24ways

Custom SQL query returning 101 rows (hide)

Query parameters

rowidtitlecontentsyearauthorauthor_slugpublishedurltopic
165 Transparent PNGs in Internet Explorer 6 Newer breeds of browser such as Firefox and Safari have offered support for PNG images with full alpha channel transparency for a few years. With the use of hacks, support has been available in Internet Explorer 5.5 and 6, but the hacks are non-ideal and have been tricky to use. With IE7 winning masses of users from earlier versions over the last year, full PNG alpha-channel transparency is becoming more of a reality for day-to-day use. However, there are still numbers of IE6 users out there who we can’t leave out in the cold this Christmas, so in this article I’m going to look what we can do to support IE6 users whilst taking full advantage of transparency for the majority of a site’s visitors. So what’s alpha channel transparency? Cast your minds back to the Ghost of Christmas Past, the humble GIF. Images in GIF format offer transparency, but that transparency is either on or off for any given pixel. Each pixel’s either fully transparent, or a solid colour. In GIF, transparency is effectively just a special colour you can chose for a pixel. The PNG format tackles the problem rather differently. As well as having any colour you chose, each pixel also carries a separate channel of information detailing how transparent it is. This alpha channel enables a pixel to be fully transparent, fully opaque, or critically, any step in between. This enables designers to produce images that can have, for example, soft edges without any of the ‘halo effect’ traditionally associated with GIF transparency. If you’ve ever worked on a site that has different colour schemes and therefore requires multiple versions of each graphic against a different colour, you’ll immediately see the benefit. What’s perhaps more interesting than that, however, is the extra creative freedom this gives designers in creating beautiful sites that can remain web-like in their ability to adjust, scale and reflow. The Internet Explorer problem Up until IE7, there has been no fully native support for PNG alpha channel transparency in Internet Explorer. However, since IE5.5 there has been some support in the form of proprietary filter called the AlphaImageLoader. Internet Explorer filters can be applied directly in your CSS (for both inline and background images), or by setting the same CSS property with JavaScript. CSS: img { filter: progid:DXImageTransform.Microsoft.AlphaImageLoader(...); } JavaScript: img.style.filter = "progid:DXImageTransform.Microsoft.AlphaImageLoader(...)"; That may sound like a problem solved, but all is not as it may appear. Firstly, as you may realise, there’s no CSS property called filter in the W3C CSS spec. It’s a proprietary extension added by Microsoft that could potentially cause other browsers to reject your entire CSS rule. Secondly, AlphaImageLoader does not magically add full PNG transparency support so that a PNG in the page will just start working. Instead, when applied to an element in the page, it draws a new rendering surface in the same space that element occupies and loads a PNG into it. If that sounds weird, it’s because that’s precisely what it is. However, by and large the result is that PNGs with an alpha channel can be accommodated. The pitfalls So, whilst support for PNG transparency in IE5.5 and 6 is possible, it’s not without its problems. Background images cannot be positioned or repeated The AlphaImageLoader does work for background images, but only for the simplest of cases. If your design requires the image to be tiled (background-repeat) or positioned (background-position) you’re out of luck. The AlphaImageLoader allows you to set a sizingMethod to either crop the image (if necessary) or to scale it to fit. Not massively useful, but something at least. Delayed loading and resource use The AlphaImageLoader can be quite slow to load, and appears to consume more resources than a standard image when applied. Typically, you’d need to add thousands of GIFs or JPEGs to a page before you saw any noticeable impact on the browser, but with the AlphaImageLoader filter applied Internet Explorer can become sluggish after just a handful of alpha channel PNGs. The other noticeable effect is that as more instances of the AlphaImageLoader are applied, the longer it takes to render the PNGs with their transparency. The user sees the PNG load in its original non-supported state (with black or grey areas where transparency should be) before one by one the filter kicks in and makes them properly transparent. Both the issue of sluggish behaviour and delayed load only really manifest themselves with volume and size of image. Use just a couple of instances and it’s fine, but be careful adding more than five or six. As ever, test, test, test. Links become unclickable, forms unfocusable This is a big one. There’s a bug/weirdness with AlphaImageLoader that sometimes prevents interaction with links and forms when a PNG background image is used. This is sometimes reported as a z-index issue, but I don’t believe it is. Rather, it’s an artefact of that weird way the filter gets applied to the document almost outside of the normal render process. Often this can be solved by giving the links or form elements hasLayout using position: relative; where possible. However, this doesn’t always work and the non-interaction problem cannot always be solved. You may find yourself having to go back to the drawing board. Sidestepping the danger zones Frankly, it’s pretty bad news if you design a site, have that design signed off by your client, build it and then find out only at the end (because you don’t know what might trigger a problem) that your search field can’t be focused in IE6. That’s an absolute nightmare, and whilst it’s not likely to happen, it’s possible that it might. It’s happened to me. So what can you do? The best approach I’ve found to this scenario is Isolate the PNG or PNGs that are causing the problem. Step through the PNGs in your page, commenting them out one by one and retesting. Typically it’ll be the nearest PNG to the problem, so try there first. Keep going until you can click your links or focus your form fields. This is where you really need luck on your side, because you’re going to have to fake it. This will depend on the design of the site, but some way or other create a replacement GIF or JPEG image that will give you an acceptable result. Then use conditional comments to serve that image to only users of IE older than version 7. A hack, you say? Well, you started it chum. Applying AlphaImageLoader Because the filter property is invalid CSS, the safest pragmatic approach is to apply it selectively with JavaScript for only Internet Explorer versions 5.5 and 6. This helps ensure that by default you’re serving standard CSS to browsers that support both the CSS and PNG standards correct, and then selectively patching up only the browsers that need it. Several years ago, Aaron Boodman wrote and released a script called sleight for doing just that. However, sleight dealt only with images in the page, and not background images applied with CSS. Building on top of Aaron’s work, I hacked sleight and came up with bgsleight for applying the filter to background images instead. That was in 2003, and over the years I’ve made a couple of improvements here and there to keep it ticking over and to resolve conflicts between sleight and bgsleight when used together. However, with alpha channel PNGs becoming much more widespread, it’s time for a new version. Introducing SuperSleight SuperSleight adds a number of new and useful features that have come from the day-to-day needs of working with PNGs. Works with both inline and background images, replacing the need for both sleight and bgsleight Will automatically apply position: relative to links and form fields if they don’t already have position set. (Can be disabled.) Can be run on the entire document, or just a selected part where you know the PNGs are. This is better for performance. Detects background images set to no-repeat and sets the scaleMode to crop rather than scale. Can be re-applied by any other JavaScript in the page – useful if new content has been loaded by an Ajax request. Download SuperSleight Implementation Getting SuperSleight running on a page is quite straightforward, you just need to link the supplied JavaScript file (or the minified version if you prefer) into your document inside conditional comments so that it is delivered to only Internet Explorer 6 or older. <!--[if lte IE 6]> <script type="text/javascript" src="supersleight-min.js"></script> <![endif]--> Supplied with the JavaScript is a simple transparent GIF file. The script replaces the existing PNG with this before re-layering the PNG over the top using AlphaImageLoaded. You can change the name or path of the image in the top of the JavaScript file, where you’ll also find the option to turn off the adding of position: relative to links and fields if you don’t want that. The script is kicked off with a call to supersleight.init() at the bottom. The scope of the script can be limited to just one part of the page by passing an ID of an element to supersleight.limitTo(). And that’s all there is to it. Update March 2008: a version of this script as a jQuery plugin is also now available. 2007 Drew McLellan drewmclellan 2007-12-01T00:00:00+00:00 https://24ways.org/2007/supersleight-transparent-png-in-ie6/ code
168 Unobtrusively Mapping Microformats with jQuery Microformats are everywhere. You can’t shake an electronic stick these days without accidentally poking a microformat-enabled site, and many developers use microformats as a matter of course. And why not? After all, why invent your own class names when you can re-use pre-defined ones that give your site extra functionality for free? Nevertheless, while it’s good to know that users of tools such as Tails and Operator will derive added value from your shiny semantics, it’s nice to be able to reuse that effort in your own code. We’re going to build a map of some of my favourite restaurants in Brighton. Fitting with the principles of unobtrusive JavaScript, we’ll start with a semantically marked up list of restaurants, then use JavaScript to add the map, look up the restaurant locations and plot them as markers. We’ll be using a couple of powerful tools. The first is jQuery, a JavaScript library that is ideally suited for unobtrusive scripting. jQuery allows us to manipulate elements on the page based on their CSS selector, which makes it easy to extract information from microformats. The second is Mapstraction, introduced here by Andrew Turner a few days ago. We’ll be using Google Maps in the background, but Mapstraction makes it easy to change to a different provider if we want to later. Getting Started We’ll start off with a simple collection of microformatted restaurant details, representing my seven favourite restaurants in Brighton. The full, unstyled list can be seen in restaurants-plain.html. Each restaurant listing looks like this: <li class="vcard"> <h3><a class="fn org url" href="http://www.riddleandfinns.co.uk/">Riddle & Finns</a></h3> <div class="adr"> <p class="street-address">12b Meeting House Lane</p> <p><span class="locality">Brighton</span>, <abbr class="country-name" title="United Kingdom">UK</abbr></p> <p class="postal-code">BN1 1HB</p> </div> <p>Telephone: <span class="tel">+44 (0)1273 323 008</span></p> <p>E-mail: <a href="mailto:info@riddleandfinns.co.uk" class="email">info@riddleandfinns.co.uk</a></p> </li> Since we’re dealing with a list of restaurants, each hCard is marked up inside a list item. Each restaurant is an organisation; we signify this by placing the classes fn and org on the element surrounding the restaurant’s name (according to the hCard spec, setting both fn and org to the same value signifies that the hCard represents an organisation rather than a person). The address information itself is contained within a div of class adr. Note that the HTML <address> element is not suitable here for two reasons: firstly, it is intended to mark up contact details for the current document rather than generic addresses; secondly, address is an inline element and as such cannot contain the paragraphs elements used here for the address information. A nice thing about microformats is that they provide us with automatic hooks for our styling. For the moment we’ll just tidy up the whitespace a bit; for more advanced style tips consult John Allsop’s guide from 24 ways 2006. .vcard p { margin: 0; } .adr { margin-bottom: 0.5em; } To plot the restaurants on a map we’ll need latitude and longitude for each one. We can find this out from their address using geocoding. Most mapping APIs include support for geocoding, which means we can pass the API an address and get back a latitude/longitude point. Mapstraction provides an abstraction layer around these APIs which can be included using the following script tag: <script type="text/javascript" src="http://mapstraction.com/src/mapstraction-geocode.js"></script> While we’re at it, let’s pull in the other external scripts we’ll be using: <script type="text/javascript" src="jquery-1.2.1.js"></script> <script src="http://maps.google.com/maps?file=api&v=2&key=YOUR_KEY" type="text/javascript"></script> <script type="text/javascript" src="http://mapstraction.com/src/mapstraction.js"></script> <script type="text/javascript" src="http://mapstraction.com/src/mapstraction-geocode.js"></script> That’s everything set up: let’s write some JavaScript! In jQuery, almost every operation starts with a call to the jQuery function. The function simulates method overloading to behave in different ways depending on the arguments passed to it. When writing unobtrusive JavaScript it’s important to set up code to execute when the page has loaded to the point that the DOM is available to be manipulated. To do this with jQuery, pass a callback function to the jQuery function itself: jQuery(function() { // This code will be executed when the DOM is ready }); Initialising the map The first thing we need to do is initialise our map. Mapstraction needs a div with an explicit width, height and ID to show it where to put the map. Our document doesn’t currently include this markup, but we can insert it with a single line of jQuery code: jQuery(function() { // First create a div to host the map var themap = jQuery('<div id="themap"></div>').css({ 'width': '90%', 'height': '400px' }).insertBefore('ul.restaurants'); }); While