24ways

Custom SQL query returning 10 rows (hide)

Query parameters

rowidtitlecontentsyearauthorauthor_slugpublishedurltopic
75 A Harder-Working Class Class is only becoming more important. Focusing on its original definition as an attribute for grouping (or classifying) as well as linking HTML to CSS, recent front-end development practices are emphasizing class as a vessel for structured, modularized style packages. These patterns reduce the need for repetitive declarations that can seriously bloat file sizes, and instil human-readable understanding of how the interface, layout, and aesthetics are constructed. In the next handful of paragraphs, we will look at how these emerging practices – such as object-oriented CSS and SMACSS – are pushing the relevance of class. We will also explore how HTML and CSS architecture can be further simplified, performance can be boosted, and CSS utility sharpened by combining class with the attribute selector. A primer on attribute selectors While attribute selectors were introduced in the CSS 2 spec, they are still considered rather exotic. These well-established and well-supported features give us vastly improved flexibility in targeting elements in CSS, and offer us opportunities for smarter markup. With an attribute selector, you can directly style an element based on any of its unique – or uniquely shared – attributes, without the need for an ID or extra classes. Unlike pseudo-classes, pseudo-elements, and other exciting features of CSS3, attribute selectors do not require any browser-specific syntax or prefix, and are even supported in Internet Explorer 7. For example, say we want to target all anchor tags on a page that link to our homepage. Where otherwise we might need to manually identify and add classes to the HTML for these specific links, we could simply write: [href=index.html] { } This selector reads: target every element that has an href attribute of “index.html”. Attribute selectors are more faceted, though, as they also give us some very simple regular expression-like logic that helps further narrow (or widen) a selector’s scope. In our previous example, what if we wanted to also give indicative styles to any anchor tag linking to an external site? With no way to know what the exact href value would be for every external link, we need to use an expression to match a common aspect of those links. In this case, we know that all external links need to start with “http”, so we can use that as a hook: [href^=http] { } The selector here reads: target every element that has an href attribute that begins with “http” (which will also include “https”). The ^= means “starts with”. There are a few other simple expressions that give us a lot of flexibility in targeting elements, and I have found that a deep understanding of these and other selector types to be very useful. The class-attribute selector By matching classes with the attribute selector, CSS can be pushed to accomplish some exciting new feats. What I call a class-attribute selector combines the advantages of classes with attribute selectors by targeting the class attribute, rather than a specific class. Instead of selecting .urgent, you could select [class*=urgent]. The latter may seem like a more verbose way of accomplishing the former, but each would actually match two subtly different groups of elements. Eric Meyer first explored the possibility of using classes with attribute selectors over a decade ago. While his interest in this technique mostly explored the different facets of the syntax, I have found that using class-attribute selectors can have distinct advantages over either using an attribute selector or a straightforward class selector. First, let’s explore some of the subtleties of why we would target class before other attributes: Classes are ubiquitous. They have been supported since the HTML 4 spec was released in 1999. Newer attributes, such as the custom data attribute, have only recently begun to be adopted by browsers. Classes have multiple ways of being targeted. You can use the class selector or attribute selector (.classname or [class=classname]), allowing more flexible specificity than resorting to an ID or !important. Classes are already widely used, so adding more classes will usually require less markup than adding more attributes. Classes were designed to abstractly group and specify elements, making them the most appropriate attribute for styling using object-oriented methods (as we will learn in a moment). Also, as Meyer pointed out, we can use the class-attribute selector to be more strict about class declarations. Of these two elements: <h2 class="very urgent"> <h2 class="urgent"> …only the second h2 would be selected by [class=urgent], while .urgent would select both. The use of = matches any element with the exact class value of “urgent”. Eric explores these nuances further in his series on attribute selectors, but perhaps more dramatic is the added power that class-attribute selectors can bring to our CSS. More object-oriented, more scalable and modular Nicole Sullivan has been pushing abstracted, object-oriented thinking in CSS development for years now. She has shared stacks of knowledge on how behemoth sites have seen impressive gains in maintenance overhead and CSS file sizes by leaning heavier on classes derived from common patterns. Jonathan Snook also speaks, writes and is genuinely passionate about improving our markup by using more stratified and modular class name conventions. With SMACSS, he shows this to be highly useful across sites – both complex and simple – that exhibit repeated design patterns. Sullivan and Snook both push the use of class for styling over other attributes, and many front-end developers are fast advocating such thinking as best practice. With class-attribute selectors, we can further abstract our CSS, pushing its scalability. In his chapter on modules, Snook gives the example of a .pod class that might represent a certain set of styles. A .pod style set might be used in varying contexts, leading to CSS that might normally look like this: .pod { } form .pod { } aside .pod { } According to Snook, we can make these styles more portable by targeting more verbose classes, rather than context: .pod { } .pod-form { } .pod-sidebar { } …resulting in the following HTML: <div class="pod"> <div class="pod pod-form"> <div class="pod pod-sidebar"> This divorces the <div>’s styles from its context, making it applicable to any situation in which it is needed. The markup is clean and portable, and the classes are imbued with meaning as to what module they belong to. Using class-attribute selectors, we can simplify this further: [class*=pod] { } .pod-form { } .pod-sidebar { } The *= tells the browser to look for any element with a class attribute containing “pod”, so it matches “pod”, “pod-form”, “pod-sidebar”, etc. This allows only one class per element, resulting in simpler HTML: <div class="pod"> <div class="pod-form"> <div class="pod-sidebar"> We could further abstract the concept of “form” and “sidebar” adjustments if we knew that each of those alterations would always need the same treatment. /* Modules */ [class*=pod] { } [class*=btn] { } /* Alterations */ [class*=-form] { } [class*=-sidebar] { } In this case, all elements with classes appended “-form” or “-sidebar” would be altered in the same manner, allowing the markup to stay simple: <form> <h2 class="pod-form"> <a class="btn-form" href="#"> <aside> <h2 class="pod-sidebar"> <a class="btn-sidebar" href="#"> 50+ shades of specificity Classes are just powerful enough to override element selectors and default styling, but still leave room to be trumped by IDs and !important styles. This makes them more suitable for object-oriented patterns and helps avoid messy specificity issues that can not only be a pain for developers to maintain, but can also affect a site’s performance. As Sullivan notes, “In almost every case, classes work well and have fewer unintended consequences than either IDs or element selectors”. Proper use of specificity and cascade is crucial in building straightforward, efficient CSS. One interesting aspect of attribute selectors is that they can be compounded for increasing levels of specificity. Attribute selectors are assigned a specificity level of ten, the same as class selectors, but both class and attribute selectors can be chained together, giving them more and more specificity with each link. Some examples: .box { } /* Specificity of 10 */ .box.promo { } /* Specificity of 20 */ [class*=box] { } /* Specificity of 10 */ [class*=box][class*=promo] { } /* Specificity of 20 */ You can chain both types together, too: .box[class*=promo] { } /* Specificity of 20 */ I was amused to find, though, that you can chain the exact same class and attribute selectors for infinite levels of specificity .box { } /* Specificity of 10 */ .box.box { } /* Specificity of 20 */ .box.box.box { } /* Specificity of 30 */ [class*=box] { } /* Specificity of 10 */ [class*=box][class*=box] { } /* Specificity of 20 */ [class*=box][class*=box][class*=box] { } /* Specificity of 30 */ .box[class*=box].box[class*=box] { } /* Specificity of 40 */ To override .box styles for promo, we wouldn’t need to add an ID, change the order of .promo and .box in the CSS, or resort to an !important style. Granted, any issue that might need this fine level of specificity tweaking could probably be better solved with clever cascades, but having options never hurts. Smarter CSS One of the most powerful aspects of the class-attribute selector is its ability to expand the simple logic found in CSS. When developing Gridset (an online tool for building grids and outputting them as CSS), I realized that with the right class name conventions, class-attribute selectors would allow the CSS to be smart enough to automatically adjust for column offsets without the need for extra classes. This imbued the CSS output with logic that other frameworks lacked, and makes a developer’s job much easier. Say you need an element that spans column five (c5) to column six (c6) on your grid, and is preceded by an element spanning column one (c1) to column three (c3). The CSS can anticipate such a scenario: .c1-c3 + .c5-c6 { margin-left: 25%; /* …or the width of column four plus two gutter widths */ } …but to accommodate all of the margin offsets that could span that same gap, we would need to write a rather protracted list for just a six column grid: .c1-c3 + .c5-c6, .c1-c3 + .c5, .c2-c3 + .c5-c6, .c2-c3 + .c5, .c3 + .c5-c6, .c3 + .c5 { margin-left: 25%; } Now imagine how the verbosity compounds when we repeat this type of declaration for every possible margin in a grid. The more columns added to the grid, the longer this selector list would get, too, making the CSS harder for the developer to maintain and slowing the load time. Using class-attribute selectors, though, this can be much simpler: [class*=c3] + [class*=c5] { margin-left: 25%; } I’ve detailed how we extract as much logic as possible from as little CSS as needed on the Gridset blog. More flexible selectors In a recent project, I was working with Drupal-generated classes to change styles for certain special pages on a site. Without being able to change the code base, I was left trying to find some specific aspect of the generated HTML to target. I noticed that every special page was given a prefixed class, unique to the page, resulting in CSS like this: .specialpage-about, .specialpage-contact, .specialpage-info, … …and the list kept growing with each new special page. Such bloat would lead to problems down the line, and add development overhead to editorial decisions, which was a situation we were trying to avoid. I was easily able to fix this, though, with a concise class-attribute selector: [class*=specialpage-] The CSS was now flexible enough to accommodate both the editorial needs of the client, and the development restrictions of the CMS. Selector performance As Snook tells us in his chapter on Selector Performance, selectors are read by the browser from right to left, matching every element that adheres to each rule (or part of the selector). The more specific we can make the right-most rules – and every other part of your selectors – the more performant your CSS will be. So this selector: .home-page .promo .main-header …would be more performant than: .home-page div header …because there are likely many more header and div elements on the page, but not so many elements with those specific classes. Now, the class-attribute selector could be more general than a class selector, but not by much. I ran numerous tests based on the work of Steve Souders (and a few others) to test a class-attribute selector against a normal class selector. Given that Javascript will freeze during style rendering, I created a script that will add, then remove, a stylesheet on a page 5000 times, and measure only the time that elapses during the rendering freeze. The script runs four tests, essentially: one where a class selector and class-attribute Selector match a single element, and one they match multiple elements on the page. After running the test over 100 times and averaging the results, I have not seen a significant difference in rendering times. (As of this writing, the class-attribute selector has been 0.398% slower on average.) View the results here. Given the sheer amount of bytes potentially saved by reducing selector lists, though, I am confident class-attribute selectors could shorten load times on larger sites and, at the very least, save precious development time. Conclusion With its flexibility and broad remit, class has at times been derided as too lenient, allowing CMSes and lazy developers to fill its values with presentational hacks or verbose gibberish. There have even been calls for an early retirement. Class continues, though, to be one of our most crucial tools. Front-end developers are rightfully eager to expand production abilities through innovations such as Sass or LESS, but this should not preclude us from honing the tools we already know as well. Every technique demonstrated in this article was achievable over a decade ago and most of the same thinking could be applied to IDs, rels, or any other attribute (though the reasons listed above give class an edge). The recent advent of methods such as object-oriented CSS and SMACSS shows there is still much room left to expand what simple HTML and CSS can accomplish. Progress may not always be found in the innovation of our tools, but through sharpening our understanding of them. 2012 Nathan Ford nathanford 2012-12-15T00:00:00+00:00 https://24ways.org/2012/a-harder-working-class/ code
