world on the drawbridge. Job titles, professional status, Twitter followers, and so on. Like scout camp, a mutual respect and trust is expected of all the participants. Like extreme programming, extreme design requires us all to be equal partners in a collaborative team. I think this is especially worth noting for designers; our past is filled with the clear hierarchy of the traditional studio system which, however important for taste and style, seems less compatible with modern web/software development methods. Being equal doesn’t mean being the same, however. We established clear roles and teams for ourselves on the second day, deferring to that person when a decision needed to be made. As the interface coalesced, the designers and developers took ownership over certain parts to ensure the details got looked after, while staying open to ideas and revisions from the rest of the cohort. Create a space where everyone who enters is equal, but be sure to establish clear roles. Even if it’s just for a short while, the environment will be beneficial. photo by Ben Firshman Hang your heraldry from the rafters Forts and castles are full of lore: coats of arms; paintings of battles; suits of armour. It’s impossible not to be surrounded by these stories, words and ways of thinking. Like the whiteboards on the walls, putting organisational lore in your physical surroundings makes it impossible not to see. Ryan Alexander brought some of those static-cling whiteboard sheets which were quickly filled with use cases; IA; team roles; and, most importantly, a glossary. As soon as we started working on the project, we realised we needed to get clear on what certain words meant: what was a logline, a range, a phase, a key moment? Were the back-end people using these words in the same way design and product was? Quickly writing up a glossary of terms meant everyone was instantly speaking the same language. There was no “Ah, I misunderstood because in the data structure x means y” or, even worse, accidental seepage of technical language into the user interface copy. Put a glossary of your internal terminology somewhere big and fat on the wall. Stand around it and argue until you agree on what it says. Leave it up; don’t underestimate the power of ambient communication and physical reference. Plan more, download less While internet is forbidden inside the fort, we did go on downloading expeditions: NASA photography; code documentation; and so on. The project wouldn’t have been possible without a few trips to the web. We had two lists on the wall: groceries and supplies; internets – “loo roll; Tom Stafford photo“. This changed our usual design process, forcing us to plan carefully and think of what we needed ahead of time. Getting to the internet was a thirty-minute hike up a snow covered cliff to the town airport, so you really had to need it, too. The path to the internet For the visual design, especially, this resulted in more focus up front, and communication between the designers on what assets we required. It made us make decisions earlier and stick with them, creating less distraction and churn later in the process. Try it at home: unplug once you’ve got the things you need. As an artist, it’s easier to let your inner voice shine through if you’re not looking at other people’s work while creating. Social design Finally, our design team experimented with a collaborative approach to wireframing. Once we had collectively nailed down use cases, IA, user journeys and other critical artefacts, we tried a pairing approach. One person drew in Illustrator in real time as the other two articulated what to draw. (This would work equally well with two people, but with three it meant that one of us could jump up and consult the lore on the walls or clarify a technical detail.) The result: we ended up considering more alternatives and quickly rallying around one solution, and resolved difficult problems more quickly. At a certain stage we discovered it was more efficient for one person to take over – this happened around the time when the basic wireframes existed in Illustrator and we’d collectively run through the use cases, making sure that everything was accounted for in a broad sense. At this point, take a break, go have a beer, and give yourself a pat on the back. Put the files somewhere accessible so everyone can use them as their base, and divide up the more detailed UI problems, screens or journeys. At this level of detail it’s better to have your personal headspace. Gavin called this ‘social design’. Chatting and drawing in real time turned what was normally a rather solitary act into a very social process, with some really promising results. I’d tried something like this before with product or developer folks, and it can work – but there’s something really beautiful about switching places and everyone involved being equally quick at drawing. That’s not something you get with non-designers, and frequent swapping of the ‘driver’ and ‘observer’ roles is a key aspect to pairing. Tackle the forest collectively and the trees individually – it will make your framework more robust and your details more polished. Win/win. The return home Grateful to see a 3G signal on our phones again, our flight off the island was delayed, allowing for a flurry of domain name look-ups, Twitter catch-up, and e-mails to loved ones. A week in an isolated fort really made me appreciate continuous connectivity, but also just how unique some of these processes might be. You just never know what crazy place you might be designing from next.",2010,Hannah Donovan,hannahdonovan,2010-12-09T00:00:00+00:00,https://24ways.org/2010/extreme-design/,process 235,"Real Animation Using JavaScript, CSS3, and HTML5 Video","When I was in school to be a 3-D animator, I read a book called Timing for Animation. Though only 152 pages long, it’s essentially the bible for anyone looking to be a great animator. In fact, Pixar chief creative officer John Lasseter used the first edition as a reference when he was an animator at Walt Disney Studios in the early 1980s. In the book, authors John Halas and Harold Whitaker advise: Timing is the part of animation which gives meaning to movement. Movement can easily be achieved by drawing the same thing in two different positions and inserting a number of other drawings between the two. The result on the screen will be movement; but it will not be animation. But that’s exactly what we’re doing with CSS3 and JavaScript: we’re moving elements, not animating them. We’re constantly specifying beginning and end states and allowing the technology to interpolate between the two. And yet, it’s the nuances within those middle frames that create the sense of life we’re looking for. As bandwidth increases and browser rendering grows more consistent, we can create interactions in different ways than we’ve been able to before. We’re encountering motion more and more on sites we’d generally label ‘static.’ However, this motion is mostly just movement, not animation. It’s the manipulation of an element’s properties, most commonly width, height, x- and y-coordinates, and opacity. So how do we create real animation? The metaphor In my experience, animation is most believable when it simulates, exaggerates, or defies the real world. A bowling ball falls differently than a racquetball. They each have different weights and sizes, which affect the way they land, bounce, and impact other objects. This is a major reason that JavaScript animation frequently feels mechanical; it doesn’t complete a metaphor. Expanding and collapsing a