this is technically just a single line of JavaScript (with line-breaks added for readability) it’s actually doing quite a lot of work. Let’s break it down in to steps: var themap = jQuery('<div id="themap"></div>') Here’s jQuery’s method overloading in action: if you pass it a string that starts with a < it assumes that you wish to create a new HTML element. This provides us with a handy shortcut for the more verbose DOM equivalent: var themap = document.createElement('div'); themap.id = 'themap'; Next we want to apply some CSS rules to the element. jQuery supports chaining, which means we can continue to call methods on the object returned by jQuery or any of its methods: var themap = jQuery('<div id="themap"></div>').css({ 'width': '90%', 'height': '400px' }) Finally, we need to insert our new HTML element in to the page. jQuery provides a number of methods for element insertion, but in this case we want to position it directly before the <ul> we are using to contain our restaurants. jQuery’s insertBefore() method takes a CSS selector indicating an element already on the page and places the current jQuery selection directly before that element in the DOM. var themap = jQuery('<div id="themap"></div>').css({ 'width': '90%', 'height': '400px' }).insertBefore('ul.restaurants'); Finally, we need to initialise the map itself using Mapstraction. The Mapstraction constructor takes two arguments: the first is the ID of the element used to position the map; the second is the mapping provider to use (in this case google ): // Initialise the map var mapstraction = new Mapstraction('themap','google'); We want the map to appear centred on Brighton, so we’ll need to know the correct co-ordinates. We can use www.getlatlon.com to find both the co-ordinates and the initial map zoom level. // Show map centred on Brighton mapstraction.setCenterAndZoom( new LatLonPoint(50.82423734980143, -0.14007568359375), 15 // Zoom level appropriate for Brighton city centre ); We also want controls on the map to allow the user to zoom in and out and toggle between map and satellite view. mapstraction.addControls({ zoom: 'large', map_type: true }); Adding the markers It’s finally time to parse some microformats. Since we’re using hCard, the information we want is wrapped in elements with the class vcard. We can use jQuery’s CSS selector support to find them: var vcards = jQuery('.vcard'); Now that we’ve found them, we need to create a marker for each one in turn. Rather than using a regular JavaScript for loop, we can instead use jQuery’s each() method to execute a function against each of the hCards. jQuery('.vcard').each(function() { // Do something with the hCard }); Within the callback function, this is set to the current DOM element (in our case, the list item). If we want to call the magic jQuery methods on it we’ll need to wrap it in another call to jQuery: jQuery('.vcard').each(function() { var hcard = jQuery(this); }); The Google maps geocoder seems to work best if you pass it the street address and a postcode. We can extract these using CSS selectors: this time, we’ll use jQuery’s find() method which searches within the current jQuery selection: var streetaddress = hcard.find('.street-address').text(); var postcode = hcard.find('.postal-code').text(); The text() method extracts the text contents of the selected node, minus any HTML markup. We’ve got the address; now we need to geocode it. Mapstraction’s geocoding API requires us to first construct a MapstractionGeocoder, then use the geocode() method to pass it an address. Here’s the code outline: var geocoder = new MapstractionGeocoder(onComplete, 'google'); geocoder.geocode({'address': 'the address goes here'); The onComplete function is executed when the geocoding operation has been completed, and will be passed an object with the resulting point on the map. We just want to create a marker for the point: var geocoder = new MapstractionGeocoder(function(result) { var marker = new Marker(result.point); mapstraction.addMarker(marker); }, 'google'); For our purposes, joining the street address and postcode with a comma to create the address should suffice: geocoder.geocode({'address': streetaddress + ', ' + postcode}); There’s one last step: when the marker is clicked, we want to display details of the restaurant. We can do this with an info bubble, which can be configured by passing in a string of HTML. We’ll construct that HTML using jQuery’s html() method on our hcard object, which extracts the HTML contained within that DOM node as a string. var marker = new Marker(result.point); marker.setInfoBubble( '<div class="bubble">' + hcard.html() + '</div>' ); mapstraction.addMarker(marker); We’ve wrapped the bubble in a div with class bubble to make it easier to style. Google Maps can behave strangely if you don’t provide an explicit width for your info bubbles, so we’ll add that to our CSS now: .bubble { width: 300px; } That’s everything we need: let’s combine our code together: jQuery(function() { // First create a div to host the map var themap = jQuery('<div id="themap"></div>').css({ 'width': '90%', 'height': '400px' }).insertBefore('ul.restaurants'); // Now initialise the map var mapstraction = new Mapstraction('themap','google'); mapstraction.addControls({ zoom: 'large', map_type: true }); // Show map centred on Brighton mapstraction.setCenterAndZoom( new LatLonPoint(50.82423734980143, -0.14007568359375), 15 // Zoom level appropriate for Brighton city centre ); // Geocode each hcard and add a marker jQuery('.vcard').each(function() { var hcard = jQuery(this); var streetaddress = hcard.find('.street-address').text(); var postcode = hcard.find('.postal-code').text(); var geocoder = new MapstractionGeocoder(function(result) { var marker = new Marker(result.point); marker.setInfoBubble( '<div class="bubble">' + hcard.html() + '</div>' ); mapstraction.addMarker(marker); }, 'google'); geocoder.geocode({'address': streetaddress + ', ' + postcode}); }); }); Here’s the finished code. There’s one last shortcut we can add: jQuery provides the $ symbol as an alias for jQuery. We could just go through our code and replace every call to jQuery() with a call to $(), but this would cause incompatibilities if we ever attempted to use our script on a page that also includes the Prototype library. A more robust approach is to start our code with the following: jQuery(function($) { // Within this function, $ now refers to jQuery // ... }); jQuery cleverly passes itself as the first argument to any function registered to the DOM ready event, which means we can assign a local $ variable shortcut without affecting the $ symbol in the global scope. This makes it easy to use jQuery with other libraries. Limitations of Geocoding You may have noticed a discrepancy creep in to the last example: whereas my original list included seven restaurants, the geocoding example only shows five. This is because the Google Maps geocoder incorporates a rate limit: more than five lookups in a second and it starts returning error messages instead of regular results. In addition to this problem, geocoding itself is an inexact science: while UK postcodes generally get you down to the correct street, figuring out the exact point on the street from the provided address usually isn’t too accurate (although Google do a pretty good job). Finally, there’s the performance overhead. We’re making five geocoding requests to Google for every page served, even though the restaurants themselves aren’t likely to change location any time soon. Surely there’s a better way of doing this? Microformats to the rescue (again)! The geo microformat suggests simple classes for including latitude and longitude information in a page. We can add specific points for each restaurant using the following markup: <li class="vcard"> <h3 class="fn org">E-Kagen</h3> <div class="adr"> <p class="street-address">22-23 Sydney Street</p> <p><span class="locality">Brighton</span>, <abbr class="country-name" title="United Kingdom">UK</abbr></p> <p class="postal-code">BN1 4EN</p> </div> <p>Telephone: <span class="tel">+44 (0)1273 687 068</span></p> <p class="geo">Lat/Lon: <span class="latitude">50.827917</span>, <span class="longitude">-0.137764</span> </p> </li> As before, I used www.getlatlon.com to find the exact locations – I find satellite view is particularly useful for locating individual buildings. Latitudes and longitudes are great for machines but not so useful for human beings. We could hide them entirely with display: none, but I prefer to merely de-emphasise them (someone might want them for their GPS unit): .vcard .geo { margin-top: 0.5em; font-size: 0.85em; color: #ccc; } It’s probably a good idea to hide them completely when they’re displayed inside an info bubble: .bubble .geo { display: none; } We can extract the co-ordinates in the same way we extracted the address. Since we’re no longer geocoding anything our code becomes a lot simpler: $('.vcard').each(function() { var hcard = $(this); var latitude = hcard.find('.geo .latitude').text(); var longitude = hcard.find('.geo .longitude').text(); var marker = new Marker(new LatLonPoint(latitude, longitude)); marker.setInfoBubble( '<div class="bubble">' + hcard.html() + '</div>' ); mapstraction.addMarker(marker); }); And here’s the finished geo example. Further reading We’ve only scratched the surface of what’s possible with microformats, jQuery (or just regular JavaScript) and a bit of imagination. If this example has piqued your interest, the following links should give you some more food for thought. The hCard specification Notes on parsing hCards jQuery for JavaScript programmers – my extended tutorial on jQuery. Dann Webb’s Sumo – a full JavaScript library for parsing microformats, based around some clever metaprogramming techniques. Jeremy Keith’s Adactio Austin – the first place I saw using microformats to unobtrusively plot locations on a map. Makes clever use of hEvent as well. 2007 Simon Willison simonwillison 2007-12-12T00:00:00+00:00 https://24ways.org/2007/unobtrusively-mapping-microformats-with-jquery/ code
169 Incite A Riot Given its relatively limited scope, HTML can be remarkably expressive. With a bit of lateral thinking, we can mark up content such as tag clouds and progress meters, even when we don’t have explicit HTML elements for those patterns. Suppose we want to mark up a short conversation: Alice: I think Eve is watching. Bob: This isn’t a cryptography tutorial …we’re in the wrong example! A note in the the HTML 4.01 spec says it’s okay to use a definition list: Another application of DL, for example, is for marking up dialogues, with each DT naming a speaker, and each DD containing his or her words. That would give us: <dl> <dt>Alice</dt>: <dd>I think Eve is watching.</dd> <dt>Bob</dt>: <dd>This isn't a cryptography tutorial ...we're in the wrong example!</dd> </dl> This usage of a definition list is proof that writing W3C specifications and smoking crack are not mutually exclusive activities. “I think Eve is watching” is not a definition of “Alice.” If you (ab)use a definition list in this way, Norm will hunt you down. The conversation problem was revisited in HTML5. What if dt and dd didn’t always mean “definition title” and “definition description”? A new element was forged: dialog. Now the the “d” in dt and dd doesn’t stand for “definition”, it stands for “dialog” (or “dialogue” if you can spell): <dialog> <dt>Alice</dt>: <dd>I think Eve is watching.</dd> <dt>Bob</dt>: <dd>This isn't a cryptography tutorial ...we're in the wrong example!</dd> </dialog> Problem solved …except that dialog is no longer in the HTML5 spec. Hixie further expanded the meaning of dt and dd so that they could be used inside details (which makes sense—it starts with a “d”) and figure (…um). At the same time as the content model of details and figure were being updated, the completely-unrelated dialog element was dropped. Back to the drawing board, or in this case, the HTML 4.01 specification. The spec defines the cite element thusly: Contains a citation or a reference to other sources. Perfect! There’s even an example showing how this can applied when attributing quotes to people: As <CITE>Harry S. Truman</CITE> said, <Q lang="en-us">The buck stops here.</Q> For longer quotes, the blockquote element might be more appropriate. In a conversation, where the order matters, I think an ordered list would make a good containing element for this pattern: <ol> <li><cite>Alice</cite>: <q>I think Eve is watching.</q></li> <li><cite>Bob</cite>: <q>This isn't a cryptography tutorial ...we're in the wrong example!</q></li> </ol> Problem solved …except that the cite element has been redefined in the HTML5 spec: The cite element represents the title of a work … A person’s name is not the title of a work … and the element must therefore not be used to mark up people’s names. HTML5 is supposed to be backwards compatible with previous versions of HTML, yet here we have a semantic pattern already defined in HTML 4.01 that is now non-conforming in HTML5. The entire justification for the change boils down to this line of reasoning: Given that: titles of works are often italicised and given that: people’s names are not often italicised and given that: most browsers italicise the contents of the cite element, therefore: the cite element should not be used to mark up people’s names. In other words, the default browser styling is now dictating semantic meaning. The tail is wagging the dog. Not to worry, the HTML5 spec tells us how we can mark up names in conversations without using the cite element: In some cases, the b element might be appropriate for names I believe the colloquial response to this is a combination of the letters W, T and F, followed by a question mark. The non-normative note continues: In other cases, if an element is really needed, the span element can be used. This is not a joke. We are seriously being told to use semantically meaningless elements to mark up content that is semantically meaningful. We don’t have to take it. Firstly, any conformance checker—that’s the new politically correct term for “validator”—cannot possibly check every instance of the cite element to see if it’s really the title of a work and not the name of a person. So we can disobey the specification without fear of invalidating our documents. Secondly, Hixie has repeatedly stated that browser makers have a powerful voice in deciding what goes into the HTML5 spec; if a browser maker refuses to implement a feature, then that feature should come out of the spec because otherwise, the spec is fiction. Well, one of the design principles of HTML5 is the Priority of Constituencies: In case of conflict, consider users over authors over implementors over specifiers over theoretical purity. That places us—authors—above browser makers. If we resolutely refuse to implement part of the HTML5 spec, then the spec becomes fiction. Join me in a campaign of civil disobedience against the unnecessarily restrictive, backwards-incompatible change to the cite element. Start using HTML5 but start using it sensibly. Let’s ensure that bad advice remains fictitious. Tantek has set up a page on the WHATWG wiki to document usage of the cite element for conversations. Please contribute to it. 2009 Jeremy Keith jeremykeith 2009-12-11T00:00:00+00:00 https://24ways.org/2009/incite-a-riot/ code