76 Giving CSS Animations and Transitions Their Place CSS animations and transitions may not sit squarely in the realm of the behaviour layer, but they’re stepping up into this area that used to be pure JavaScript territory. Heck, CSS might even perform better than its JavaScript equivalents in some cases. That’s pretty serious! With CSS’s new tricks blurring the lines between presentation and behaviour, it can start to feel bloated and messy in our CSS files. It’s an uncomfortable feeling. Here are a pair of methods I’ve found to be pretty helpful in keeping the potential bloat and wire-crossing under control when CSS has its hands in both presentation and behaviour. Same eggs, more baskets Structuring your CSS to have separate files for layout, typography, grids, and so on is a fairly common approach these days. But which one do you put your transitions and animations in? The initial answer, as always, is “it depends”. Small effects here and there will likely sit just fine with your other styles. When you move into more involved effects that require multiple animations and some logic support from JavaScript, it’s probably time to choose none of the above, and create a separate CSS file just for them. Putting all your animations in one file is a huge help for code organization. Even if you opt for a name less literal than animations.css, you’ll know exactly where to go for anything CSS animation related. That saves time and effort when it comes to editing and maintenance. Keeping track of which animations are still currently used is easier when they’re all grouped together as well. And as an added bonus, you won’t have to look at all those horribly unattractive and repetitive prefixed @-keyframe rules unless you actually need to. An animations.css file might look something like the snippet below. It defines each animation’s keyframes and defines a class for each variation of that animation you’ll be using. Depending on the situation, you may also want to include transitions here in a similar way. (I’ve found defining transitions as their own class, or mixin, to be a huge help in past projects for me.) // defining the animation @keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } @-webkit-keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } @-moz-keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } @-ms-keyframes catFall { from { background-position: center 0;} to {background-position: center 1000px;} } … // class that assigns the animation .catsBackground { height: 100%; background: transparent url(../endlessKittens.png) 0 0 repeat-y; animation: catFall 1s linear infinite; -webkit-animation: catFall 1s linear infinite; -moz-animation: catFall 1s linear infinite; -ms-animation: catFall 1s linear infinite; } If we don’t need it, why load it? Having all those CSS animations and transitions in one file gives us the added flexibility to load them only when we want to. Loading a whole lot of things that will never be used might seem like a bit of a waste. While CSS has us impressed with its motion chops, it falls flat when it comes to the logic and fine-grained control. JavaScript, on the other hand, is pretty good at both those things. Chances are the content of your animations.css file isn’t acting alone. You’ll likely be adding and removing classes via JavaScript to manage your CSS animations at the very least. If your CSS animations are so entwined with JavaScript, why not let them hang out with the rest of the behaviour layer and only come out to play when JavaScript is supported? Dynamically linking your animations.css file like this means it will be completely ignored if JavaScript is off or not supported. No JavaScript? No additional behaviour, not even the parts handled by CSS. <script> document.write('<link rel="stylesheet" type="text/css" href="animations.css">'); </script> This technique comes up in progressive enhancement techniques as well, but it can help here to keep your presentation and behaviour nicely separated when more than one language is involved. The aim in both cases is to avoid loading files we won’t be using. If you happen to be doing something a bit fancier – like 3-D transforms or critical animations that require more nuanced fallbacks – you might need something like modernizr to step in to determine support more specifically. But the general idea is the same. Summing it all up Using a couple of simple techniques like these, we get to pick where to best draw the line between behaviour and presentation based on the situation at hand, not just on what language we’re using. The power of when to separate and how to reassemble the individual pieces can be even greater if you use preprocessors as part of your process. We’ve got a lot of options! The important part is to make forward-thinking choices to save your future self, and even your current self, unnecessary headaches. 2012 Val Head valhead 2012-12-08T00:00:00+00:00 https://24ways.org/2012/giving-css-animations-and-transitions-their-place/ code
79 Responsive Images: What We Thought We Needed If you were to read a web designer’s Christmas wish list, it would likely include a solution for displaying images responsively. For those concerned about users downloading unnecessary image data, or serving images that look blurry on high resolution displays, finding a solution has become a frustrating quest. Having experimented with complex and sometimes devilish hacks, consensus is forming around defining new standards that could solve this problem. Two approaches have emerged. The <picture> element markup pattern was proposed by Mat Marquis and is now being developed by the Responsive Images Community Group. By providing a means of declaring multiple sources, authors could use media queries to control which version of an image is displayed and under what conditions: <picture width="500" height="500"> <source media="(min-width: 45em)" src="large.jpg"> <source media="(min-width: 18em)" src="med.jpg"> <source src="small.jpg"> <img src="small.jpg" alt=""> <p>Accessible text</p> </picture> A second proposal put forward by Apple, the srcset attribute, uses a more concise syntax intended for use with the <img> element, although it could be compatible with the <picture> element too. This would allow authors to provide a set of images, but with the decision on which to use left to the browser: <img src="fallback.jpg" alt="" srcset="small.jpg 640w 1x, small-hd.jpg 640w 2x, med.jpg 1x, med-hd.jpg 2x "> Enter Scrooge Men’s courses will foreshadow certain ends, to which, if persevered in, they must lead. Ebenezer Scrooge Given the complexity of this issue, there’s a heated debate about which is the best option. Yet code belies a certain truth. That both feature verbose and opaque syntax, I’m not sure either should find its way into the browser – especially as alternative approaches have yet to be fully explored. So, as if to dampen the festive cheer, here are five reasons why I believe both proposals are largely redundant. 1. We need better formats, not more markup As we move away from designs defined with fixed pixel values, bitmap images look increasingly unsuitable. While simple images and iconography can use scalable vector formats like SVG, for detailed photographic imagery, raster formats like GIF, PNG and JPEG remain the only suitable option. There is scope within current formats to account for varying bandwidth but this requires cooperation from browser vendors. Newer formats like JPEG2000 and WebP generate higher quality images with smaller file sizes, but aren’t widely supported. While it’s tempting to try to solve this issue by inventing new markup, the crux of it remains at the file level. Daan Jobsis’s experimentation with image compression strengthens this argument. He discovered that by increasing the dimensions of a JPEG image while simultaneously reducing its quality, a smaller files could be produced, with the resulting image looking just as good on both standard and high-resolution displays. This may be a hack in lieu of a more permanent solution, but it’s applied in the right place. Easy to accomplish with existing tools and without compatibility issues, it has few downsides. Further experimentation in this area should be encouraged, with standardisation efforts more helpful if focused on developing new image formats or, preferably, extending existing ones. 2. Art direction doesn’t belong in markup A desired benefit of the <picture> markup pattern is to allow for greater art direction. For example, rather than scaling down images on smaller displays to the point that their content is hard to discern, we could present closer crops instead: This can be achieved with CSS of course, although with a download penalty for those parts of an image not shown. This point may be negligible, however, since in the context of adaptable layouts, these hidden areas may end up being revealed anyway. Art direction concerns design, not content. If we wish to maintain a separation of concerns, including presentation within our markup seems misguided. 3. The size of a display has little relation to the size of an image By using media queries, the <picture> element allows authors to choose which characteristics of the screen or viewport to query for different images to be displayed. In developing sites at Clearleft, we have noticed that the viewport is essentially arbitrary, with the size of an image’s containing element more important. For example, look at how this grid of images may adapt at different viewport widths: As we build more modular systems, components need to be adaptable in and of themselves. There is a case to be made for developing more contextual methods of querying, rather than those based on attributes of the display. 4. We haven’t lived with the problem long enough A key strength of the web is that the underlying platform can be continually iterated. This can also be problematic if snap judgements are made about what constitutes an improvement. The early history of the web is littered with such examples, be it the perceived need for blinking text or inline typographic styling. To build a platform for the future, additions to it should be carefully considered. And if we want more consistent support across browsers, burdening vendors with an ever increasing list of features seems counterproductive. Only once the need for a new feature is sufficiently proven, should we look to standardise it. Before we could declare hover effects, rounded corners and typographic styling in CSS, we used JavaScript as a polyfill. Sure, doing so was painful, but use cases were fully explored, and the CSS specification better reflected the needs of authors. 5. Images and the web aesthetic The srcset proposal has emerged from a company that markets its phones as being able to browse the real – yet squashed down, tapped and zoomable – web. Perhaps Apple should make its own website responsive before suggesting how the rest of us should do so. Converserly, while the <picture> proposal has the backing of a few respected developers and designers, it was born out of the work Mat Marquis and Filament Group did for the Boston Globe. As the first large-scale responsive design, this was a landmark project that ignited the responsive web design movement and proved its worth. But it was the first. Its design shares a vernacular to that of contemporary newspaper websites, with a columnar, image-laden and densely packed layout. Compared to more recent examples – Quartz, The Next Web and the New York Times Skimmer – it feels out of step with the future direction of news sites. In seeking out a truer aesthetic for the web in which software interfaces have greater influence, we might discover that the need for responsive images isn’t as great as originally thought. Building for the future With responsive design, we’ve accepted the idea that a fully fluid layout, rather than a set of fixed layouts, is best suited to the web’s unpredictable nature. Current responsive image proposals are antithetical to this approach. We need solutions that lack complexity, are device-agnostic and work within existing workflows. Any proposal that requires different versions of the same image to be created, is likely to have to acquiesce under the pressure of reality. While it’s easy to get distracted about the size and quality of an image, and how we might choose to serve it, often the simplest solution is not to include it at all. After years of gluttonous design practice, in which fast connections and expansive display sizes were an accepted norm, we have got use to filling pages with needless images and countless items of page furniture. To design more adaptable experiences, the presence of every element needs to be questioned, for its existence requires additional data to be downloaded or futher complexity within a design system. Conditional loading techniques mean that the inclusion of images is no longer a binary choice, but can instead appear in a progressively enhanced manner. So here is my proposal. Instead of spending the next year worrying about responsive images, let’s embrace the constraints of the medium, and seek out new solutions that can work within them. 2012 Paul Lloyd paulrobertlloyd 2012-12-11T00:00:00+00:00 https://24ways.org/2012/responsive-images-what-we-thought-we-needed/ code