feels very different than a opening a door or unfolding a piece of paper, but it often shouldn’t. The interaction itself should tie directly to the art direction of a page. Physics Understanding the physics of a situation is key to creating convincing animation, even if your animation seeks to defy conventional physics. Isaac Newton’s first law of motion’s_laws_of_motion states, “Every body remains in a state of rest or uniform motion (constant velocity) unless it is acted upon by an external unbalanced force.” Once a force acts upon an object, the object’s shape can change accordingly, depending on the strength of the force and the mass of the object. Another nugget of wisdom from Halas and Whitaker: All objects in nature have their own weight, construction, and degree of flexibility, and therefore each behaves in its own individual way when a force acts upon it. This behavior, a combination of position and timing, is the basis of animation. The basic question which an animator is continually asking himself is this: “What will happen to this object when a force acts upon it?” And the success of his animation largely depends on how well he answers this question. In animating with CSS3 and JavaScript, keep physics in mind. How ‘heavy’ is the element you’re interacting with? What kind of force created the action? A gentle nudge? A forceful shove? These subtleties will add a sense of realism to your animations and make them much more believable to your users. Misdirection Magicians often use misdirection to get their audience to focus on one thing rather than another. They fool us into thinking something happened that actually didn’t. Animation is the same, especially on a screen. By changing the arrangement of pixels on screen at a fast enough rate, your eyes fool your mind into thinking an object is actually in motion. Another important component of misdirecting in animation is the use of multiple objects. Try to recall a cartoon where a character vanishes. More often, the character makes some sort of exaggerated motion (this is called anticipation) then disappears, and a puff a smoke follows. That smoke is an extra element, but it goes a long way into make you believe that character actually disappeared. Very rarely does a vanishing character’s opacity simply go from one hundred per cent to zero. That’s not believable. So why do we do it with
s? Armed with the ammunition of metaphors and misdirection, let’s code an example. Shake, rattle, and roll (These demos require at least a basic understanding of jQuery and CSS3. Run away if your’re afraid, or brush up on CSS animation and resources for learning jQuery. Also, these demos use WebKit-specific features and are best viewed in the latest version of Safari, so performance in other browsers may vary.) We often see the design pattern of clicking a link to reveal content. Our “first demo”:”/examples/2010/real-animation/demo1/ shows us exactly that. It uses jQuery’s “ slideDown()”:http://api.jquery.com/slideDown/ method, as many instances do. But what force acted on the
that caused it to open? Did pressing the button unlatch some imaginary hook? Did it activate an unlocking sequence with some gears? Take 2 Our second demo is more explicit about what happens: the button fell on the
and shook its content loose. Here’s how it’s done. function clickHandler(){ $('#button').addClass('animate'); return false; } Clicking the link adds a class of animate to our button. That class has the following CSS associated with it: In our keyframe definition, we’ve specified from and to states. This is great, because we can be explicit about how an object starts and finishes moving. What’s also extra handy is that these CSS keyframes broadcast events that you can react to with JavaScript. In this example, we’re listening to the webkitAnimationEnd event and opening the
only when the sequence is complete. Here’s that code. function attachAnimationEventHandlers(){ var wrap = document.getElementById('wrap'); wrap.addEventListener('webkitAnimationEnd', function($e) { switch($e.animationName){ case ""ANIMATE"" : openMain(); break; default: } }, false); } function openMain(){ $('#main .inner').slideDown('slow'); } (For more info on handling animation events, check out the documentation at the Safari Reference Library.) Take 3 The problem with the previous demo is that the subtleties of timing aren’t evident. It still feels a bit choppy. For our third demo, we’ll use percentages instead of keywords so that we can insert as many points as we need to communicate more realistic timing. The percentages allow us to add the keys to well-timed animation: anticipation, hold, release, and reaction. Take 4 The button animation is starting to feel much better, but the reaction of the
opening seems a bit slow. This fourth demo uses jQuery’s delay() method to time the opening precisely when we want it. Since we know the button’s animation is one second long and its reaction starts at eighty per cent of that, that puts our delay at 800ms (eighty per cent of one second). However, here’s a little pro tip: let’s start the opening at 750ms instead. The extra fifty milliseconds makes it feel more like the opening is a reaction to the exact hit of the button. Instead of listening for the webkitAnimationEnd event, we can start the opening as soon as the button is clicked, and the movement plays on the specified delay. function clickHandler(){ $('#button').addClass('animate'); openMain(); return false; } function openMain(){ $('#main .inner').delay(750).slideDown('slow'); } Take 5 We can tweak the timing of that previous animation forever, but that’s probably as close as we’re going to get to realistic animation with CSS and JavaScript. However, for some extra sauce, we could relegate the whole animation in our final demo to a video sequence which includes more nuances and extra elements for misdirection. Here’s the basis of video replacement. Add a