171 Rock Solid HTML Emails At some stage in your career, it’s likely you’ll be asked by a client to design a HTML email. Before you rush to explain that all the cool kids are using social media, keep in mind that when done correctly, email is still one of the best ways to promote you and your clients online. In fact, a recent survey showed that every dollar spent on email marketing this year generated more than $40 in return. That’s more than any other marketing channel, including the cool ones. There are a whole host of ingredients that contribute to a good email marketing campaign. Permission, relevance, timeliness and engaging content are all important. Even so, the biggest challenge for designers still remains building an email that renders well across all the popular email clients. Same same, but different Before getting into the details, there are some uncomfortable facts that those new to HTML email should be aware of. Building an email is not like building for the web. While web browsers continue their onward march towards standards, many email clients have stubbornly stayed put. Some have even gone backwards. In 2007, Microsoft switched the Outlook rendering engine from Internet Explorer to Word. Yes, as in the word processor. Add to this the quirks of the major web-based email clients like Gmail and Hotmail, sprinkle in a little Lotus Notes and you’ll soon realize how different the email game is. While it’s not without its challenges, rest assured it can be done. In my experience the key is to focus on three things. First, you should keep it simple. The more complex your email design, the more likely is it to choke on one of the popular clients with poor standards support. Second, you need to take your coding skills back a good decade. That often means nesting tables, bringing CSS inline and following the coding guidelines I’ll outline below. Finally, you need to test your designs regularly. Just because a template looks nice in Hotmail now, doesn’t mean it will next week. Setting your lowest common denominator To maintain your sanity, it’s a good idea to decide exactly which email clients you plan on supporting when building a HTML email. While general research is helpful, the email clients your subscribers are using can vary significantly from list to list. If you have the time there are a number of tools that can tell you specifically which email clients your subscribers are using. Trust me, if the testing shows almost none of them are using a client like Lotus Notes, save yourself some frustration and ignore it altogether. Knowing which email clients you’re targeting not only makes the building process easier, it can save you lots of time in the testing phase too. For the purpose of this article, I’ll be sharing techniques that give the best results across all of the popular clients, including the notorious ones like Gmail, Lotus Notes 6 and Outlook 2007. Just remember that pixel perfection in all email clients is a pipe dream. Let’s get started. Use tables for layout Because clients like Gmail and Outlook 2007 have poor support for float, margin and padding, you’ll need to use tables as the framework of your email. While nested tables are widely supported, consistent treatment of width, margin and padding within table cells is not. For the best results, keep the following in mind when coding your table structure. Set the width in each cell, not the table When you combine table widths, td widths, td padding and CSS padding into an email, the final result is different in almost every email client. The most reliable way to set the width of your table is to set a width for each cell, not for the table itself. <table cellspacing="0" cellpadding="10" border="0"> <tr> <td width="80"></td> <td width="280"></td> </tr> </table> Never assume that if you don’t specify a cell width the email client will figure it out. It won’t. Also avoid using percentage based widths. Clients like Outlook 2007 don’t respect them, especially for nested tables. Stick to pixels. If you want to add padding to each cell, use either the cellpadding attribute of the table or CSS padding for each cell, but never combine the two. Err toward nesting Table nesting is far more reliable than setting left and right margins or padding for table cells. If you can achieve the same effect by table nesting, that will always give you the best result across the buggier email clients. Use a container table for body background colors Many email clients ignore background colors specified in your CSS or the <body> tag. To work around this, wrap your entire email with a 100% width table and give that a background color. <table cellspacing="0" cellpadding="0" border="0" width="100%"> <tr> <td bgcolor=”#000000”> Your email code goes here. </td> </tr> </table> You can use the same approach for background images too. Just remember that some email clients don’t support them, so always provide a fallback color. Avoid unnecessary whitespace in table cells Where possible, avoid whitespace between your <td> tags. Some email clients (ahem, Yahoo! and Hotmail) can add additional padding above or below the cell contents in some scenarios, breaking your design for no apparent reason. CSS and general font formatting While some email designers do their best to avoid CSS altogether and rely on the dreaded <font> tag, the truth is many CSS properties are well supported by most email clients. See this comprehensive list of CSS support across the major clients for a good idea of the safe properties and those that should be avoided. Always move your CSS inline Gmail is the culprit for this one. By stripping the CSS from the <head> and <body> of any email, we’re left with no choice but to move all CSS inline. The good news is this is something you can almost completely automate. Free services like Premailer will move all CSS inline with the click of a button. I recommend leaving this step to the end of your build process so you can utilize all the benefits of CSS. Avoid shorthand for fonts and hex notation A number of email clients reject CSS shorthand for the font property. For example, never set your font styles like this. p { font:bold 1em/1.2em georgia,times,serif; } Instead, declare the properties individually like this. p { font-weight: bold; font-size: 1em; line-height: 1.2em; font-family: georgia,times,serif; } While we’re on the topic of fonts, I recently tested every conceivable variation of @font-face across the major email clients. The results were dismal, so unfortunately it’s web-safe fonts in email for the foreseeable future. When declaring the color property in your CSS, some email clients don’t support shorthand hexadecimal colors like color:#f60; instead of color:#ff6600;. Stick to the longhand approach for the best results. Paragraphs Just like table cell spacing, paragraph spacing can be tricky to get a consistent result across the board. I’ve seen many designers revert to using double <br /> or DIVs with inline CSS margins to work around these shortfalls, but recent testing showed that paragraph support is now reliable enough to use in most cases (there was a time when Yahoo! didn’t support the paragraph tag at all). The best approach is to set the margin inline via CSS for every paragraph in your email, like so: p { margin: 0 0 1.6em 0; } Again, do this via CSS in the head when building your email, then use Premailer to bring it inline for each paragraph later. If part of your design is height-sensitive and calls for pixel perfection, I recommend avoiding paragraphs altogether and setting the text formatting inline in the table cell. You might need to use table nesting or cellpadding / CSS to get the desired result. Here’s an example: <td width="200" style="font-weight:bold; font-size:1em; line-height:1.2em; font-family:georgia,'times',serif;">your height sensitive text</td> Links Some email clients will overwrite your link colors with their defaults, and you can avoid this by taking two steps. First, set a default color for each link inline like so: <a href="http://somesite.com/" style="color:#ff00ff">this is a link</a> Next, add a redundant span inside the a tag. <a href="http://somesite.com/" style="color:#ff00ff"><span style="color:#ff00ff">this is a link</span></a> To some this may be overkill, but if link color is important to your design then a superfluous span is the best way to achieve consistency. Images in HTML emails The most important thing to remember about images in email is that they won’t be visible by default for many subscribers. If you start your design with that assumption, it forces you to keep things simple and ensure no important content is suppressed by image blocking. With this in mind, here are the essentials to remember when using images in HTML email: Avoid spacer images While the combination of spacer images and nested tables was popular on the web ten years ago, image blocking in many email clients has ruled it out as a reliable technique today. Most clients replace images with an empty placeholder in the same dimensions, others strip the image altogether. Given image blocking is on by default in most email clients, this can lead to a poor first impression for many of your subscribers. Stick to fixed cell widths to keep your formatting in place with or without images. Always include the dimensions of your image If you forget to set the dimensions for each image, a number of clients will invent their own sizes when images are blocked and break your layout. Also, ensure that any images are correctly sized before adding them to your email. Some email clients will ignore the dimensions specified in code and rely on the true dimensions of your image. Avoid PNGs Lotus Notes 6 and 7 don’t support 8-bit or 24-bit PNG images, so stick with the GIF or JPG formats for all images, even if it means some additional file size. Provide fallback colors for background images Outlook 2007 has no support for background images (aside from this hack to get full page background images working). If you want to use a background image in your design, always provide a background color the email client can fall back on. This solves both the image blocking and Outlook 2007 problem simultaneously. Don’t forget alt text Lack of standards support means email clients have long destroyed the chances of a semantic and accessible HTML email. Even still, providing alt text is important from an image blocking perspective. Even with images suppressed by default, many email clients will display the provided alt text instead. Just remember that some email clients like Outlook 2007, Hotmail and Apple Mail don’t support alt text at all when images are blocked. Use the display hack for Hotmail For some inexplicable reason, Windows Live Hotmail adds a few pixels of additional padding below images. A workaround is to set the display property like so. img {display:block;} This removes the padding in Hotmail and still gives you the predicable result in other email clients. Don’t use floats Both Outlook 2007 and earlier versions of Notes offer no support for the float property. Instead, use the align attribute of the img tag to float images in your email. <img src="image.jpg" align="right"> If you’re seeing strange image behavior in Yahoo! Mail, adding align=“top” to your images can often solve this problem. Video in email With no support for JavaScript or the object tag, video in email (if you can call it that) has long been limited to animated gifs. However, some recent research I did into the HTML5 video tag in email showed some promising results. Turns out HTML5 video does work in many email clients right now, including Apple Mail, Entourage 2008, MobileMe and the iPhone. The real benefit of this approach is that if the video isn’t supported, you can provide reliable fallback content such as an animated GIF or a clickable image linking to the video in the browser. Of course, the question of whether you should add video to email is another issue altogether. If you lean toward the “yes” side check out the technique with code samples. What about mobile email? The mobile email landscape was a huge mess until recently. With the advent of the iPhone, Android and big improvements from Palm and RIM, it’s becoming less important to think of mobile as a different email platform altogether. That said, there are a few key pointers to keep in mind when coding your emails to get a decent result for your more mobile subscribers. Keep the width less than 600 pixels Because of email client preview panes, this rule was important long before mobile email clients came of age. In truth, the iPhone and Pre have a viewport of 320 pixels, the Droid 480 pixels and the Blackberry models hover around 360 pixels. Sticking to a maximum of 600 pixels wide ensures your design should still be readable when scaled down for each device. This width also gives good results in desktop and web-based preview panes. Be aware of automatic text resizing In what is almost always a good feature, email clients using webkit (such as the iPhone, Pre and Android) can automatically adjust font sizes to increase readability. If testing shows this feature is doing more harm than good to your design, you can always disable it with the following CSS rule: -webkit-text-size-adjust: none; Don’t forget to test While standards support in email clients hasn’t made much progress in the last few years, there has been continual change (for better or worse) in some email clients. Web-based providers like Yahoo!, Hotmail and Gmail are notorious for this. On countless occasions I’ve seen a proven design suddenly stop working without explanation. For this reason alone it’s important to retest your email designs on a regular basis. I find a quick test every month or so does the trick, especially in the web-based clients. The good news is that after designing and testing a few HTML email campaigns, you will find that order will emerge from the chaos. Many of these pitfalls will become quite predictable and your inbox-friendly designs will take shape with them in mind. Looking ahead Designing HTML email can be a tough pill for new designers and standardistas to swallow, especially given the fickle and retrospective nature of email clients today. With HTML5 just around the corner we are entering a new, uncertain phase. Will email client developers take the opportunity to repent on past mistakes and bring email clients into the present? The aim of groups such as the Email Standards Project is to make much of the above advice as redundant as the long-forgotten <blink> and <marquee> tags, however, only time will tell if this is to become a reality. Although not the most compliant (or fashionable) medium, the results speak for themselves – email is, and will continue to be one of the most successful and targeted marketing channels available to you. As a designer with HTML email design skills in your arsenal, you have the opportunity to not only broaden your service offering, but gain a unique appreciation of how vital standards are. Next steps Ready to get started? There are a number of HTML email design galleries to provide ideas and inspiration for your own designs. http://www.campaignmonitor.com/gallery/ http://htmlemailgallery.com/ http://inboxaward.com/ Enjoy! 2009 David Greiner davidgreiner 2009-12-13T00:00:00+00:00 https://24ways.org/2009/rock-solid-html-emails/ code