80 HTML5 Video Bumpers Video is a bigger part of the web experience than ever before. With native browser support for HTML5 video elements freeing us from the tyranny of plugins, and the availability of faster internet connections to the workplace, home and mobile networks, it’s now pretty straightforward to publish video in a way that can be consumed in all sorts of ways on all sorts of different web devices. I recently worked on a project where the client had shot some dedicated video shorts to publish on their site. They also had some five-second motion graphics produced to top and tail the videos with context and branding. This pretty common requirement is a great idea on the web, where a user might land at your video having followed a link and be viewing a page without much context. Known as bumpers, these short introduction clips help brand a video and make it look a lot more professional. Adding bumpers to a video The simplest way to add bumpers to a video would be to edit them on to the start and end of the video file itself. Cooking the bumpers into the video file is easy, but should you ever want to update them it can become a real headache. If the branding needs updating, for example, you’d need to re-edit and re-encode all your videos. Not a fun task. What if the bumpers could be added dynamically? That would enable you to use the same bumper for multiple videos (decreasing download time for users who might watch more than one) and to update the bumpers whenever you wanted. You could change them seasonally, update them for special promotions, run different advertising slots, perform multivariate testing, or even target different bumpers to different users. The trade-off, of course, is that if you dynamically add your bumpers, there’s a chance that a user in a given circumstance might not see the bumper. For example, if the main video feature was uploaded to YouTube, you’d have no way to control the playback. As always, you need to weigh up the pros and cons and make your choice. HTML5 bumpers If you wanted to dynamically add bumpers to your HTML5 video, how would you go about it? That was the question I found myself needing to answer for this particular client project. My initial thought was to treat it just like an image slideshow. If I were building a slideshow that moved between images, I’d use CSS absolute positioning with z-index to stack the images up on top of each other in a pile, with the first image on top. To transition to the second image, I’d use JavaScript to fade the top image out, revealing the second image beneath it. Now that video is just a native object in the DOM, just like an image, why not do the same? Stack the videos up with the opening bumper on top, listen for the video’s onended event, and fade it out to reveal the main feature behind. Good idea, right? Wrong Remember that this is the web. It’s never going to be that easy. The problem here is that many non-desktop devices use native, dedicated video players. Think about watching a video on a mobile phone – when you play the video, the phone often goes full-screen in its native player, leaving the web page behind. There’s no opportunity to fade or switch z-index, as the video isn’t being viewed in the page. Your page is left powerless. Powerless! So what can we do? What can we control? Those of us with particularly long memories might recall a time before CSS, when we’d have to use JavaScript to perform image rollovers. As CSS background images weren’t a practical reality, we would use lots of <img> elements, and perform a rollover by modifying the src attribute of the image. Turns out, this old trick of modifying the source can help us out with video, too. In most cases, modifying the src attribute of a <video> element, or perhaps more likely the src attribute of a source element, will swap from one video to another. Swappin’ it Let’s take a deliberately simple example of a super-basic video tag: <video src="mycat.webm" controls>no fallback coz i is lame, innit.</video> We could very simply write a script to find all video tags and give them a new src to show our bumper. <script> var videos, i, l; videos = document.getElementsByTagName('video'); for(i=0, l=videos.length; i<l; i++) { videos[i].setAttribute('src', 'bumper-in.webm'); } </script> View the example in a browser with WebM support. You’ll see that the video is swapped out for the opening bumper. Great! Beefing it up Of course, we can’t just publish video in one format. In practical use, you need a <video> element with multiple <source> elements containing your different source formats. <video controls> <source src="mycat.mp4" type="video/mp4" /> <source src="mycat.webm" type="video/webm" /> <source src="mycat.ogv" type="video/ogg" /> </video> This time, our script needs to loop through the sources, not the videos. We’ll use a regular expression replacement to swap out the file name while maintaining the correct file extension. <script> var sources, i, l, orig; sources = document.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('src'); sources[i].setAttribute('src', orig.replace(/(w+).(w+)/, 'bumper-in.$2')); // reload the video sources[i].parentNode.load(); } </script> The difference this time is that when changing the src of a <source> we need to call the .load() method on the video to get it to acknowledge the change. See the code in action, this time in a wider range of browsers. But, my video! I guess we should get the original video playing again. Keeping the same markup, we need to modify the script to do two things: Store the original src in a data- attribute so we can access it later Add an event listener so we can detect the end of the bumper playing, and load the original video back in As we need to loop through the videos this time to add the event listener, I’ve moved the .load() call into that loop. It’s a bit more efficient to call it only once after modifying all the video’s sources. <script> var videos, sources, i, l, orig; sources = document.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('src'); sources[i].setAttribute('data-orig', orig); sources[i].setAttribute('src', orig.replace(/(w+).(w+)/, 'bumper-in.$2')); } videos = document.getElementsByTagName('video'); for(i=0, l=videos.length; i<l; i++) { videos[i].load(); videos[i].addEventListener('ended', function(){ sources = this.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('data-orig'); if (orig) { sources[i].setAttribute('src', orig); } sources[i].setAttribute('data-orig',''); } this.load(); this.play(); }); } </script> Again, view the example to see the bumper play, followed by our spectacular main feature. (That’s my cat, Widget. His interests include sleeping and internet marketing.) Tidying things up The final thing to do is add our closing bumper after the main video has played. This involves the following changes: We need to keep track of whether the src has been changed, so we only play the video if it’s changed. I’ve added the modified variable to track this, and it stops us getting into a situation where the video just loops forever. Add an else to the event listener, for when the orig is false (so the main feature has been playing) to load in the end bumper. We also check that we’re not already playing the end bumper. Because looping. <script> var videos, sources, i, l, orig, current, modified; sources = document.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('src'); sources[i].setAttribute('data-orig', orig); sources[i].setAttribute('src', orig.replace(/(w+).(w+)/, 'bumper-in.$2')); } videos = document.getElementsByTagName('video'); for(i=0, l=videos.length; i<l; i++) { videos[i].load(); modified = false; videos[i].addEventListener('ended', function(){ sources = this.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('data-orig'); if (orig) { sources[i].setAttribute('src', orig); modified = true; }else{ current = sources[i].getAttribute('src'); if (current.indexOf('bumper-out')==-1) { sources[i].setAttribute('src', current.replace(/([w]+).(w+)/, 'bumper-out.$2')); modified = true; }else{ this.pause(); modified = false; } } sources[i].setAttribute('data-orig',''); } if (modified) { this.load(); this.play(); } }); } </script> Yo ho ho, that’s a lot of JavaScript. See it in action – you should get a bumper, the cat video, and an end bumper. Of course, this code works fine for demonstrating the principle, but it’s very procedural. Nothing wrong with that, but to do something similar in production, you’d probably want to make the code more modular to ease maintainability. Besides, you may want to use a framework, rather than basic JavaScript. The end credits One really important principle here is that of progressive enhancement. If the browser doesn’t support JavaScript, the user won’t see your bumper, but they will get the main video. If the browser supports JavaScript but doesn’t allow you to modify the src (as was the case with older versions of iOS), the user won’t see your bumper, but they will get the main video. If a search engine or social media bot grabs your page and looks for content, they won’t see your bumper, but they will get the main video – which is absolutely what you want. This means that if the bumper is absolutely crucial, you may still need to cook it into the video. However, for many applications, running it dynamically can work quite well. As always, it comes down to three things: Measure your audience: know how people access your site Test the solution: make sure it works for your audience Plan for failure: it’s the web and that’s how things work ‘round these parts But most of all play around with it, have fun and build something awesome. 2012 Drew McLellan drewmclellan 2012-12-01T00:00:00+00:00 https://24ways.org/2012/html5-video-bumpers/ code
83 Cut Copy Paste Long before I got into this design thing, I was heavily into making my own music inspired by the likes of Coldcut and Steinski. I would scour local second-hand record shops in search of obscure beats, loops and bits of dialogue in the hope of finding that killer sample I could then splice together with other things to make a huge hit that everyone would love. While it did eventually lead to a record contract and getting to release a few 12″ singles, ultimately I knew I’d have to look for something else to pay the bills. I may not make my own records any more, but the approach I took back then – finding (even stealing) things, cutting and pasting them into interesting combinations – is still at the centre of how I work, only these days it’s pretty much bits of code rather than bits of vinyl. Over the years I’ve stored these little bits of code (some I’ve found, some I’ve created myself) in Evernote, ready to be dialled up whenever I need them. So when Drew got in touch and asked if I’d like to do something for this year’s 24 ways I thought it might be kind of cool to share with you a few of these snippets that I find really useful. Think of these as a kind of coding mix tape; but remember – don’t just copy as is: play around, combine and remix them into other wonderful things. Some of this stuff is dirty; some of it will make hardcore programmers feel ill. For those people, remember this – while you were complaining about the syntax, I made something. Create unique colours Let’s start right away with something I stole. Well, actually it was given away at the time by Matt Biddulph who was then at Dopplr before Nokia destroyed it. Imagine you have thousands of words and you want to assign each one a unique colour. Well, Matt came up with a crazily simple but effective way to do that using an MD5 hash. Just encode said word using an MD5 hash, then take the first six characters of the string you get back to create a hexadecimal colour representation. I can’t guarantee that it will be a harmonious colour palette, but it’s still really useful. The thing I love the most about this technique is the left-field thinking of using an encryption system to create colours! Here’s an example using JavaScript: // requires the MD5 library available at http://pajhome.org.uk/crypt/md5 function MD5Hex(str){ result = MD5.hex(str).substring(0, 6); return result; } Make something breathe using a sine wave I never paid attention in school, especially during double maths. As a matter of fact, the only time I received corporal punishment – several strokes of the ruler – was in maths class. Anyway, if they had shown me then how beautiful mathematics actually is, I might have paid more attention. Here’s a little example of how a sine wave can be used to make something appear to breathe. I recently used this on an Arduino project where an LED ring surrounding a button would gently breathe. Because of that it felt much more inviting. I love mathematics. for(int i = 0; i<360; i++){ float rad = DEG_TO_RAD * i; int sinOut = constrain((sin(rad) * 128) + 128, 0, 255); analogWrite(LED, sinOut); delay(10); } Snap position to grid This is so elegant I love it, and it was shown to me by Gary Burgess, or Boom Boom as myself and others like to call him. It snaps a position, in this case the X-position, to a grid. Just define your grid size (say, twenty pixels) and you’re good. snappedXpos = floor( xPos / gridSize) * gridSize; Calculate the distance between two objects For me, interaction