175 Front-End Code Reusability with CSS and JavaScript Most web standards-based developers are more than familiar with creating their sites with semantic HTML with lots and lots of CSS. With each new page in a design, the CSS tends to grow and grow and more elements and styles are added. But CSS can be used to better effect. The idea of object-oriented CSS isn’t new. Nicole Sullivan has written a presentation on the subject and outlines two main concepts: separate structure and visual design; and separate container and content. Jeff Croft talks about Applying OOP Concepts to CSS: I can make a class of .box that defines some basic layout structure, and another class of .rounded that provides rounded corners, and classes of .wide and .narrow that define some widths, and then easily create boxes of varying widths and styles by assigning multiple classes to an element, without having to duplicate code in my CSS. This concept helps reduce CSS file size, allows for great flexibility, rapid building of similar content areas and means greater consistency throughout the entire design. You can also take this concept one step further and apply it to site behaviour with JavaScript. Build a versatile slideshow I will show you how to build multiple slideshows using jQuery, allowing varying levels of functionality which you may find on one site design. The code will be flexible enough to allow you to add previous/next links, image pagination and the ability to change the animation type. More importantly, it will allow you to apply any combination of these features. Image galleries are simply a list of images, so the obvious choice of marking the content up is to use a <ul>. Many designs, however, do not cater to non-JavaScript versions of the website, and thus don’t take in to account large multiple images. You could also simply hide all the other images in the list, apart from the first image. This method can waste bandwidth because the other images might be downloaded when they are never going to be seen. Taking this second concept — only showing one image — the only code you need to start your slideshow is an <img> tag. The other images can be loaded dynamically via either a per-page JavaScript array or via AJAX. The slideshow concept is built upon the very versatile Cycle jQuery Plugin and is structured in to another reusable jQuery plugin. Below is the HTML and JavaScript snippet needed to run every different type of slideshow I have mentioned above. <img src="path/to/image.jpg" alt="About the image" title="" height="250" width="400" class="slideshow"> <script type="text/javascript"> jQuery().ready(function($) { $('img.slideshow').slideShow({ images: ['1.jpg', '2.jpg', '3.jpg'] }); }); </script> Slideshow plugin If you’re not familiar with jQuery or how to write and author your own plugin there are plenty of articles to help you out. jQuery has a chainable interface and this is something your plugin must implement. This is easy to achieve, so your plugin simply returns the collection it is using: return this.each( function () {} }; Local Variables To keep the JavaScript clean and avoid any conflicts, you must set up any variables which are local to the plugin and should be used on each collection item. Defining all your variables at the top under one statement makes adding more and finding which variables are used easier. For other tips, conventions and improvements check out JSLint, the “JavaScript Code Quality Tool”. var $$, $div, $images, $arrows, $pager, id, selector, path, o, options, height, width, list = [], li = 0, parts = [], pi = 0, arrows = ['Previous', 'Next']; Cache jQuery Objects It is good practice to cache any calls made to jQuery. This reduces wasted DOM calls, can improve the speed of your JavaScript code and makes code more reusable. The following code snippet caches the current selected DOM element as a jQuery object using the variable name $$. Secondly, the plugin makes its settings available to the Metadata plugin‡ which is best practice within jQuery plugins. For each slideshow the plugin generates a <div> with a class of slideshow and a unique id. This is used to wrap the slideshow images, pagination and controls. The base path which is used for all the images in the slideshow is calculated based on the existing image which appears on the page. For example, if the path to the image on the page was /img/flowers/1.jpg the plugin would use the path /img/flowers/ to load the other images. $$ = $(this); o = $.metadata ? $.extend({}, settings, $$.metadata()) : settings; id = 'slideshow-' + (i++ + 1); $div = $('<div />').addClass('slideshow').attr('id', id); selector = '#' + id + ' '; path = $$.attr('src').replace(/[0-9]\.jpg/g, ''); options = {}; height = $$.height(); width = $$.width(); Note: the plugin uses conventions such as folder structure and numeric filenames. These conventions help with the reusable aspect of plugins and best practices. Build the Images The cycle plugin uses a list of images to create the slideshow. Because we chose to start with one image we must now build the list programmatically. This is a case of looping through the images which were added via the plugin options, building the appropriate HTML and appending the resulting <ul> to the DOM. $.each(o.images, function () { list[li++] = '<li>'; list[li++] = '<img src="' + path + this + '" height="' + height + '" width="' + width + '">'; list[li++] = '</li>'; }); $images = $('<ul />').addClass('cycle-images'); $images.append(list.join('')).appendTo($div); Although jQuery provides the append method it is much faster to create one really long string and append it to the DOM at the end. Update the Options Here are some of the options we’re making available by simply adding classes to the <img>. You can change the slideshow effect from the default fade to the sliding effect. By adding the class of stopped the slideshow will not auto-play and must be controlled via pagination or previous and next links. // different effect if ($$.is('.slide')) { options.fx = 'scrollHorz'; } // don't move by default if ($$.is('.stopped')) { options.timeout = 0; } If you are using the same set of images throughout a website you may wish to start on a different image on each page or section. This can be easily achieved by simply adding the appropriate starting class to the <img>. // based on the class name on the image if ($$.is('[class*=start-]')) { options.startingSlide = parseInt($$.attr('class').replace(/.*start-([0-9]+).*/g, "$1"), 10) - 1; } For example: <img src="/img/slideshow/3.jpg" alt="About the image" title="" height="250" width="400" class="slideshow start-3"> By default, and without JavaScript, the third image in this slideshow is shown. When the JavaScript is applied to the page the slideshow must know to start from the correct place, this is why the start class is required. You could capture the default image name and parse it to get the position, but only the default image needs to be numeric to work with this plugin (and could easily be changed in future). Therefore, this extra specifically defined option means the plugin is more tolerant. Previous/Next Links A common feature of slideshows is previous and next links enabling the user to manually progress the images. The Cycle plugin supports this functionality, but you must generate the markup yourself. Most people add these directly in the HTML but normally only support their behaviour when JavaScript is enabled. This goes against progressive enhancement. To keep with the best practice progress enhancement method the previous/next links should be generated with JavaScript. The follow snippet checks whether the slideshow requires the previous/next links, via the arrows class. It restricts the Cycle plugin to the specific slideshow using the selector we created at the top of the plugin. This means multiple slideshows can run on one page without conflicting each other. The code creates a <ul> using the arrows array we defined at the top of the plugin. It also adds a class to the slideshow container, meaning you can style different combinations of options in your CSS. // create the arrows if ($$.is('.arrows') && list.length > 1) { options.next = selector + '.next'; options.prev = selector + '.previous'; $arrows = $('<ul />').addClass('cycle-arrows'); $.each(arrows, function (i, val) { parts[pi++] = '<li class="' + val.toLowerCase() + '">'; parts[pi++] = '<a href="#' + val.toLowerCase() + '">'; parts[pi++] = '<span>' + val + '</span>'; parts[pi++] = '</a>'; parts[pi++] = '</li>'; }); $arrows.append(parts.join('')).appendTo($div); $div.addClass('has-cycle-arrows'); } The arrow array could be placed inside the plugin settings to allow for localisation. Pagination The Cycle plugin creates its own HTML for the pagination of the slideshow. All our plugin needs to do is create the list and selector to use. This snippet creates the pagination container and appends it to our specific slideshow container. It sets the Cycle plugin pager option, restricting it to the specific slideshow using the selector we created at the top of the plugin. Like the previous/next links, a class is added to the slideshow container allowing you to style the slideshow itself differently. // create the clickable pagination if ($$.is('.pagination') && list.length > 1) { options.pager = selector + '.cycle-pagination'; $pager = $('<ul />').addClass('cycle-pagination'); $pager.appendTo($div); $div.addClass('has-cycle-pagination'); } Note: the Cycle plugin creates a <ul> with anchors listed directly inside without the surrounding <li>. Unfortunately this is invalid markup but the code still works. Demos Well, that describes all the ins-and-outs of the plugin, but demos make it easier to understand! Viewing the source on the demo page shows some of the combinations you can create with a simple <img>, a few classes and some thought-out JavaScript. View the demos → Decide on defaults The slideshow plugin uses the exact same settings as the Cycle plugin, but some are explicitly set within the slideshow plugin when using the classes you have set. When deciding on what functionality is going to be controlled via this class method, be careful to choose your defaults wisely. If all slideshows should auto-play, don’t make this an option — make the option to stop the auto-play. Similarly, if every slideshow should have previous/next functionality make this the default and expose the ability to remove them with a class such as “no-pagination”. In the examples presented on this article I have used a class on each <img>. You can easily change this to anything you want and simply apply the plugin based on the jQuery selector required. Grab your images If you are using AJAX to load in your images, you can speed up development by deciding on and keeping to a folder structure and naming convention. There are two methods: basing the image path based on the current URL; or based on the src of the image. The first allows a different slideshow on each page, but in many instances a site will have a couple of sets of images and therefore the second method is probably preferred. Metadata ‡ A method which allows you to directly modify settings in certain plugins, which also uses the classes from your HTML already exists. This is a jQuery plugin called Metadata. This method allows for finer control over the plugin settings themselves. Some people, however, may dislike the syntax and prefer using normal classes, like above which when sprinkled with a bit more JavaScript allows you to control what you need to control. The takeaway Hopefully you have understood not only what goes in to a basic jQuery plugin but also learnt a new and powerful idea which you can apply to other areas of your website. The idea can also be applied to other common interfaces such as lightboxes or mapping services such as Google Maps — for example creating markers based on a list of places, each with different pin icons based the anchor class. 2009 Trevor Morris trevormorris 2009-12-06T00:00:00+00:00 https://24ways.org/2009/front-end-code-reusability-with-css-and-javascript/ code