design is about the relationship between two objects: you and another object; you and another person; or simply one object to another. How close these two things are to each other can be a handy thing to know, allowing you to react to that information within your design. Here’s how to calculate the distance between two objects in a 2-D plane: deltaX = round(p2.x-p1.x); deltaY = round(p2.y-p1.y); diff = round(sqrt((deltaX*deltaX)+(deltaY*deltaY))); Find the X- and Y-position between two objects What if you have two objects and you want to place something in-between them? A little bit of interruption and disruption can be a good thing. This small piece of code will allow you to place an object in-between two other objects: // set the position: 0.5 = half-way float position = 0.5; float x = x1 + (x2 - x1) *position; float y = y1 + (y2 - y1) *position; Distribute objects equally around a circle More fun with maths, this time adding cosine to our friend sine. Let’s say you want to create a circular navigation of arbitrary elements (yeah, Jakob, you heard), or you want to place images around a circle. Well, this piece of code will do just that. You can adjust the size of the circle by changing the distance variable and alter the number of objects with the numberOfObjects variable. Example below is for use in Processing. // Example for Processing available for free download at processing.org void setup() { size(800,800); int numberOfObjects = 12; int distance = 100; float inc = (TWO_PI)/numberOfObjects; float x,y; float a = 0; for (int i=0; i < numberOfObjects; i++) { x = (width/2) + sin(a)*distance; y = (height/2) + cos(a)*distance; ellipse(x,y,10,10); a += inc; } } Use modulus to make a grid The modulus operator, represented by %, returns the remainder of a division. Fallen into a coma yet? Hold on a minute – this seemingly simple function is very powerful in lots of ways. At a simple level, you can use it to determine if a number is odd or even, great for creating alternate row colours in a table for instance: boolean checkForEven(numberToCheck) { if (numberToCheck % 2 == 0) return true; } else { return false; } } That’s all well and good, but here’s a use of modulus that might very well blow your mind. Construct a grid with only a few lines of code. Again the example is in Processing but can easily be ported to any other language. void setup() { size(600,600); int numItems = 120; int numOfColumns = 12; int xSpacing = 40; int ySpacing = 40; int totalWidth = xSpacing*numOfColumns; for (int i=0; i < numItems; i++) { ellipse(floor((i*xSpacing)%totalWidth),floor((i*xSpacing)/totalWidth)*ySpacing,10,10); } } Not all the bits of code I keep around are for actual graphical output. I also have things that are very utilitarian, but which I still consider part of the design process. Here’s a couple of things that I’ve found really handy lately in my design workflow. They may be a little specific, but I hope they demonstrate that it’s not about working harder, it’s about working smarter. Merge CSV files into one file Recently, I’ve had to work with huge – about 1GB – CSV text files that I then needed to combine into one master CSV file so I could then process the data. Opening up each text file and then copying and pasting just seemed really dumb, not to mention slow, so I thought there must be a better way. After some Googling I found this command line script that would combine .txt files into one file and add a new line after each: awk 1 *.txt > finalfile.txt But that wasn’t what I was ideally after. I wanted to merge the CSV files, keeping the first row of the first file (the column headings) and then ignore the first row of subsequent files. Sure enough I found the answer after some Googling and it worked like a charm. Apologies to the original author but I can’t remember where I found it, but you, sir or madam, are awesome. Save this as a shell script: FIRST= for FILE in *.csv do exec 5<"$FILE" # Open file read LINE <&5 # Read first line [ -z "$FIRST" ] && echo "$LINE" # Print it only from first file FIRST="no" cat <&5 # Print the rest directly to standard output exec 5<&- # Close file # Redirect stdout for this section into file.out done > file.out Create a symbolic link to another file or folder Oftentimes, I’ll find myself hunting through a load of directories to load a file to be processed, like a CSV file. Use a symbolic link (in the Terminal) to place a link on your desktop or wherever is most convenient and it’ll save you loads of time. Especially great if you’re going through a Java file dialogue box in Processing or something that doesn’t allow the normal Mac dialog box or aliases. cd /DirectoryYouWantShortcutToLiveIn ln -s /Directory/You/Want/ShortcutTo/ TheShortcut You can do it, in the mix I hope you’ve found some of the above useful and that they’ve inspired a few ideas here and there. Feel free to tell me better ways of doing things or offer up any other handy pieces of code. Most of all though, collect, remix and combine the things you discover to make lovely new things. 2012 Brendan Dawes brendandawes 2012-12-17T00:00:00+00:00 https://24ways.org/2012/cut-copy-paste/ code
86 Flashless Animation Animation in a Flashless world When I splashed down in web design four years ago, the first thing I wanted to do was animate a cartoon in the browser. I’d been drawing comics for years, and I’ve wanted to see them come to life for nearly as long. Flash animation was still riding high, but I didn’t want to learn Flash. I wanted to learn JavaScript! Sadly, animating with JavaScript was limiting and resource-intensive. My initial foray into an infinitely looping background did more to burn a hole in my CPU than amaze my friends (although it still looks pretty cool). And there was still no simple way to incorporate audio. The browser technology just wasn’t there. Things are different now. CSS3 transitions and animations can do most of the heavy lifting and HTML5 audio can serve up the music and audio clips. You can do a lot without leaning on JavaScript at all, and when you lean on JavaScript, you can do so much more! In this project, I’m going to show you how to animate a simple walk cycle with looping audio. I hope this will inspire you to do something really cool and impress your friends. I’d love to see what you come up with, so please send your creations my way at rachelnabors.com! Note: Because every browser wants to use its own prefixes with CSS3 animations, and I have neither the time nor the space to write all of them out, I will use the W3C standard syntaxes; that is, going prefix-less. You can implement them out of the box with something like Prefixfree, or you can add prefixes on your own. If you take the latter route, I recommend using Sass and Compass so you can focus on your animations, not copying and pasting. The walk cycle Walk cycles are the “Hello world” of animation. One of the first projects of animation students is to spend hours drawing dozens of frames to complete a simple loopable animation of a character walking. Most animators don’t have to draw every frame themselves, though. They draw a few key frames and send those on to production animators to work on the between frames (or tween frames). This is meticulous, grueling work requiring an eye for detail and natural movement. This is also why so much production animation gets shipped overseas where labor is cheaper. Luckily, we don’t have to worry about our frame count because we can set our own frames-per-second rate on the fly in CSS3. Since we’re trying to impress friends, not animation directors, the inconsistency shouldn’t be a problem. (Unless your friend is an animation director.) This is a simple walk cycle I made of my comic character Tuna for my CSS animation talk at CSS Dev Conference this year: The magic lies here: animation: walk-cycle 1s steps(12) infinite; Breaking those properties down: animation: <name> <duration> <timing-function> <iteration-count>; walk-cycle is a simple @keyframes block that moves the background sprite on .tuna around: @keyframes walk-cycle { 0% {background-position: 0 0; } 100% {background-position: 0 -2391px;} } The background sprite has exactly twelve images of Tuna that complete a full walk cycle. We’re setting it to cycle through the entire sprite every second, infinitely. So why isn’t the background image scrolling down the .tuna container? It’s all down to the timing function steps(). Using steps() let us tell the CSS to make jumps instead of the smooth transitions you’d get from something like linear. Chris Mills at dev.opera wrote in his excellent intro to CSS3 animation : Instead of giving a smooth animation throughout, [steps()] causes the animation to jump between a set number of steps placed equally along the duration. For example, steps(10) would make the animation jump along in ten equal steps. There’s also an optional second parameter that takes a value of start or end. steps(10, start) would specify that the change in property value should happen at the start of each step, while steps(10, end) means the change would come at the end. (Seriously, go read his full article. I’m not going to touch on half the stuff he does because I cannot improve on the basics any more than he already has.) The background A cat walking in a void is hardly an impressive animation and certainly your buddy one cube over could do it if he chopped up some of those cat GIFs he keeps using in group chat. So let’s add a parallax background! Yes, yes, all web designers signed a peace treaty to not abuse parallax anymore, but this is its true calling—treaty be damned. And to think we used to need JavaScript to do this! It’s still pretty CPU intensive but much less complicated. We start by splitting up the page into different layers, .foreground, .midground, and .background. We put .tuna in the .midground. .background has multiple background images, all set to repeat horizontally: background-image: url(background_mountain5.png), url(background_mountain4.png), url(background_mountain3.png), url(background_mountain2.png), url(background_mountain1.png); background-repeat: repeat-x; With parallax, things in the foreground move faster than those in the background. Next time you’re driving, notice how the things closer to you move out of your field of vision faster than something in the distance, like a mountain or a large building. We can imitate that here by making the background images on top (in the foreground, closer to us) wider than those on the bottom of the stack (in the distance). The different lengths let us use one animation to move all the background images at different rates in the same interval of time: animation: parallax_bg linear 40s infinite; The shorter images have less distance to cover in the same amount of time as the longer images, so they move slower. Let’s have a look at the background’s animation: @keyframes parallax_bg { 0% { background-position: -2400px 100%, -2000px 100%, -1800px 100%, -1600px 100%, -1200px 100%; } 100% { background-position: 0 100%, 0 100%, 0 100%, 0 100%, 0 100%; } } At 0%, all the background images are positioned at the negative value of their own widths. Then they start moving toward background-position: 0 100%. If we wanted to move them in the reverse direction, we’d remove the negative values at 0% (so they would start at 2400px 100%, 2000px 100%, etc.). Try changing the values in the codepen above or changing background-repeat to none to see how the images play together. .foreground and .midground operate on the same principles, only they use single background images. The music After finishing the first draft of my original walk cycle, I made a GIF with it and posted it on YTMND with some music from the movie Paprika, specifically the track “The Girl in Byakkoya.” After showing it to some colleagues in my community, it became clear that this was a winning combination sure to drive away dresscode blues. So let’s use HTML5 to get a clip of that music looping in there! Warning, there is sound. Please adjust your volume or apply headphones as needed. We’re using HTML5 audio’s loop and autoplay abilities to automatically play and loop a sound file on page load: <audio loop autoplay> <source src="http://music.com/clip.mp3" /> </audio> Unfortunately, you may notice there is a small pause between loops. HTML5 audio, thou art half-baked still. Let’s hope one day the Web Audio API will be able to help us out, but until things improve, we’ll have to hack our way around these shortcomings. Turns out there’s a handy little script called seamlessLoop.js which we can use to patch this. Mind you, if we were really getting crazy with the Cheese Whiz, we’d want to get out big guns like sound.js. But that’d be overkill for a mere loop (and explaining the Web Audio API might bore, rather than impress your friends)! Installing seamlessLoop.js will get rid of the pause, and now our walk cycle is complete. (I’ve done some very rough sniffing to see if the browser can play MP3 files. If not, we fall back to using .ogg formatted clips (Opera and Firefox users, you’re welcome).) Really impress your friends by adding a run cycle So we have music, we have a walk cycle, we have parallax. It will be a snap to bring them all together and have a simple, endless animation. But let’s go one step further and knock the socks off our viewers by adding a run cycle. The run cycle Tacking a run cycle on to our walk cycle will require a third animation sequence: a transitional animation of Tuna switching from walking to running. I have added all these to the sprite: Let’s work on getting that transition down. We’re going to use multiple animations on the same .tuna div, but we’re going to kick them off at different intervals using animation-delay—no