177 HTML5: Tool of Satan, or Yule of Santa? It would lead to unseasonal arguments to discuss the title of this piece here, and the arguments are as indigestible as the fourth turkey curry of the season, so we’ll restrict our article to the practical rather than the philosophical: what HTML5 can you reasonably expect to be able to use reliably cross-browser in the early months of 2010? The answer is that you can use more than you might think, due to the seasonal tinsel of feature-detection and using the sparkly pixie-dust of IE-only VML (but used in a way that won’t damage your Elf). Canvas canvas is a 2D drawing API that defines a blank area of the screen of arbitrary size, and allows you to draw on it using JavaScript. The pictures can be animated, such as in this canvas mashup of Wolfenstein 3D and Flickr. (The difference between canvas and SVG is that SVG uses vector graphics, so is infinitely scalable. It also keeps a DOM, whereas canvas is just pixels so you have to do all your own book-keeping yourself in JavaScript if you want to know where aliens are on screen, or do collision detection.) Previously, you needed to do this using Adobe Flash or Java applets, requiring plugins and potentially compromising keyboard accessibility. Canvas drawing is supported now in Opera, Safari, Chrome and Firefox. The reindeer in the corner is, of course, Internet Explorer, which currently has zero support for canvas (or SVG, come to that). Now, don’t pull a face like all you’ve found in your Yuletide stocking is a mouldy satsuma and a couple of nuts—that’s not the end of the story. Canvas was originally an Apple proprietary technology, and Internet Explorer had a similar one called Vector Markup Language which was submitted to the W3C for standardisation in 1998 but which, unlike canvas, was not blessed with retrospective standardisation. What you need, then, is some way for Internet Explorer to translate canvas to VML on-the-fly, while leaving the other, more standards-compliant browsers to use the HTML5. And such a way exists—it’s a JavaScript library called excanvas. It’s downloadable from http://code.google.com/p/explorercanvas/ and it’s simple to include it via a conditional comment in the head for IE: <!--[if IE]> <script src="excanvas.js"></script> <![endif]--> Simply include this, and your canvas will be natively supported in the modern browsers (and the library won’t even be downloaded) whereas IE will suddenly render your canvas using its own VML engine. Be sure, however, to check it carefully, as the IE JavaScript engine isn’t so fast and you’ll need to be sure that performance isn’t too degraded to use. Forms Since the beginning of the Web, developers have been coding forms, and then writing JavaScript to check whether an input is a correctly formed email address, URL, credit card number or conforms to some other pattern. The cumulative labour of the world’s developers over the last 15 years makes whizzing round in a sleigh and delivering presents seem like popping to the corner shop in comparison. With HTML5, that’s all about to change. As Yaili began to explore on Day 3, a host of new attributes to the input element provide built-in validation for email address formats (input type=email), URLs (input type=url), any pattern that can be expressed with a JavaScript-syntax regex (pattern="[0-9][A-Z]{3}") and the like. New attributes such as required, autofocus, input type=number min=3 max=50 remove much of the tedious JavaScript from form validation. Other, really exciting input types are available (see all input types). The datalist is reminiscent of a select box, but allows the user to enter their own text if they don’t want to choose one of the pre-defined options. input type=range is rendered as a slider, while input type=date pops up a date picker, all natively in the browser with no JavaScript required at all. Currently, support is most complete in an experimental implementation in Opera and a number of the new attributes in Webkit-based browsers. But don’t let that stop you! The clever thing about the specification of the new Web Forms is that all the new input types are attributes (rather than elements). input defaults to input type=text, so if a browser doesn’t understand a new HTML5 type, it gracefully degrades to a plain text input. So where does that leave validation in those browsers that don’t support Web Forms? The answer is that you don’t retire your pre-existing JavaScript validation just yet, but you leave it as a fallback after doing some feature detection. To detect whether (say) input type=email is supported, you make a new input type=email with JavaScript but don’t add it to the page. Then, you interrogate your new element to find out what its type attribute is. If it’s reported back as “email”, then the browser supports the new feature, so let it do its work and don’t bring in any JavaScript validation. If it’s reported back as “text”, it’s fallen back to the default, indicating that it’s not supported, so your code should branch to your old validation routines. Alternatively, use the small (7K) Modernizr library which will do this work for you and give you JavaScript booleans like Modernizr.inputtypes[email] set to true or false. So what does this buy you? Well, first and foremost, you’re future-proofing your code for that time when all browsers support these hugely useful additions to forms. Secondly, you buy a usability and accessibility win. Although it’s tempting to style the stuffing out of your form fields (which can, incidentally, lead to madness), whatever your branding people say, it’s better to leave forms as close to the browser defaults as possible. A browser’s slider and date pickers will be the same across different sites, making it much more comprehensible to users. And, by using native controls rather than faking sliders and date pickers with JavaScript, your forms are much more likely to be accessible to users of assistive technology. HTML5 DOCTYPE You can use the new DOCTYPE !doctype html now and – hey presto – you’re writing HTML5, as it’s pretty much a superset of HTML4. There are some useful advantages to doing this. The first is that the HTML5 validator (I use http://html5.validator.nu) also validates ARIA information, whereas the HTML4 validator doesn’t, as ARIA is a new spec developed after HTML4. (Actually, it’s more accurate to say that it doesn’t validate your ARIA attributes, but it doesn’t automatically report them as an error.) Another advantage is that HTML5 allows tabindex as a global attribute (that is, on any element). Although originally designed as an accessibility bolt-on, I ordinarily advise you don’t use it; a well-structured page should provide a logical tab order through links and form fields already. However, tabindex="-1" is a legal value in HTML5 as it allows for the element to be programmatically focussable by JavaScript. It’s also very useful for correcting a bug in Internet Explorer when used with a keyboard; in-page links go nowhere if the destination doesn’t have a proprietary property called hasLayout set or a tabindex of -1. So, whether it is the tool of Satan or yule of Santa, HTML5 is just around the corner. Some you can use now, and by the end of 2010 I predict you’ll be able to use a whole lot more as new browser versions are released. 2009 Bruce Lawson brucelawson 2009-12-05T00:00:00+00:00 https://24ways.org/2009/html5-tool-of-satan-or-yule-of-santa/ code
179 Have a Field Day with HTML5 Forms Forms are usually seen as that obnoxious thing we have to markup and style. I respectfully disagree: forms (on a par with tables) are the most exciting thing we have to work with. Here we’re going to take a look at how to style a beautiful HTML5 form using some advanced CSS and latest CSS3 techniques. I promise you will want to style your own forms after you’ve read this article. Here’s what we’ll be creating: The form. (Icons from Chalkwork Payments) Meaningful markup We’re going to style a simple payment form. There are three main sections on this form: The person’s details The address details The credit card details We are also going to use some of HTML5’s new input types and attributes to create more meaningful fields and use less unnecessary classes and ids: email, for the email field tel, for the telephone field number, for the credit card number and security code required, for required fields placeholder, for the hints within some of the fields autofocus, to put focus on the first input field when the page loads There are a million more new input types and form attributes on HTML5, and you should definitely take a look at what’s new on the W3C website. Hopefully this will give you a good idea of how much more fun form markup can be. A good foundation Each section of the form will be contained within its own fieldset. In the case of the radio buttons for choosing the card type, we will enclose those options in another nested fieldset. We will also be using an ordered list to group each label / input pair. This will provide us with a (kind of) semantic styling hook and it will also make the form easier to read when viewing with no CSS applied: The unstyled form So here’s the markup we are going to be working with: <form id=payment> <fieldset> <legend>Your details</legend> <ol> <li> <label for=name>Name</label> <input id=name name=name type=text placeholder="First and last name" required autofocus> </li> <li> <label for=email>Email</label> <input id=email name=email type=email placeholder="example@domain.com" required> </li> <li> <label for=phone>Phone</label> <input id=phone name=phone type=tel placeholder="Eg. +447500000000" required> </li> </ol> </fieldset> <fieldset> <legend>Delivery address</legend> <ol> <li> <label for=address>Address</label> <textarea id=address name=address rows=5 required></textarea> </li> <li> <label for=postcode>Post code</label> <input id=postcode name=postcode type=text required> </li> <li> <label for=country>Country</label> <input id=country name=country type=text required> </li> </ol> </fieldset> <fieldset> <legend>Card details</legend> <ol> <li> <fieldset> <legend>Card type</legend> <ol> <li> <input id=visa name=cardtype type=radio> <label for=visa>VISA</label> </li> <li> <input id=amex name=cardtype type=radio> <label for=amex>AmEx</label> </li> <li> <input id=mastercard name=cardtype type=radio> <label for=mastercard>Mastercard</label> </li> </ol> </fieldset> </li> <li> <label for=cardnumber>Card number</label> <input id=cardnumber name=cardnumber type=number required> </li> <li> <label for=secure>Security code</label> <input id=secure name=secure type=number required> </li> <li> <label for=namecard>Name on card</label> <input id=namecard name=namecard type=text placeholder="Exact name as on the card" required> </li> </ol> </fieldset> <fieldset> <button type=submit>Buy it!</button> </fieldset> </form> Making things look nice First things first, so let’s start by adding some defaults to our form by resetting the margins and paddings of the elements and adding a default font to the page: html, body, h1, form, fieldset, legend, ol, li { margin: 0; padding: 0; } body { background: #ffffff; color: #111111; font-family: Georgia, "Times New Roman", Times, serif; padding: 20px; } Next we are going to style the form element that is wrapping our fields: form#payment { background: #9cbc2c; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; padding: 20px; width: 400px; } We will also remove the border from the fieldset and apply some bottom margin to it. Using the :last-of-type pseudo-class, we remove the bottom margin of the last fieldset — there is no need for it: form#payment fieldset { border: none; margin-bottom: 10px; } form#payment fieldset:last-of-type { margin-bottom: 0; } Next we’ll make the legends big and bold, and we will also apply a light-green text-shadow, to add that little extra special detail: form#payment legend { color: #384313; font-size: 16px; font-weight: bold; padding-bottom: 10px; text-shadow: 0 1px 1px #c0d576; } Our legends are looking great, but how about adding a clear indication of how many steps our form has? Instead of adding that manually to every legend, we can use automatically generated counters. To add a counter to an element, we have to use either the :before or :after pseudo-elements to add content via CSS. We will follow these steps: create a counter using the counter-reset property on the form element call the counter with the content property (using the same name we’ve created before) with the counter-incremet property, indicate that for each element that matches our selector, that counter will be increased by 1 form#payment > fieldset > legend:before { content: "Step " counter(fieldsets) ": "; counter-increment: fieldsets; } Finally, we need to change the style of the legend that is part of the radio buttons group, to make it look like a label: form#payment fieldset fieldset legend { color: #111111; font-size: 13px; font-weight: normal; padding-bottom: 0; } Styling the lists For our list elements, we’ll just add some nice rounded corners and semi-transparent border and background. Because we are using RGBa colors, we should provide a fallback for browsers that don’t support them (that comes before the RBGa color). For the nested lists, we will remove these properties because they would be overlapping: form#payment ol li { background: #b9cf6a; background: rgba(255,255,255,.3); border-color: #e3ebc3; border-color: rgba(255,255,255,.6); border-style: solid; border-width: 2px; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; line-height: 30px; list-style: none; padding: 5px 10px; margin-bottom: 2px; } form#payment ol ol li { background: none; border: none; float: left; } Form controls Now we only need to style our labels, inputs and the button element. All our labels will look the same, with the exception of the one for the radio elements. We will float them to the left and give them a width. For the credit card type labels, we will add an icon as the background, and override some of the properties that aren’t necessary. We will be using the attribute selector to specify the background image for each label — in this case, we use the for attribute of each label. To add an extra user-friendly detail, we’ll add a cursor: pointer to the radio button labels on the :hover state, so the user knows that he can simply click them to select that option. form#payment label { float: left; font-size: 13px; width: 110px; } form#payment fieldset fieldset label { background:none no-repeat left 50%; line-height: 20px; padding: 0 0 0 30px; width: auto; } form#payment label[for=visa] { background-image: url(visa.gif); } form#payment label[for=amex] { background-image: url(amex.gif); } form#payment label[for=mastercard] { background-image: url(mastercard.gif); } form#payment fieldset fieldset label:hover { cursor: pointer; } Almost there! Now onto the input elements. Here we want to match all inputs, except for the radio ones, and the textarea. For that we will use the negation pseudo-class (:not()). With it we can target all input elements except for the ones with type of radio. We will also make sure to add some :focus styles and add the appropriate styling for the radio inputs: form#payment input:not([type=radio]), form#payment textarea { background: #ffffff; border: none; -moz-border-radius: 3px; -webkit-border-radius: 3px; -khtml-border-radius: 3px; border-radius: 3px; font: italic 13px Georgia, "Times New Roman", Times, serif; outline: none; padding: 5px; width: 200px; } form#payment input:not([type=submit]):focus, form#payment textarea:focus { background: #eaeaea; } form#payment input[type=radio] { float: left; margin-right: 5px; } And finally we come to our submit button. To it, we will just add some nice typography and text-shadow, align it to the center of the form and give it some background colors for its different states: form#payment button { background: #384313; border: none; -moz-border-radius: 20px; -webkit-border-radius: 20px; -khtml-border-radius: 20px; border-radius: 20px; color: #ffffff; display: block; font: 18px Georgia, "Times New Roman", Times, serif; letter-spacing: 1px; margin: auto; padding: 7px 25px; text-shadow: 0 1px 1px #000000; text-transform: uppercase; } form#payment button:hover { background: #1e2506; cursor: pointer; } And that’s it! See the completed form. This form will not look the same on every browser. Internet Explorer and Opera don’t support border-radius (at least not for now); the new input types are rendered as just normal inputs on some browsers; and some of the most advanced CSS, like the counter, :last-of-type or text-shadow are not supported on some browsers. But that doesn’t mean you can’t use them right now, and simplify your development process. My gift to you! 2009 Inayaili de León Persson inayailideleon 2009-12-03T00:00:00+00:00 https://24ways.org/2009/have-a-field-day-with-html5-forms/ code