JavaScript required! Isn’t that magical? It requires a wee bit of math (not much, it doesn’t hurt) to line them up. We want to: Loop the walk animation twice Play the transitional cycle once (it has a finite beginning and end perfectly drawn to pick up between the last frame of the walk cycle and the first frame of the run cycle—no looping this baby) RUN FOREVER. Using the pattern animation: <name> <duration> <timing-function> <delay> <iteration-count>, here’s what that looks like: animation: walk-cycle 1s steps(12) 2, walk-to-run .75s steps(12) 2s 1, run-cycle .75s steps(13) 2.75s infinite; I played with the times to get make the movement more realistic. You may notice that the running animation looks smoother than the walking animation. That’s because it has 13 keyframes running over .75 second instead of 12 running in one second. Remember, professional animation studios use super-high frame counts. This little animation isn’t even up to PBS’s standards! The music: extended play with HTML5 audio sprites My favorite part in the The Girl in Byakkoya is when the calm opening builds and transitions into a bouncy motif. I want to start with Tuna walking during the opening, and then loop the running and bounciness together for infinity. The intro lasts for 24 seconds, so we set our 1 second walk cycle to run for 24 repetitions: walk-cycle 1s steps(12) 24 We delay walk-to-run by 24 seconds so it runs for .75 seconds before… We play run-cycle at 24.75 seconds and loop it infinitely For the music, we need to think of it as two parts: the intro and the bouncy loop. We can do this quite nicely with audio sprites: using one HTML5 audio element and using JavaScript to change the play head location, like skipping tracks with a CD player. Although this technique will result in a small gap in music shifts, I think it’s worth using here to give you some ideas. // Get the audio element var byakkoya = document.querySelector('audio'); // create function to play and loop audio function song(a){ //start playing at 0 a.currentTime = 0; a.play(); //when we hit 64 seconds... setTimeout(function(){ // skip back to 24.5 seconds and keep playing... a.currentTime = 24.55; // then loop back when we hit 64 again, or every 59.5 seconds. setInterval(function(){ a.currentTime = 24.55; },39450); },64000); } The load screen I’ve put it off as long as I can, but now that the music and the CSS are both running on their own separate clocks, it’s imperative that both images and music be fully downloaded and ready to run when we kick this thing off. So we need a load screen (also, it’s nice to give people a heads-up that you’re about to blast them with music, no matter how wonderful that music may be). Since the two timers are so closely linked, we’d best not run the animations until we run the music: * { animation-play-state: paused; } animation-play-state can be set to paused or running, and it’s the most useful thing you will learn today. First we use an event listener to see when the browser thinks we can play through from the beginning to end of the music without pause for buffering: byakkoya.addEventListener("canplaythrough", function () { }); (More on HTML5 audio’s media events at HTML5doctor.com) Inside our event listener, I use a bit of jQuery to add class of .playable to the body when we’re ready to enable the play button: $("body").addClass("playable"); $("#play-me").html("Play me.").click(function(){ song(byakkoya); $("body").addClass("playing"); }); That .playing class is special because it turns on the animations at the same time we start playing the song: .playing * { animation-play-state: running; } The background We’re almost done here! When we add the background, it needs to speed up at the same time that Tuna starts running. The music picks up speed around 24.75 seconds in, and so we’re going to use animation-delay on those backgrounds, too. This will require some math. If you try to simply shorten the animation’s duration at the 24.75s mark, the backgrounds will, mid-scroll, jump back to their initial background positions to start the new animation! Argh! So let’s make a new @keyframe and calculate where the background position would be just before we speed up the animation. Here’s the formula: new 0% value = delay ÷ old duration × length of image new 100% value = new 0% value + length of image Here’s the formula put to work on a smaller scale: Voilà! The finished animation! I’ve always wanted to bring my illustrations to life. Then I woke up one morning and realized that I had all the tools to do so in my browser and in my head. Now I have fallen in love with Flashless animation. I’m sure there will be detractors who say HTML wasn’t meant for this and it’s a gross abuse of the DOM! But I say that these explorations help us expand what we expect from devices and software and challenge us in good ways as artists and programmers. The browser might not be the most appropriate place for animation, but is certainly a fun place to start. There is so much you can do with the spec implemented today, and so much of the territory is still unexplored. I have not yet begun to show you everything. In eight months I expect this demo will represent the norm, not the bleeding edge. I look forward to seeing the wonderful things you create. (Also, someone, please, do something about that gappy HTML5 audio looping. It’s a crying shame!) 2012 Rachel Nabors rachelnabors 2012-12-06T00:00:00+00:00 https://24ways.org/2012/flashless-animation/ code
89 Direction, Distance and Destinations With all these new smartphones in the hands of lost and confused owners, we need a better way to represent distances and directions to destinations. The immediate examples that jump to mind are augmented reality apps which let you see another world through your phone’s camera. While this is interesting, there is a simpler way: letting people know how far away they are and if they are getting warmer or colder. In the app world, you can easily tap into the phone’s array of sensors such as the GPS and compass, but what people rarely know is that you can do the same with HTML. The native versus web app debate will never subside, but at least we can show you how to replicate some of the functionality progressively in HTML and JavaScript. In this tutorial, we’ll walk through how to create a simple webpage listing distances and directions of a few popular locations around the world. We’ll use JavaScript to access the device’s geolocation API and also attempt to access the compass to get a heading. Both of these APIs are documented, to be included in the W3C geolocation API specification, and can be used on both desktop and mobile devices today. To get started, we need a list of a few locations around the world. I have chosen the highest mountain peak on each continent so you can see a diverse set of distances and directions. Mountain °Latitude °Longitude Kilimanjaro -3.075833 37.353333 Vinson Massif -78.525483 -85.617147 Puncak Jaya -4.078889 137.158333 Everest 27.988056 86.925278 Elbrus 43.355 42.439167 Mount McKinley 63.0695 -151.0074 Aconcagua -32.653431 -70.011083 Source: Wikipedia We can put those into an HTML list to be styled and accessed by JavaScript to create some distance and directions calculations. The next thing we need to do is check to see if the browser and operating system have geolocation support. To do this we test to see if the function is available or not using a single JavaScript if statement. <script> // If this is true, then the method is supported and we can try to access the location if (navigator.geolocation) { navigator.geolocation.getCurrentPosition(geo_success, geo_error); } </script> The if statement will be false if geolocation support is not present, and then it is up to you to do something else instead as a fallback. For this example, we’ll do nothing since our page should work as is and only get progressively better if more functionality is available. The if statement will be true if there is support and therefore will continue inside the curly brackets to try to get the location. This should prompt the reader to accept or deny the request to get their location. If they say no, the second function callback is processed, in this case a function called geo_error; whereas if the location is available, it fires the geo_success function callback. The function geo_error(){ } isn’t that exciting. You can handle this in any way you see fit. The success function is more interesting. We get a position object passed into the function which contains a series of exciting attributes, namely the latitude and longitude of the device’s current location. function geo_success(position){ gLat = position.coords.latitude; gLon = position.coords.longitude; } Now, in the variables gLat and gLon we have the user’s approximate geographical position. We can use this information to start to calculate some distances between where they are and all the destinations. At the time of writing, you can also get position.coords.heading, but on Windows and iOS devices this returned NULL. In the future, if and when this is supported, this is also where you can easily grab the compass information. Inside the geo_success function, we want to loop through the HTML to get all of the mountain peaks’ latitudes and longitudes and compute the distance. ... $('.geo').each(function(){ // Get the lat/lon from the HTML tLat = $(this).find('.lat').html() tLon = $(this).find('.lon').html() // compute the distances between the current location and this points location dist = distance(tLat,tLon,gLat,gLon); // set the return values into something useful d = parseInt(dist[0]*10)/10; a = parseFloat(dist[1]); // display the value in the HTML and style the arrow $(this).find('.distance').html(d+' km away'); $(this).find('.direction').css('-webkit-transform','rotate(-' + a + 'deg)'); // store the arc for later use if compass is available $(this).attr('data-arc',a); } In the variable d we have the distance between the current location and the location of the mountain peak based on the Haversine Formula. The variable a is the arc, which has a value from 0 to 359.99. This will be useful later if we have compass support. Given these two values we have a distance and a heading to style the HTML. The next thing we want to do is check to see if the device has a compass and then get access to the the current heading. As we’ll see, there are several ways to do this, some of which work on certain devices but not others. The W3C geolocation spec says that, along with the coordinates, there are several other attributes: accuracy; altitude; and heading. Heading is the direction to true north, which is different than magnetic north! WebKit and Windows return NULL for the heading value, but WebKit has an experimental method to fetch the heading. If you get into accessing these sensors, you’ll have to try to catch a few of these methods to finally get a value. Assuming you do, we can move on to the more interesting display opportunities. In an ideal world, this would succeed and set a variable we’ll call compassHeading to get a value between 0 and 359.99 degrees. Now we know which direction north is, we also know the direction relative to north of the path to our destination, so we can can subtract the two values to get an arrow to display on the screen. But we’re not finished yet: we also need to get the device’s orientation (landscape or portrait) and subtract the correct amount from the angle for the arrow. Once we have a value, we can use CSS to rotate the arrow the correct number of degrees. -webkit-transform: rotate(-180deg) Not all devices support a standard way to access compass information, so in the meantime we need to use a work around. On iOS, you can use the experimental event method e.webkitCompassHeading. We want the compass to update in real time as the device is moved around, so we’ll put this inside an event listener. window.addEventListener('deviceorientation', function(e) { // Loop through all the locations on the page $('.geo').each(function(){ // get the arc value from north we computed and stored earlier destination_arc = parseInt($(this).attr('data-arc')) compassHeading = e.webkitCompassHeading + window.orientation + destination_arc; // find the arrow element and rotate it accordingly $(this).find('.direction').css('-webkit-transform','rotate(-' + compassHeading + 'deg)'); } } As the device is rotated, the compass arrow will constantly be updated. If you want to see an example, you can have a look at this page which shows the distances to all the peaks on each continent. With progressive enhancement, we slowly layer on additional functionality as we go. The reader will first see the list of locations with a latitude and longitude. If the device is capable and permissions allow, it will then compute the distance. If a compass is available, with the correct permissions it will then add the final layer which is direction. You should consider this code a stub for your projects. If you are making a hyperlocal webpage with restaurant locations, for example, then consider adding these features. Knowing not only how far away a place is, but also the direction can be hugely important, and since the compass is always active, it acts as a guide to the location. Future developments Improvements to this could include setting a timer and recalling the navigator.geolocation.getCurrentPosition() function and updating the distances. I chose very distant mountains so kilometres made sense, but you can divide again by 1,000 to convert to metres if you are dealing with much nearer places. Walking or driving would change the distances so the ability to refresh would be important. It is outside the scope of this article, but if you manage to get this HTML to work offline, then you can make a nice web app which sits on your devices’ homescreens and works even without an internet connection. This could be ideal for travellers in an unknown city looking for your destination. Just with offline storage, base64 encoding and data URIs, it is possible to embed plenty of design and functionality into a small offline webpage. Now you know how to use JavaScript to look up a destination’s location and figure out the distance and direction – never get lost again. 2012 Brian Suda briansuda 2012-12-19T00:00:00+00:00 https://24ways.org/2012/direction-distance-and-destinations/ code