180 Going Nuts with CSS Transitions I’m going to show you how CSS 3 transforms and WebKit transitions can add zing to the way you present images on your site. Laying the foundations First we are going to make our images look like mini polaroids with captions. Here’s the markup: <div class="polaroid pull-right"> <img src="../img/seal.jpg" alt=""> <p class="caption">Found this little cutie on a walk in New Zealand!</p> </div> You’ll notice we’re using a somewhat presentational class of pull-right here. This means the logic is kept separate from the code that applies the polaroid effect. The polaroid class has no positioning, which allows it to be used generically anywhere that the effect is required. The pull classes set a float and add appropriate margins—they can be used for things like blockquotes as well. .polaroid { width: 150px; padding: 10px 10px 20px 10px; border: 1px solid #BFBFBF; background-color: white; -webkit-box-shadow: 2px 2px 3px rgba(135, 139, 144, 0.4); -moz-box-shadow: 2px 2px 3px rgba(135, 139, 144, 0.4); box-shadow: 2px 2px 3px rgba(135, 139, 144, 0.4); } The actual polaroid effect itself is simply applied using padding, a border and a background colour. We also apply a nice subtle box shadow, using a property that is supported by modern WebKit browsers and Firefox 3.5+. We include the box-shadow property last to ensure that future browsers that support the eventual CSS3 specified version natively will use that implementation over the legacy browser specific version. The box-shadow property takes four values: three lengths and a colour. The first is the horizontal offset of the shadow—positive values place the shadow on the right, while negative values place it to the left. The second is the vertical offset, positive meaning below. If both of these are set to 0, the shadow is positioned equally on all four sides. The last length value sets the blur radius—the larger the number, the blurrier the shadow (therefore the darker you need to make the colour to have an effect). The colour value can be given in any format recognised by CSS. Here, we’re using rgba as explained by Drew behind the first door of this year’s calendar. Rotation For browsers that understand it (currently our old favourites WebKit and FF3.5+) we can add some visual flair by rotating the image, using the transform CSS 3 property. -webkit-transform: rotate(9deg); -moz-transform: rotate(9deg); transform: rotate(9deg); Rotations can be specified in degrees, radians (rads) or grads. WebKit also supports turns unfortunately Firefox doesn’t just yet. For our example, we want any polaroid images on the left hand side to be rotated in the opposite direction, using a negative degree value: .pull-left.polaroid { -webkit-transform: rotate(-9deg); -moz-transform: rotate(-9deg); transform: rotate(-9deg); } Multiple class selectors don’t work in IE6 but as luck would have it, the transform property doesn’t work in any current IE version either. The above code is a good example of progressive enrichment: browsers that don’t support box-shadow or transform will still see the image and basic polaroid effect. Animation WebKit is unique amongst browser rendering engines in that it allows animation to be specified in pure CSS. Although this may never actually make it in to the CSS 3 specification, it degrades nicely and more importantly is an awful lot of fun! Let’s go nuts. In the next demo, the image is contained within a link and mousing over that link causes the polaroid to animate from being angled to being straight. Here’s our new markup: <a href="http://www.flickr.com/photos/nataliedowne/2340993237/" class="polaroid"> <img src="../img/raft.jpg" alt=""> White water rafting in Queenstown </a> And here are the relevant lines of CSS: a.polaroid { /* ... */ -webkit-transform: rotate(10deg); -webkit-transition: -webkit-transform 0.5s ease-in; } a.polaroid:hover, a.polaroid:focus, a.polaroid:active { /* ... */ -webkit-transform: rotate(0deg); } The @-webkit-transition@ property is the magic wand that sets up the animation. It takes three values: the property to be animated, the duration of the animation and a ‘timing function’ (which affects the animation’s acceleration, for a smoother effect). -webkit-transition only takes affect when the specified property changes. In pure CSS, this is done using dynamic pseudo-classes. You can also change the properties using JavaScript, but that’s a story for another time. Throwing polaroids at a table Imagine there are lots of differently sized polaroid photos scattered on a table. That’s the effect we are aiming for with our next demo. As an aside: we are using absolute positioning to arrange the images inside a flexible width container (with a minimum and maximum width specified in pixels). As some are positioned from the left and some from the right when you resize the browser they shuffle underneath each other. This is an effect used on the UX London site. This demo uses a darker colour shadow with more transparency than before. The grey shadow in the previous example worked fine, but it was against a solid background. Since the images are now overlapping each other, the more opaque shadow looked fake. -webkit-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3); -moz-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3); box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3); On hover, as well as our previous trick of animating the image rotation back to straight, we are also making the shadow darker and setting the z-index to be higher than the other images so that it appears on top. And Finally… Finally, for a bit more fun, we’re going to simulate the images coming towards you and lifting off the page. We’ll achieve this by making them grow larger and by offsetting the shadow & making it longer. Screenshot 1 shows the default state, while 2 shows our previous hover effect. Screenshot 3 is the effect we are aiming for, illustrated by demo 4. a.polaroid { /* ... */ z-index: 2; -webkit-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3); -moz-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3); box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3); -webkit-transform: rotate(10deg); -moz-transform: rotate(10deg); transform: rotate(10deg); -webkit-transition: all 0.5s ease-in; } a.polaroid:hover, a.polaroid:focus, a.polaroid:active { z-index: 999; border-color: #6A6A6A; -webkit-box-shadow: 15px 15px 20px rgba(0,0, 0, 0.4); -moz-box-shadow: 15px 15px 20px rgba(0,0, 0, 0.4); box-shadow: 15px 15px 20px rgba(0,0, 0, 0.4); -webkit-transform: rotate(0deg) scale(1.05); -moz-transform: rotate(0deg) scale(1.05); transform: rotate(0deg) scale(1.05); } You’ll notice we are now giving the transform property another transform function: scale, which takes increases the size by the specified factor. Other things you can do with transform include skewing, translating or you can go mad creating your own transforms with a matrix. The box-shadow has both its offset and blur radius increased dramatically, and is darkened using the alpha channel of the rgba colour. And because we want the effects to all animate smoothly, we pass a value of all to the -webkit-transition property, ensuring that any changed property on that link will be animated. Demo 5 is the finished example, bringing everything nicely together. CSS transitions and transforms are a great example of progressive enrichment, which means improving the experience for a portion of the audience without negatively affecting other users. They are also a lot of fun to play with! Further reading -moz-transform – the mozilla developer center has a comprehensive explanation of transform that also applies to -webkit-transform and transform. CSS: Animation Using CSS Transforms – this is a good, more indepth tutorial on animations. CSS Animation – the Safari blog explains the usage of -webkit-transform. Dinky pocketbooks with transform – another use for transforms, create your own printable pocketbook. A while back, Simon wrote a little bookmarklet to spin the entire page… warning: this will spin the entire page. 2009 Natalie Downe nataliedowne 2009-12-14T00:00:00+00:00 https://24ways.org/2009/going-nuts-with-css-transitions/ code
181 Working With RGBA Colour When Tim and I were discussing the redesign of this site last year, one of the clear goals was to have a graphical style without making the pages heavy with a lot of images. When we launched, a lot of people were surprised that the design wasn’t built with PNGs. Instead we’d used RGBA colour values, which is part of the CSS3 specification. What is RGBA Colour? We’re all familiar with specifying colours in CSS using by defining the mix of red, green and blue light required to achieve our tone. This is fine and dandy, but whatever values we specify have one thing in common — the colours are all solid, flat, and well, a bit boring. Flat RGB colours CSS3 introduces a couple of new ways to specify colours, and one of those is RGBA. The A stands for Alpha, which refers to the level of opacity of the colour, or to put it another way, the amount of transparency. This means that we can set not only the red, green and blue values, but also control how much of what’s behind the colour shows through. Like with layers in Photoshop. Don’t We Have Opacity Already? The ability to set the opacity on a colour differs subtly from setting the opacity on an element using the CSS opacity property. Let’s look at an example. Here we have an H1 with foreground and background colours set against a page with a patterned background. Heading with no transparency applied h1 { color: rgb(0, 0, 0); background-color: rgb(255, 255, 255); } By setting the CSS opacity property, we can adjust the transparency of the entire element and its contents: Heading with 50% opacity on the element h1 { color: rgb(0, 0, 0); background-color: rgb(255, 255, 255); opacity: 0.5; } RGBA colour gives us something different – the ability to control the opacity of the individual colours rather than the entire element. So we can set the opacity on just the background: 50% opacity on just the background colour h1 { color: rgb(0, 0, 0); background-color: rgba(255, 255, 255, 0.5); } Or leave the background solid and change the opacity on just the text: 50% opacity on just the foreground colour h1 { color: rgba(0, 0, 0, 0.5); background-color: rgb(255, 255, 255); } The How-To You’ll notice that above I’ve been using the rgb() syntax for specifying colours. This is a bit less common than the usual hex codes (like #FFF) but it makes sense when starting to use RGBA. As there’s no way to specify opacity with hex codes, we use rgba() like so: color: rgba(255, 255, 255, 0.5); Just like rgb() the first three values are red, green and blue. You can specify these 0-255 or 0%-100%. The fourth value is the opacity level from 0 (completely transparent) to 1 (completely opaque). You can use this anywhere you’d normally set a colour in CSS — so it’s good for foregrounds and background, borders, outlines and so on. All the transparency effects on this site’s current design are achieved this way. Supporting All Browsers Like a lot of the features we’ll be looking at in this year’s 24 ways, RGBA colour is supported by a lot of the newest browsers, but not the rest. Firefox, Safari, Chrome and Opera browsers all support RGBA, but Internet Explorer does not. Fortunately, due to the robust design of CSS as a language, we can specify RGBA colours for browsers that support it and an alternative for browsers that do not. Falling back to solid colour The simplest technique is to allow the browser to fall back to using a solid colour when opacity isn’t available. The CSS parsing rules specify that any unrecognised value should be ignored. We can make use of this because a browser without RGBA support will treat a colour value specified with rgba() as unrecognised and discard it. So if we specify the colour first using rgb() for all browsers, we can then overwrite it with an rgba() colour for browsers that understand RGBA. h1 { color: rgb(127, 127, 127); color: rgba(0, 0, 0, 0.5); } Falling back to a PNG In cases where you’re using transparency on a background-color (although not on borders or text) it’s possible to fall back to using a PNG with alpha channel to get the same effect. This is less flexible than using CSS as you’ll need to create a new PNG for each level of transparency required, but it can be a useful solution. Using the same principal as before, we can specify the background in a style that all browsers will understand, and then overwrite it in a way that browsers without RGBA support will ignore. h1 { background: transparent url(black50.png); background: rgba(0, 0, 0, 0.5) none; } It’s important to note that this works because we’re using the background shorthand property, enabling us to set both the background colour and background image in a single declaration. It’s this that enables us to rely on the browser ignoring the second declaration when it encounters the unknown rgba() value. Next Steps The really great thing about RGBA colour is that it gives us the ability to create far more graphically rich designs without the need to use images. Not only does that make for faster and lighter pages, but sites which are easier and quicker to build and maintain. CSS values can also be changed in response to user interaction or even manipulated with JavaScript in a way that’s just not so easy using images. Opacity can be changed on :hover or manipulated with JavaScript div { color: rgba(255, 255, 255, 0.8); background-color: rgba(142, 213, 87, 0.3); } div:hover { color: rgba(255, 255, 255, 1); background-color: rgba(142, 213, 87, 0.6); } Clever use of transparency in border colours can help ease the transition between overlay items and the page behind. Borders can receive the RGBA treatment, too div { color: rgb(0, 0, 0); background-color: rgb(255, 255, 255); border: 10px solid rgba(255, 255, 255, 0.3); } In Conclusion That’s a brief insight into RGBA colour, what it’s good for and how it can be used whilst providing support for older browsers. With the current lack of support in Internet Explorer, it’s probably not a technique that commercial designs will want to heavily rely on right away – simply because of the overhead of needing to think about fallback all the time. It is, however, a useful tool to have for those smaller, less critical touches that can really help to finesse a design. As browser support becomes more mainstream, you’ll already be familiar and practised with RGBA and ready to go. 2009 Drew McLellan drewmclellan 2009-12-01T00:00:00+00:00 https://24ways.org/2009/working-with-rgba-colour/ code