91 Infinite Canvas: Moving Beyond the Page Remember Web 2.0? I do. In fact, that phrase neatly bifurcates my life on the internet. Pre-2.0, I was occupied by chatting on AOL and eventually by learning HTML so I could build sites on Geocities. Around 2002, however, I saw a WYSIWYG demo in Dreamweaver. The instructor was dragging boxes and images around a canvas. With a few clicks he was able to build a dynamic, single-page interface. Coming from the world of tables and inline HTML styles, I was stunned. As I entered college the next year, the web was blossoming: broadband, Wi-Fi, mobile (proud PDA owner, right here), CSS, Ajax, Bloglines, Gmail and, soon, Google Maps. I was a technology fanatic and a hobbyist web developer. For me, the web had long been informational. It was now rapidly becoming something else, something more: sophisticated, presentational, actionable. In 2003 we watched as the internet changed. The predominant theme of those early Web 2.0 years was the withering of Internet Explorer 6 and the triumph of web standards. Upon cresting that mountain, we looked around and collectively breathed the rarefied air of pristine HMTL and CSS, uncontaminated by toxic hacks and forks – only to immediately begin hurtling down the other side at what is, frankly, terrifying speed. Ten years later, we are still riding that rocket. Our days (and nights) are spent cramming for exams on CSS3 and RWD and Sass and RESS. We are the proud, frazzled owners of tiny pocket computers that annihilate the best laptops we could have imagined, and the architects of websites that are no longer restricted to big screens nor even segregated by device. We dragoon our sites into working any time, anywhere. At this point, we can hardly ask the spec developers to slow down to allow us to catch our breath, nor should we. It is, without a doubt, a most wonderful time to be a web developer. But despite the newfound luxury of rounded corners, gradients, embeddable fonts, low-level graphics APIs, and, glory be, shadows, the canyon between HTML and native appears to be as wide as ever. The improvements in HTML and CSS have, for the most part, been conveniences rather than fundamental shifts. What I’d like to do now, if you’ll allow me, is outline just a few of the remaining gaps that continue to separate web sites and applications from their native companions. What I’d like for Christmas There is one irritant which is the grandfather of them all, the one from which all others flow and have their being, and it is, simply, the page refresh. That’s right, the foundational principle of the web is our single greatest foe. To paraphrase a patron saint of designers everywhere, if you see a page refresh, we blew it. The page refresh brings with it, of course, many noble and lovely benefits: addressability, for one; and pagination, for another. (See also caching, resource loading, and probably half a dozen others.) Still, those concerns can be answered (and arguably answered more compellingly) by replacing the weary page with the young and hearty document. Flash may be dead, but it has many lessons yet to bequeath. Preparing a single document when the site loads allows us to engage the visitor in a smooth and engrossing experience. We have long known this, of course. Twitter was not the first to attempt, via JavaScript, to envelop the user in a single-page application, nor the first to abandon it. Our shared task is to move those technologies down the stack, to make them more primitive, so that the next Twitter can be built with the most basic combination of HTML and CSS rather than relying on complicated, slow, and unreliable scripted solutions. So, let’s take a look at what we can do, right now, that we might have a better idea of where our current tools fall short. A print magazine in HTML clothing Like many others, I suspect, one of my earliest experiences with publishing was laying out newsletters and newspapers on a computer for print. If you’ve ever used InDesign or Quark or even Microsoft Publisher, you’ll remember reflowing content from page to page. The advent of the internet signaled, in many ways, the abandonment of that model. Articles were no longer constrained by the physical limitations of paper. In shedding our chains, however, it is arguable that we’ve lost something useful. We had a self-contained and complete package, a closed loop. It was a thing that could be handled and finished, and doing so provided a sense of accomplishment that our modern, infinitely scrolling, ever-fractal web of content has stolen. For our purposes today, we will treat 24 ways as the online equivalent of that newspaper or magazine. A single year’s worth of articles could easily be considered an issue. Right now, navigating between articles means clicking on the article you’d like to view and being taken to that specific address via a page reload. If Drew wanted to, it wouldn’t be difficult to update the page in place (via JavaScript) and change the address (again via JavaScript with the History API) to reflect the new content found at the new location. But what if Drew wanted to do that without JavaScript? And what if he wanted the site to not merely load the content but actually whisk you along the page in a compelling and delightful way, à la the Mag+ demo we all saw a few years ago when the iPad was first introduced? Uh, no. We’re all familiar with websites that have attempted to go beyond the page by weaving many chunks of content together into a large document and for good reason. There is tremendous appeal in opening and exploring the canvas beyond the edges of our screens. In one rather straightforward example from last year, Mozilla contacted Full Stop to build a website promoting Aza Raskin’s proposal for a set of Creative Commons-style privacy icons. Like a lot of the sites we build (including our own), the amount of information we were presenting was minimal. In these instances, we encourage our clients to consider including everything on a single page. The result was a horizontally driven site that was, if not whimsical, at least clever and attractive to the intended audience. An experience that is taken for granted when using device-native technology is utterly, maddeningly impossible to replicate on the web without jumping through JavaScript hoops. In another, more complex example, we again had the pleasure of working with Aza earlier this year, this time on a redesign of the Massive Health website. Our assignment was to design and build a site that communicated Massive’s commitment to modern personal health. The site had to be visually and interactively stunning while maintaining a usable and clear interface for the casual visitor. Our solution was to extend the infinite company logo into a ribbon that carried the visitor through the site narrative. It also meant we’d be asking the browser to accommodate something it was never designed to handle: a non-linear design. (Be sure to play around. There’s a lot going on under the hood. We were also this close to a ZUI, if WebKit didn’t freak out when pages were scaled beyond 10×.) Despite the apparent and deliberate design simplicity, the techniques necessary to implement it are anything but. From updating the URL to moving the visitor from section to section, we’re firmly in JavaScript territory. And that’s a shame. What can we do? We might not be able to specify these layouts in HTML and CSS just yet, but that doesn’t mean we can’t learn a few new tricks while we wait. Let’s see how close we can come to recreating the privacy icons design, the Massive design, or the Mag+ design without resorting to JavaScript. A horizontally paginated site The first thing we’re going to need is the concept of a page within our HTML document. Using plain old HTML and CSS, we can stack a series of <div>s sideways (with a little assist from our new friend, the viewport-width unit, not that he was strictly necessary). All we need to know is how many pages we have. (And, boy, wouldn’t it be nice to be able to know that without having to predetermine it or use JavaScript?) .window { overflow: hidden; width: 100%; } .pages { width: 200vw; } .page { float: left; overflow: hidden; width: 100vw; } If you look carefully, you’ll see that the conceit we’ll use in the rest of the demos is in place. Despite the document containing multiple pages, only one is visible at any given time. This allows us to keep the user focused on the task (or content) at hand. By the way, you’ll need to use a modern, WebKit-based browser for these demos. I recommend downloading the WebKit nightly builds, Chrome Canary, or being comfortable with setting flags in Chrome. A horizontally paginated site, with transitions Ah, here’s the rub. We have functional navigation, but precious few cues for the user. It’s not much good shoving the visitor around various parts of the document if they don’t get the pleasant whooshing experience of the journey. You might be thinking, what about that new CSS selector, target-something…? Well, my friend, you’re on the right track. Let’s test it. We’re going to need to use a bit of sleight of hand. While we’d like to simply offset the containing element by the number of pages we’re moving (like we did on Massive), CSS alone can’t give us that information, and that means we’re going to need to fake it by expanding and collapsing pages as you navigate. Here are the bits we’re going to need: .page { -webkit-transition: width 1s; // Naturally you're going to want to include all the relevant prefixes here float: left; left: 0; overflow: hidden; position: relative; width: 100vw; } .page:not(:target) { width: 0; } Ah, but we’re not fooling anyone with that trick. As soon as you move beyond a single page, the visitor’s disbelief comes tumbling down when the linear page transitions are unaffected by the distance the pages are allegedly traveling. And you may have already noticed an even more fatal flaw: I secretly linked you to the first page rather than the unadorned URL. If you visit the same page with no URL fragment, you get a blank screen. Sure, we could force a redirect with some server-side trickery, but that feels like cheating. Perhaps if we had the CSS4 subject selector we could apply styles to the parent based on the child being targeted by the URL. We might also need a few more abilities, like determining the total number of pages and having relative sibling selectors (e.g. nth-sibling), but we’d sure be a lot closer. A horizontally paginated site, with transitions – no cheating Well, what other cards can we play? How about the checkbox hack? Sure, it’s a garish trick, but it might be the best we can do today. Check it out. label { cursor: pointer; } input { display: none; } input:not(:checked) + .page { max-height: 100vh; width: 0; } Finally, we can see the first page thanks to the state we are able to set on the appropriate radio button. Of course, now we don’t have URLs, so maybe this isn’t a winning plan after all. While our HTML and CSS toolkit may feel primitive at the moment, we certainly don’t want to sacrifice the addressability of the web. If there’s one bedrock principle, that’s it. A horizontally paginated site, with transitions – no cheating and a gorgeous homepage Gorgeous may not be the right word, but our little magazine is finally shaping up. Thanks to the CSS regions spec, we’ve got an exciting new power, the ability to begin an article in one place and bend it to our will. (Remember, your everyday browser isn’t going to work for these demos. Try the WebKit nightly build to see what we’re talking about.) As with the rest of the examples, we’re clearly abusing these features. Off-canvas layouts (you can thank Luke Wroblewski for the name) are simply not considered to be normal patterns… yet. Here’s a quick look at what’s going on: .excerpt-container { float: left; padding: 2em; position: relative; width: 100%; } .excerpt { height: 16em; } .excerpt_name_article-1, .page-1 .article-flow-region { -webkit-flow-from: article-1; } .article-content_for_article-1 { -webkit-flow-into: article-1; } The regions pattern is comprised of at least three components: a beginning; an ending; and a source. Using CSS, we’re able to define specific elements that should be available for the content to flow through. If magazine-style layouts are something you’re interested in learning more about (and you should be), be sure to check out the great work Adobe has been doing. Looking forward, and backward As designers, builders, and consumers of the web, we share a desire to see the usability and enjoyability of websites continue to rise. We are incredibly lucky to be working in a time when a three-month-old website can be laughably outdated. Our goal ought to be to improve upon both the weaknesses and the strengths of the web platform. We seek not only smoother transitions and larger canvases, but fine-grained addressability. Our URLs should point directly and unambiguously to specific content elements, be they pages, sections, paragraphs or words. Moreover, off-screen design patterns are essential to accommodating and empowering the multitude of devices we use to access the web. We should express the desire that interpage links take advantage of the CSS transitions which have been put to such good effect in every other aspect of our designs. Transitions aren’t just nice to have, they’re table stakes in the highly competitive world of native applications. The tools and technologies we have right now allow us to create smart, beautiful, useful webpages. With a little help, we can begin removing the seams and sutures that bind the web to an earlier, less sophisticated generation. 2012 Nathan Peretic nathanperetic 2012-12-21T00:00:00+00:00 https://24ways.org/2012/infinite-canvas-moving-beyond-the-page/ code