182 Breaking Out The Edges of The Browser HTML5 contains more than just the new entities for a more meaningful document, it also contains an arsenal of JavaScript APIs. So many in fact, that some APIs have outgrown the HTML5 spec’s backyard and have been sent away to grow up all on their own and been given the prestigious honour of being specs in their own right. So when I refer to (bendy finger quote) “HTML5”, I mean the HTML5 specification and a handful of other specifications that help us authors build web applications. Examples of those specs I would include in the umbrella term would be: geolocation, web storage, web databases, web sockets and web workers, to name a few. For all you guys and gals, on this special 2009 series of 24 ways, I’m just going to focus on data storage and offline applications: boldly taking your browser where no browser has gone before! Web Storage The Web Storage API is basically cookies on steroids, a unhealthy dosage of steroids. Cookies are always a pain to work with. First of all you have the problem of setting, changing and deleting them. Typically solved by Googling and blindly relying on PPK’s solution. If that wasn’t enough, there’s the 4Kb limit that some of you have hit when you really don’t want to. The Web Storage API gets around all of the hoops you have to jump through with cookies. Storage supports around 5Mb of data per domain (the spec’s recommendation, but it’s open to the browsers to implement anything they like) and splits in to two types of storage objects: sessionStorage – available to all pages on that domain while the window remains open localStorage – available on the domain until manually removed Support Ignoring beta browsers for our support list, below is a list of the major browsers and their support for the Web Storage API: Latest: Internet Explorer, Firefox, Safari (desktop & mobile/iPhone) Partial: Google Chrome (only supports localStorage) Not supported: Opera (as of 10.10) Usage Both sessionStorage and localStorage support the same interface for accessing their contents, so for these examples I’ll use localStorage. The storage interface includes the following methods: setItem(key, value) getItem(key) key(index) removeItem(key) clear() In the simple example below, we’ll use setItem and getItem to store and retrieve data: localStorage.setItem('name', 'Remy'); alert( localStorage.getItem('name') ); Using alert boxes can be a pretty lame way of debugging. Conveniently Safari (and Chrome) include database tab in their debugging tools (cmd+alt+i), so you can get a visual handle on the state of your data: Viewing localStorage As far as I know only Safari has this view on stored data natively in the browser. There may be a Firefox plugin (but I’ve not found it yet!) and IE… well that’s just IE. Even though we’ve used setItem and getItem, there’s also a few other ways you can set and access the data. In the example below, we’re accessing the stored value directly using an expando and equally, you can also set values this way: localStorage.name = "Remy"; alert( localStorage.name ); // shows "Remy" The Web Storage API also has a key method, which is zero based, and returns the key in which data has been stored. This should also be in the same order that you set the keys, for example: alert( localStorage.getItem(localStorage.key(0)) ); // shows "Remy" I mention the key() method because it’s not an unlikely name for a stored value. This can cause serious problems though. When selecting the names for your keys, you need to be sure you don’t take one of the method names that are already on the storage object, like key, clear, etc. As there are no warnings when you try to overwrite the methods, it means when you come to access the key() method, the call breaks as key is a string value and not a function. You can try this yourself by creating a new stored value using localStorage.key = "foo" and you’ll see that the Safari debugger breaks because it relies on the key() method to enumerate each of the stored values. Usage Notes Currently all browsers only support storing strings. This also means if you store a numeric, it will get converted to a string: localStorage.setItem('count', 31); alert(typeof localStorage.getItem('count')); // shows "string" This also means you can’t store more complicated objects natively with the storage objects. To get around this, you can use Douglas Crockford’s JSON parser (though Firefox 3.5 has JSON parsing support baked in to the browser – yay!) json2.js to convert the object to a stringified JSON object: var person = { name: 'Remy', height: 'short', location: 'Brighton, UK' }; localStorage.setItem('person', JSON.stringify(person)); alert( JSON.parse(localStorage.getItem('person')).name ); // shows "Remy" Alternatives There are a few solutions out there that provide storage solutions that detect the Web Storage API, and if it’s not available, fall back to different technologies (for instance, using a flash object to store data). One comprehensive version of this is Dojo’s storage library. I’m personally more of a fan of libraries that plug missing functionality under the same namespace, just as Crockford’s JSON parser does (above). For those interested it what that might look like, I’ve mocked together a simple implementation of sessionStorage. Note that it’s incomplete (because it’s missing the key method), and it could be refactored to not using the JSON stringify (but you would need to ensure that the values were properly and safely encoded): // requires json2.js for all browsers other than Firefox 3.5 if (!window.sessionStorage && JSON) { window.sessionStorage = (function () { // window.top.name ensures top level, and supports around 2Mb var data = window.top.name ? JSON.parse(window.top.name) : {}; return { setItem: function (key, value) { data[key] = value+""; // force to string window.top.name = JSON.stringify(data); }, removeItem: function (key) { delete data[key]; window.top.name = JSON.stringify(data); }, getItem: function (key) { return data[key] || null; }, clear: function () { data = {}; window.top.name = ''; } }; })(); } Now that we’ve cracked the cookie jar with our oversized Web Storage API, let’s have a look at how we take our applications offline entirely. Offline Applications Offline applications is (still) part of the HTML5 specification. It allows developers to build a web app and have it still function without an internet connection. The app is access via the same URL as it would be if the user were online, but the contents (or what the developer specifies) is served up to the browser from a local cache. From there it’s just an everyday stroll through open web technologies, i.e. you still have access to the Web Storage API and anything else you can do without a web connection. For this section, I’ll refer you to a prototype demo I wrote recently of a contrived Rubik’s cube (contrived because it doesn’t work and it only works in Safari because I’m using 3D transforms). Offline Rubik’s cube Support Support for offline applications is still fairly limited, but the possibilities of offline applications is pretty exciting, particularly as we’re seeing mobile support and support in applications such as Fluid (and I would expect other render engine wrapping apps). Support currently, is as follows: Latest: Safari (desktop & mobile/iPhone) Sort of: Firefox‡ Not supported: Internet Explorer, Opera, Google Chrome ‡ Firefox 3.5 was released to include offline support, but in fact has bugs where it doesn’t work properly (certainly on the Mac), Minefield (Firefox beta) has resolved the bug. Usage The status of the application’s cache can be tested from the window.applicationCache object. However, we’ll first look at how to enable your app for offline access. You need to create a manifest file, which will tell the browser what to cache, and then we point our web page to that cache: <!DOCTYPE html> <html manifest="remy.manifest"> <!-- continues ... --> For the manifest to be properly read by the browser, your server needs to serve the .manifest files as text/manifest by adding the following to your mime.types: text/cache-manifest manifest Next we need to populate our manifest file so the browser can read it: CACHE MANIFEST /demo/rubiks/index.html /demo/rubiks/style.css /demo/rubiks/jquery.min.js /demo/rubiks/rubiks.js # version 15 The first line of the manifest must read CACHE MANIFEST. Then subsequent lines tell the browser what to cache. The HTML5 spec recommends that you include the calling web page (in my case index.html), but it’s not required. If I didn’t include index.html, the browser would cache it as part of the offline resources. These resources are implicitly under the CACHE namespace (which you can specify any number of times if you want to). In addition, there are two further namespaces: NETWORK and FALLBACK. NETWORK is a whitelist namespace that tells the browser not to cache this resource and always try to request it through the network. FALLBACK tells the browser that whilst in offline mode, if the resource isn’t available, it should return the fallback resource. Finally, in my example I’ve included a comment with a version number. This is because once you include a manifest, the only way you can tell the browser to reload the resources is if the manifest contents changes. So I’ve included a version number in the manifest which I can change forcing the browser to reload all of the assets. How it works If you’re building an app that makes use of the offline cache, I would strongly recommend that you add the manifest last. The browser implementations are very new, so can sometimes get a bit tricky to debug since once the resources are cached, they really stick in the browser. These are the steps that happen during a request for an app with a manifest: Browser: sends request for your app.html Server: serves all associated resources with app.html – as normal Browser: notices that app.html has a manifest, it re-request the assets in the manifest Server: serves the requested manifest assets (again) Browser: window.applicationCache has a status of UPDATEREADY Browser: reloads Browser: only request manifest file (which doesn’t show on the net requests panel) Server: responds with 304 Not Modified on the manifest file Browser: serves all the cached resources locally What might also add confusion to this process, is that the way the browsers work (currently) is if there is a cache already in place, it will use this first over updated resources. So if your manifest has changed, the browser will have already loaded the offline cache, so the user will only see the updated on the next reload. This may seem a bit convoluted, but you can also trigger some of this manually through the applicationCache methods which can ease some of this pain. If you bind to the online event you can manually try to update the offline cache. If the cache has then updated, swap the updated resources in to the cache and the next time the app loads it will be up to date. You could also prompt your user to reload the app (which is just a refresh) if there’s an update available. For example (though this is just pseudo code): addEvent(applicationCache, 'updateready', function () { applicationCache.swapCache(); tellUserToRefresh(); }); addEvent(window, 'online', function () { applicationCache.update(); }); Breaking out of the Browser So that’s two different technologies that you can use to break out of the traditional browser/web page model and get your apps working in a more application-ny way. There’s loads more in the HTML5 and non-HTML5 APIs to play with, so take your Christmas break to check them out! 2009 Remy Sharp remysharp 2009-12-02T00:00:00+00:00 https://24ways.org/2009/breaking-out-the-edges-of-the-browser/ code