92 Redesigning the Media Query Responsive web design is showing us that designing content is more important than designing containers. But if you’ve given RWD a serious try, you know that shifting your focus from the container is surprisingly hard to do. There are many factors and instincts working against you, and one culprit is a perpetrator you’d least suspect. The media query is the ringmaster of responsive design. It lets us establish the rules of the game and gives us what we need most: control. However, like some kind of evil double agent, the media query is actually working against you. Its very nature diverts your attention away from content and forces you to focus on the container. The very act of choosing a media query value means choosing a screen size. Look at the history of the media query—it’s always been about the container. Values like screen, print, handheld and tv don’t have anything to do with content. The modern media query lets us choose screen dimensions, which is great because it makes RWD possible. But it’s still the act of choosing something that is completely unpredictable. Content should dictate our breakpoints, not the container. In order to get our focus back to the only thing that matters, we need a reengineered media query—one that frees us from thinking about screen dimensions. A media query that works for your content, not the window. Fortunately, Sass 3.2 is ready and willing to take on this challenge. Thinking in Columns Fluid grids never clicked for me. I feel so disoriented and confused by their squishiness. Responsive design demands their use though, right? I was ready to surrender until I found a grid that turned my world upright again. The Frameless Grid by Joni Korpi demonstrates that column and gutter sizes can stay fixed. As the screen size changes, you simply add or remove columns to accommodate. This made sense to me and armed with this concept I was able to give Sass the first component it needs to rewrite the media query: fixed column and gutter size variables. $grid-column: 60px; $grid-gutter: 20px; We’re going to want some resolution independence too, so let’s create a function that converts those nasty pixel values into ems. @function em($px, $base: $base-font-size) { @return ($px / $base) * 1em; } We now have the components needed to figure out the width of multiple columns in ems. Let’s put them together in a function that will take any number of columns and return the fixed width value of their size. @function fixed($col) { @return $col * em($grid-column + $grid-gutter) } With the math in place we can now write a mixin that takes a column count as a parameter, then generates the perfect media query necessary to fit that number of columns on the screen. We can also build in some left and right margin for our layout by adding an additional gutter value (remembering that we already have one gutter built into our fixed function). @mixin breakpoint($min) { @media (min-width: fixed($min) + em($grid-gutter)) { @content } } And, just like that, we’ve rewritten the media query. Instead of picking a minimum screen size for our layout, we can simply determine the number of columns needed. Let’s add a wrapper class so that we can center our content on the screen. @mixin breakpoint($min) { @media (min-width: fixed($min) + em($grid-gutter)) { .wrapper { width: fixed($min) - em($grid-gutter); margin-left: auto; margin-right: auto; } @content } } Designing content with a column count gives us nice, easy, whole numbers to work with. Sizing content, sidebars or widgets is now as simple as specifying a single-digit number. @include breakpoint(8) { .main { width: fixed(5); } .sidebar { width: fixed(3); } } Those four lines of Sass just created a responsive layout for us. When the screen is big enough to fit eight columns, it will trigger a fixed width layout. And give widths to our main content and sidebar. The following is the outputted CSS… @media (min-width: 41.25em) { .wrapper { width: 38.75em; margin-left: auto; margin-right: auto; } .main { width: 25em; } .sidebar { width: 15em; } } Demo I’ve created a Codepen demo that demonstrates what we’ve covered so far. I’ve added to the demo some grid classes based on Griddle by Nicolas Gallagher to create a floatless layout. I’ve also added a CSS gradient overlay to help you visualize columns. Try changing the column variable sizes or the breakpoint includes to see how the layout reacts to different screen sizes. Responsive Images Responsive images are a serious problem, but I’m excited to see the community talk so passionately about a solution. Now, there are some excellent stopgaps while we wait for something official, but these solutions require you to mirror your breakpoints in JavaScript or HTML. This poses a serious problem for my Sass-generated media queries, because I have no idea what the real values of my breakpoints are anymore. For responsive images to work, JavaScript needs to recognize which media query is active so that proper images can be loaded for that layout. What I need is a way to label my breakpoints. Fortunately, people much smarter than I have figured this out. Jeremy Keith devised a labeling method by using CSS-generated content as the storage method for breakpoint labels. We can use this technique in our breakpoint mixin by passing a label as another argument. @include breakpoint(8, 'desktop') { /* styles */ } Sass can take that label and use it when writing the corresponding media query. We just need to slightly modify our breakpoint mixin. @mixin breakpoint($min, $label) { @media (min-width: fixed($min) + em($grid-gutter)) { // label our mq with CSS generated content body::before { content: $label; display: none; } .wrapper { width: fixed($min) - em($grid-gutter); margin-left: auto; margin-right: auto; } @content } } This allows us to label our breakpoints with a user-friendly string. Now that our media queries are defined and labeled, we just need JavaScript to step in and read which label is active. // get css generated label for active media query var label = getComputedStyle(document.body, '::before')['content']; JavaScript now knows which layout is active by reading the label in the current media query—we just need to match that label to an image. I prefer to store references to different image sizes as data attributes on my image tag. <img class="responsive-image" data-mobile="mobile.jpg" data-desktop="desktop.jpg" /> <noscript><img src="desktop.jpg" /></noscript> These data attributes have names that match the labels set in my CSS. So while there is some duplication going on, setting a keyword like ‘tablet’ in two places is much easier than hardcoding media query values. With matching labels in CSS and HTML our script can marry the two and load the right sized image for our layout. // get css generated label for active media query var label = getComputedStyle(document.body, '::before')['content']; // select image var $image = $('.responsive-image'); // create source from data attribute $image.attr('src', $image.data(label)); Demo With some slight additions to our previous Codepen demo you can see this responsive image technique in action. While the above JavaScript will work it is not nearly robust enough for production so the demo uses a jQuery plugin that can accomodate multiple images, reloading on screen resize and fallbacks if something doesn’t match up. Creating a Framework This media query mixin and responsive image JavaScript are the center piece of a front end framework I use to develop websites. It’s a fluid, mobile first foundation that uses the breakpoint mixin to structure fixed width layouts for tablet and desktop. Significant effort was focused on making this framework completely cross-browser. For example, one of the problems with using media queries is that essential desktop structure code ends up being hidden from legacy Internet Explorer. Respond.js is an excellent polyfill, but if you’re comfortable serving a single desktop layout to older IE, we don’t need JavaScript. We simply need to capture layout code outside of a media query and sandbox it under an IE only class name. // set IE fallback layout to 8 columns $ie-support = 8; // inside of our breakpoint mixin (but outside the media query) @if ($ie-support and $min <= $ie-support) { .lt-ie9 { @content; } } Perspective Regained Thinking in columns means you are thinking about content layout. How big of a screen do you need for 12 columns? Who cares? Having Sass write media queries means you can use intuitive numbers for content layout. A fixed grid means more layout control and less edge cases to test than a fluid grid. Using CSS labels for activating responsive images means you don’t have to duplicate breakpoints across separations of concern. It’s a harmonious blend of approaches that gives us something we need—responsive design that feels intuitive. And design that, from the very outset, focuses on what matters most. Just like our kindergarten teachers taught us: It’s what’s inside that counts. 2012 Les James lesjames 2012-12-13T00:00:00+00:00 https://24ways.org/2012/redesigning-the-media-query/ code
95 Giving Content Priority with CSS3 Grid Layout Browser support for many of the modules that are part of CSS3 have enabled us to use CSS for many of the things we used to have to use images for. The rise of mobile browsers and the concept of responsive web design has given us a whole new way of looking at design for the web. However, when it comes to layout, we haven’t moved very far at all. We have talked for years about separating our content and source order from the presentation of that content, yet most of us have had to make decisions on source order in order to get a certain visual layout. Owing to some interesting specifications making their way through the W3C process at the moment, though, there is hope of change on the horizon. In this article I’m going to look at one CSS module, the CSS3 grid layout module, that enables us to define a grid and place elements on to it. This article comprises a practical demonstration of the basics of grid layout, and also a discussion of one way in which we can start thinking of content in a more adaptive way. Before we get started, it is important to note that, at the time of writing, these examples work only in Internet Explorer 10. CSS3 grid layout is a module created by Microsoft, and implemented using the -ms prefix in IE10. My examples will all use the -ms prefix, and not include other prefixes simply because this is such an early stage specification, and by the time there are implementations in other browsers there may be inconsistencies. The implementation I describe today may well change, but is also there for your feedback. If you don’t have access to IE10, then one way to view and test these examples is by signing up for an account with Browserstack – the free trial would give you time to have a look. I have also included screenshots of all relevant stages in creating the examples. What is CSS3 grid layout? CSS3 grid layout aims to let developers divide up a design into a grid and place content on to that grid. Rather than trying to fabricate a grid from floats, you can declare an actual grid on a container element and then use that to position the elements inside. Most importantly, the source order of those elements does not matter. Declaring a grid We declare a grid using a new value for the display property: display: grid. As we are using the IE10 implementation here, we need to prefix that value: display: -ms-grid;. Once we have declared our grid, we set up the columns and rows using the grid-columns and grid-rows properties. .wrapper { display: -ms-grid; -ms-grid-columns: 200px 20px auto 20px 200px; -ms-grid-rows: auto 1fr; } In the above example, I have declared a grid on the .wrapper element. I have used the grid-columns property to create a grid with a 200 pixel-wide column, a 20 pixel gutter, a flexible width auto column that will stretch to fill the available space, another 20 pixel-wide gutter and a final 200 pixel sidebar: a flexible width layout with two fixed width sidebars. Using the grid-rows property I have created two rows: the first is set to auto so it will stretch to fill whatever I put into it; the second row is set to 1fr, a new value used in grids that means one fraction unit. In this case, one fraction unit of the available space, effectively whatever space is left. Positioning items on the grid Now I have a simple grid, I can pop items on to it. If I have a <div> with a class of .main that I want to place into the second row, and the flexible column set to auto I would use the following CSS: .content { -ms-grid-column: 3; -ms-grid-row: 2; -ms-grid-row-span: 1; } If you are old-school, you may already have realised that we are essentially creating an HTML table-like layout structure using CSS. I found the concept of a table the most helpful way to think about the grid layout module when trying to work out how to place elements. Creating grid systems As soon as I started to play with CSS3 grid layout, I wanted to see if I could use it to replicate a flexible grid system like this fluid 16-column 960 grid system. I started out by defining a grid on my wrapper element, using fractions to make this grid fluid. .wrapper { width: 90%; margin: 0 auto 0 auto; display: -ms-grid; -ms-grid-columns: 1fr (4.25fr 1fr)[16]; -ms-grid-rows: (auto 20px)[24]; } Like the 960 grid system I was using as an example, my grid starts with a gutter, followed by the first actual column, plus another gutter repeated sixteen times. What this means is that if I want to span two columns, as far as the grid layout module is concerned that is actually three columns: two wide columns, plus one gutter. So this needs to be accounted for when positioning items. I created a CSS class for each positioning option: column position; rows position; and column span. For example: .grid1 {-ms-grid-column: 2;} /* applying this class positions an item in the first column (the gutter is column 1) */ .grid2 {-ms-grid-column: 4;} /* 2nd column - gutter|column 1|gutter */ .grid3 {-ms-grid-column: 6;} /* 3rd column - gutter|column 1|gutter|column2|gutter */ .row1 {-ms-grid-row:1;} .row2 {-ms-grid-row:3;} .row3 {-ms-grid-row:5;} .colspan1 {-ms-grid-column-span:1;} .colspan2 {-ms-grid-column-span:3;} .colspan3 {-ms-grid-column-span:5;} I could then add multiple classes to each element to set the position on on the grid. This then gives me a replica of the fluid grid using CSS3 grid layout. To see this working fire up IE10 and view Example 1. This works, but… This worked, but isn’t ideal. I considered not showing this stage of my experiment – however, I think it clearly shows how the grid layout module works and is a useful starting point. That said, it’s not an approach I would take in production. First, we have to add classes to our markup that tie an element to a position on the grid. This might not be too much of a problem if we are always going to maintain the sixteen-column grid, though, as I will show you that the real power of the grid layout module appears once you start to redefine the grid, using different grids based on media queries. If you drop to a six-column layout for small screens, positioning items into column 16 makes no sense any more. Calculating grid position using LESS As we’ve seen, if you want to use a grid with main columns and gutters, you have to take into account the spacing between columns as well as the actual columns. This means we have to do some calculating every time we place an item on the grid. In my example above I got around this by creating a CSS class for each position, allowing me to think in sixteen rather than thirty-two columns. But by using a CSS preprocessor, I can avoid using all the classes yet still think in main columns. I’m using LESS for my example. My simple grid framework consists of one simple mixin. .position(@column,@row,@colspan,@rowspan) { -ms-grid-column: @column*2; -ms-grid-row: @row*2-1; -ms-grid-column-span: @colspan*2-1; -ms-grid-row-span: @rowspan*2-1; } My mixin takes four parameters: column; row; colspan; and rowspan. So if I wanted to place an item on column four, row three, spanning two columns and one row, I would write the following CSS: .box { .position(4,3,2,1); } The mixin would return: .box { -ms-grid-column: 8; -ms-grid-row: 5; -ms-grid-column-span: 3; -ms-grid-row-span: 1; } This saves me some typing and some maths. I could also add other prefixed values into my mixin as other browsers started to add support. We can see this in action creating a new grid. Instead of adding multiple classes to each element, I can add one class; that class uses the mixin to create the position. I have also played around with row spans using my mixin and you can see we end up with a quite complicated arrangement of boxes. Have a look at example two in IE10. I’ve used the JavaScript LESS parser so that you can view the actual LESS that I use. Note that I have needed to escape the -ms prefixed properties with ~"" to get LESS to accept them. This is looking better. I don’t have direct positioning information on each element in the markup, just a class name – I’ve used grid(x), but it could be something far more semantic. We can now take the example a step further and redefine the grid based on screen width. Media queries and the grid This example uses exactly the same markup as the previous example. However, we are now using media queries to detect screen width and redefine the grid using a different number of columns depending on that width. I start out with a six-column grid, defining that on .wrapper, then setting where the different items sit on this grid: .wrapper { width: 90%; margin: 0 auto 0 auto; display: ~"-ms-grid"; /* escaped for the LESS parser */ -ms-grid-columns: ~"1fr (4.25fr 1fr)[6]"; /* escaped for the LESS parser */ -ms-grid-rows: ~"(auto 20px)[40]"; /* escaped for the LESS parser */ } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... see example for all declarations ... */ Using media queries, I redefine the grid to nine columns when we hit a minimum width of 700 pixels. @media only screen and (min-width: 700px) { .wrapper { -ms-grid-columns: ~"1fr (4.25fr 1fr)[9]"; -ms-grid-rows: ~"(auto 20px)[50]"; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } Finally, we redefine the grid for 960 pixels, back to the sixteen-column grid we started out with. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~" 1fr (4.25fr 1fr)[16]"; -ms-grid-rows:~" (auto 20px)[24]"; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } If you view example three in Internet Explorer 10 you can see how the items reflow to fit the window size. You can also see, looking at the final set of blocks, that source order doesn’t matter. You can pick up a block from anywhere and place it in any position on the grid. Laying out a simple website So far, like a toddler on Christmas Day, we’ve been playing with boxes rather than thinking about what might be in them. So let’s take a quick look at a more realistic layout, in order to see why the CSS3 grid layout module can be really useful. At this time of year, I am very excited to get out of storage my collection of odd nativity sets, prompting my family to suggest I might want to open a museum. Should I ever do so, I’ll need a website, and here is an example layout. As I am using CSS3 grid layout, I can order my source in a logical manner. In this example my document is as follows, though these elements could be in any order I please: <div class="wrapper"> <div class="welcome"> ... </div> <article class="main"> ... </article> <div class="info"> ... </div> <div class="ads"> ... </div> </div> For wide viewports I can use grid layout to create a sidebar, with the important information about opening times on the top righ,t with the ads displayed below it. This creates the layout shown in the screenshot above. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~" 1fr (4.25fr 1fr)[16]"; -ms-grid-rows:~" (auto 20px)[24]"; } .welcome { .position(1,1,12,1); padding: 0 5% 0 0; } .info { .position(13,1,4,1); border: 0; padding:0; } .main { .position(1,2,12,1); padding: 0 5% 0 0; } .ads { .position(13,2,4,1); display: block; margin-left: 0; } } In a floated layout, a sidebar like this often ends up being placed under the main content at smaller screen widths. For my situation this is less than ideal. I want the important information about opening times to end up above the main article, and to push the ads below it. With grid layout I can easily achieve this at the smallest width .info ends up in row two and .ads in row five with the article between. .wrapper { display: ~"-ms-grid"; -ms-grid-columns: ~"1fr (4.25fr 1fr)[4]"; -ms-grid-rows: ~"(auto 20px)[40]"; } .welcome { .position(1,1,4,1); } .info { .position(1,2,4,1); border: 4px solid #fff; padding: 10px; } .content { .position(1,3,4,5); } .main { .position(1,3,4,1); } .ads { .position(1,4,4,1); } Finally, as an extra tweak I add in a breakpoint at 600 pixels and nest a second grid on the ads area, arranging those three images into a row when they sit below the article at a screen width wider than the very narrow mobile width but still too narrow to support a sidebar. @media only screen and (min-width: 600px) { .ads { display: ~"-ms-grid"; -ms-grid-columns: ~"20px 1fr 20px 1fr 20px 1fr"; -ms-grid-rows: ~"1fr"; margin-left: -20px; } .ad:nth-child(1) { .position(1,1,1,1); } .ad:nth-child(2) { .position(2,1,1,1); } .ad:nth-child(3) { .position(3,1,1,1); } } View example four in Internet Explorer 10. This is a very simple example to show how we can use CSS grid layout without needing to add a lot of classes to our document. It also demonstrates how we can mainpulate the content depending on the context in which the user is viewing it. Layout, source order and the idea of content priority CSS3 grid layout isn’t the only module that starts to move us away from the issue of visual layout being linked to source order. However, with good support in Internet Explorer 10, it is a nice way to start looking at how this might work. If you look at the grid layout module as something to be used in conjunction with the flexible box layout module and the very interesting CSS regions and exclusions specifications, we have, tantalizingly on the horizon, a powerful set of tools for layout. I am particularly keen on the potential separation of source order from layout as it dovetails rather neatly into something I spend a lot of time thinking about. As a CMS developer, working on larger scale projects as well as our CMS product Perch, I am interested in how we better enable content editors to create content for the web. In particular, I search for better ways to help them create adaptive content; content that will work in a variety of contexts rather than being tied to one representation of that content. If the concept of adaptive content is new to you, then Karen McGrane’s presentation Adapting Ourselves to Adaptive Content is the place to start. Karen talks about needing to think of content as chunks, that might be used in many different places, displayed differently depending on context. I absolutely agree with Karen’s approach to content. We have always attempted to move content editors away from thinking about creating a page and previewing it on the desktop. However at some point content does need to be published as a page, or a collection of content if you prefer, and bits of that content have priority. Particularly in a small screen context, content gets linearized, we can only show so much at a time, and we need to make sure important content rises to the top. In the case of my example, I wanted to ensure that the address information was clearly visible without scrolling around too much. Dropping it with the entire sidebar to the bottom of the page would not have been so helpful, though neither would moving the whole sidebar to the top of the screen so a visitor had to scroll past advertising to get to the article. If our layout is linked to our source order, then enabling the content editor to make decisions about priority is really hard. Only a system that can do some regeneration of the source order on the server-side – perhaps by way of multiple templates – can allow those kinds of decisions to be made. For larger systems this might be a possibility; for smaller ones, or when using an off-the-shelf CMS, it is less likely to be. Fortunately, any system that allows some form of custom field type can be used to pop a class on to an element, and with CSS grid layout that is all that is needed to be able to target that element and drop it into the right place when the content is viewed, be that on a desktop or a mobile device. This approach can move us away from forcing editors to think visually. At the moment, I might have to explain to an editor that if a certain piece of content needs to come first when viewed on a mobile device, it needs to be placed in the sidebar area, tying it to a particular layout and design. I have to do this because we have to enforce fairly strict rules around source order to make the mechanics of the responsive design work. If I can instead advise an editor to flag important content as high priority in the CMS, then I can make decisions elsewhere as to how that is displayed, and we can maintain the visual hierarchy across all the different ways content might be rendered. Why frustrate ourselves with specifications we can’t yet use in production? The CSS3 grid layout specification is listed under the Exploring section of the list of current work of the CSS Working Group. While discussing a module at this stage might seem a bit pointless if we can’t use it in production work, there is a very real reason for doing so. If those of us who will ultimately be developing sites with these tools find out about them early enough, then we can start to give our feedback to the people responsible for the specification. There is information on the same page about how to get involved with the disussions. So, if you have a bit of time this holiday season, why not have a play with the CSS3 grid layout module? I have outlined here some of my thoughts on how grid layout and other modules that separate layout from source order can be used in the work that I do. Likewise, wherever in the stack you work, playing with and thinking about new specifications means you can think about how you would use them to enhance your work. Spot a problem? Think that a change to the specification would improve things for a specific use case? Then you have something you could post to www-style to add to the discussion around this module. All the examples are on CodePen so feel free to play around and fork them. 2012 Rachel Andrew rachelandrew 2012-12-18T00:00:00+00:00 https://24ways.org/2012/css3-grid-layout/ code