184 Spruce It Up The landscape of web typography is changing quickly these days. We’ve gone from the wild west days of sIFR to Cufón to finally seeing font embedding seeing wide spread adoption by browser developers (and soon web designers) with @font-face. For those who’ve felt limited by the typographic possibilities before, this has been a good year. As Mark Boulton has so eloquently elucidated, @font-face embedding doesn’t come without its drawbacks. Font files can be quite large and FOUT—that nasty flash of unstyled text—can be a distraction for users. Data URIs We can battle FOUT by using Data URIs. A Data URI allows the font to be encoded right into the CSS file. When the font comes with the CSS, the flash of unstyled text is mitigated. No extra HTTP requests are required. Don’t be a grinch, though. Sending hundreds of kilobytes down the pipe still isn’t great. Sometimes, all we want to do is spruce up our site with a little typographic sugar. Be Selective Dan Cederholm’s SimpleBits is an attractive site. Take a look at the ampersand within the header of his site. It’s the lovely (and free) Goudy Bookletter 1911 available from The League of Movable Type. The Opentype format is a respectable 28KB. Nothing too crazy but hold on here. Mr. Cederholm is only using the ampersand! Ouch. That’s a lot of bandwidth just for one character. Can we optimize a font like we can an image? Yes. Image optimization essentially works by removing unnecessary image data such as colour data, hidden comments or using compression algorithms. How do you remove unnecessary information from a font? Subsetting. If you’re the adventurous type, grab a copy of FontForge, which is an open source font editing tool. You can open the font, view and edit any of the glyphs and then re-generate the font. The interface is a little clunky but you’ll be able to select any character you don’t want and then cut the glyphs. Re-generate your font and you’ve now got a smaller file. There are certainly more optimizations that can also be made such as removing hinting and kerning information. Keep in mind that removing this information may affect how well the type renders. At this time of year, though, I’m sure you’re quite busy. Save yourself some time and head on over to the Font Squirrel Font Generator. The Font Generator is extremely handy and allows for a number of optimizations and cross-platform options to be generated instantly. Select the font from your local system—make sure that you are only using properly licensed fonts! In this particular case, we only want the ampersand. Click on Subset Fonts which will open up a new menu. Unselect any preselected sets and enter the ampersand into the Single Characters text box. Generate your font and what are you left with? 3KB. The Font Generator even generates a base64 encoded data URI stylesheet to be imported easily into your project. Check out the Demo page. (This demo won’t work in Internet Explorer as we’re only demonstrating the Data URI font embedding and not using the EOT file format that IE requires.) No Unnecessary Additives If you peeked under the hood of that demo, did you notice something interesting? There’s no <span> around the ampersand. The great thing about this is that we can take advantage of the font stack’s natural ability to switch to a fallback font when a character isn’t available. Just like that, we’ve managed to spruce up our page with a little typographic sugar without having to put on too much weight. 2009 Jonathan Snook jonathansnook 2009-12-19T00:00:00+00:00 https://24ways.org/2009/spruce-it-up/ code
186 The Web Is Your CMS It is amazing what you can do these days with the services offered on the web. Flickr stores terabytes of photos for us and converts them automatically to all kind of sizes, finds people in them and even allows us to edit them online. YouTube does almost the same complete job with videos, LinkedIn allows us to maintain our CV, Delicious our bookmarks and so on. We don’t have to do these tasks ourselves any more, as all of these systems also come with ways to use the data in the form of Application Programming Interfaces, or APIs for short. APIs give us raw data when we send requests telling the system what we want to get back. The problem is that every API has a different idea of what is a simple way of accessing this data and in which format to give it back. Making it easier to access APIs What we need is a way to abstract the pains of different data formats and authentication formats away from the developer — and this is the purpose of the Yahoo Query Language, or YQL for short. Libraries like jQuery and YUI make it easy and reliable to use JavaScript in browsers (yes, even IE6) and YQL allows us to access web services and even the data embedded in web documents in a simple fashion – SQL style. Select * from the web and filter it the way I want YQL is a web service that takes a few inputs itself: A query that tells it what to get, update or access An output format – XML, JSON, JSON-P or JSON-P-X A callback function (if you defined JSON-P or JSON-P-X) You can try it out yourself – check out this link to get back Flickr photos for the search term ‘santa’*%20from%20flickr.photos.search%20where%20text%3D%22santa%22&format=xml in XML format. The YQL query for this is select * from flickr.photos.search where text="santa" The easiest way to take your first steps with YQL is to look at the console. There you get sample queries, access to all the data sources available to you and you can easily put together complex queries. In this article, however, let’s use PHP to put together a web page that pulls in Flickr photos, blog posts, Videos from YouTube and latest bookmarks from Delicious. Check out the demo and get the source code on GitHub. <?php /* YouTube RSS */ $query = 'select description from rss(5) where url="http://gdata.youtube.com/feeds/base/users/chrisheilmann/uploads?alt=rss&v=2&orderby=published&client=ytapi-youtube-profile";'; /* Flickr search by user id */ $query .= 'select farm,id,owner,secret,server,title from flickr.photos.search where user_id="11414938@N00";'; /* Delicious RSS */ $query .= 'select title,link from rss where url="http://feeds.delicious.com/v2/rss/codepo8?count=10";'; /* Blog RSS */ $query .= 'select title,link from rss where url="http://feeds.feedburner.com/wait-till-i/gwZf"'; /* The YQL web service root with JSON as the output */ $root = 'http://query.yahooapis.com/v1/public/yql?format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys'; /* Assemble the query */ $query = "select * from query.multi where queries='".$query."'"; $url = $root . '&q=' . urlencode($query); /* Do the curl call (access the data just like a browser would) */ $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url); curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false); $output = curl_exec($ch); curl_close($ch); $data = json_decode($output); $results = $data->query->results->results; /* YouTube output */ $youtube = '<ul id="youtube">'; foreach($results[0]->item as $r){ $cleanHTML = undoYouTubeMarkupCrimes($r->description); $youtube .= '<li>'.$cleanHTML.'</li>'; } $youtube .= '</ul>'; /* Flickr output */ $flickr = '<ul id="flickr">'; foreach($results[1]->photo as $r){ $flickr .= '<li>'. '<a href="http://www.flickr.com/photos/codepo8/'.$r->id.'/">'. '<img src="http://farm' .$r->farm . '.static.flickr.com/'. $r->server . '/' . $r->id . '_' . $r->secret . '_s.jpg" alt="'.$r->title.'"></a></li>'; } $flickr .= '</ul>'; /* Delicious output */ $delicious = '<ul id="delicious">'; foreach($results[2]->item as $r){ $delicious .= '<li><a href="'.$r->link.'">'.$r->title.'</a></li>'; } $delicious .= '</ul>'; /* Blog output */ $blog = '<ul id="blog">'; foreach($results[3]->item as $r){ $blog .= '<li><a href="'.$r->link.'">'.$r->title.'</a></li>'; } $blog .= '</ul>'; function undoYouTubeMarkupCrimes($str){ $cleaner = preg_replace('/555px/','100%',$str); $cleaner = preg_replace('/width="[^"]+"/','',$cleaner); $cleaner = preg_replace('/<tbody>/','<colgroup><col width="20%"><col width="50%"><col width="30%"></colgroup><tbody>',$cleaner); return $cleaner; } ?> What we are doing here is create a few different YQL statements and queue them together with the query.multi table. Each of these can be run inside YQL itself. Check out the YouTube, Flickr, Delicious and Blog example in the console if you don’t believe me. The benefit of using this table is that we don’t make individual requests for each query but we get all the data in one single request – which means a much better performing solution as the YQL server farm is faster on the web than our servers. We point the query to the YQL web service end point and get the resulting data using cURL. All that we need to do then is to convert the returned data to HTML lists that can be printed out inside an HTML template. Mixing, matching and using HTML as a data source This was a simple example of what YQL can do for you. Where it gets really powerful however is by mixing and matching different APIs. YQL is also a good tool to get information from HTML documents. By using the html table you can load the content of an HTML document (which gets fixed automatically by HTMLTidy) and use XPATH to filter down results to what you need. Take the following example which takes headlines from the news.bbc.co.uk homepage and runs the results through Yahoo’s Term Extractor API to give you a list of currently hot topics. select * from search.termextract where context in ( select content from html where url="http://news.bbc.co.uk" and xpath="//table[@width=800]//a" ) Try it out in the console or see the results here. In English, this means: Go to http://news.bbc.co.uk and get me the HTML Run it through HTML Tidy to clean it up. Get me only the links inside the table with an attribute of width and the value 800 Get only the content of the link and for each of the links Take the content and send it as context to the Yahoo Term Extractor API If we choose JSON-P as the output format we can use the outcome directly in JavaScript (see this demo or see its source): <ul id="hottopics"></ul> <script type="text/javascript"> function hottopics(o){ var res = o.query.results.Result, all = res.length, topics = {}, out = [], html = '', i=0; /* create hash from topics to prevent repetition */ for(i=0;i<all;i++){ topics[res[i]] = res[i]; }; for(i in topics){ out.push(i); }; html = '<li>' + out.join('</li><li>') + '</li>'; document.getElementById('hottopics').innerHTML = html; }; </script> <script type="text/javascript" src="http://query.yahooapis.com/v1/public/yql?q=select%20content%20from%20search.termextract%20where %20context%20in%20(select%20content%20from%20html%20where%20url%3D%22http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2Ftable%5B%40width%3D800%5D%2F%2Fa%22)&format=json&callback=hottopics"></script> Using JSON, we can also use PHP which means the demo works for everybody – not only those with JavaScript enabled (see this demo or see its source): <ul id="hottopics"><li> <?php $url = 'http://query.yahooapis.com/v1/public/yql?q=select%20content'. '%20from%20search.termextract%20where%20context%20in'. '%20(select%20content%20from%20html%20where%20url%3D%22'. 'http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2F'. 'table%5B%40width%3D800%5D%2F%2Fa%22)&format=json'; $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url); curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false); $output = curl_exec($ch); curl_close($ch); $data = json_decode($output); $topics = array_unique($data->query->results->Result); echo join('</li><li>',$topics); ?> </li></ul> Summary This article could only scratch the surface of YQL. You have not only read access to the web but you can also write to web services. For example you can update Twitter, post to your WordPress blog or shorten a URL with bit.ly. Using Open Tables you can add any web service to the YQL interface and you can even run server-side JavaScript which is for example useful to return Flickr photos as HTML or get the HTML content from a document that needs POST data. The web of data is already here, and using YQL you don’t have to be a web services expert to use it and be part of it. 2009 Christian Heilmann chrisheilmann 2009-12-17T00:00:00+00:00 https://24ways.org/2009/the-web-is-your-cms/ code
188 Don't Lose Your :focus For many web designers, accessibility conjures up images of blind users with screenreaders, and the difficulties in making sites accessible to this particular audience. Of course, accessibility covers a wide range of situations that go beyond the extreme example of screenreader users. And while it’s true that making a complex site accessible can often be a daunting prospect, there are also many small things that don’t take anything more than a bit of judicious planning, are very easy to test (without having to buy expensive assistive technology), and can make all the difference to certain user groups. In this short article we’ll focus on keyboard accessibility and how careless use of CSS can potentially make your sites completely unusable. Keyboard Access Users who for whatever reason can’t use a mouse will employ a keyboard (or keyboard-like custom interface) to navigate around web pages. By default, they will use TAB and SHIFT + TAB to move from one focusable element (links, form controls and area) of a page to the next. Note: in OS X, you’ll first need to turn on full keyboard access under System Preferences > Keyboard and Mouse > Keyboard Shortcuts. Safari under Windows needs to have the option Press Tab to highlight each item on a webpage in Preferences > Advanced enabled. Opera is the odd one out, as it has a variety of keyboard navigation options – the most relevant here being spatial navigation via Shift+Down, Shift+Up, Shift+Left, and Shift+Right). But I Don’t Like Your Dotted Lines… To show users where they are within a page, browsers place an outline around the element that currently has focus. The “problem” with these default outlines is that some browsers (Internet Explorer and Firefox) also display them when a user clicks on a focusable element with the mouse. Particularly on sites that make extensive use of image replacement on links with “off left” techniques this can create very unsightly outlines that stretch from the replaced element all the way to the left edge of the browser. Outline bleeding off to the left (image-replacement example from carsonified.com) There is a trivial workaround to prevent outlines from “spilling over” by adding a simple overflow:hidden, which keeps the outline in check around the clickable portion of the image-replaced element itself. Outline tamed with overflow:hidden But for many designers, even this is not enough. As a final solution, many actively suppress outlines altogether in their stylesheets. Controversially, even Eric Meyer’s popular reset.css – an otherwise excellent set of styles that levels the playing field of varying browser defaults – suppresses outlines. html, body, div, span, applet, object, iframe ... { ... outline: 0; ... } /* remember to define focus styles! */ :focus { outline: 0; } Yes, in his explanation (and in the CSS itself) Eric does remind designers to define relevant styles for :focus… but judging by the number of sites that seem to ignore this (and often remove the related comment from the stylesheet altogether), the message doesn’t seem to have sunk in. Anyway… hurrah! No more unsightly dotted lines on our lovely design. But what about keyboard users? Although technically they can still TAB from one element to the next, they now get no default cue as to where they are within the page (one notable exception here is Opera, where the outline is displayed regardless of stylesheets)… and if they’re Safari users, they won’t even get an indication of a link’s target in the status bar, like they would if they hovered over it with the mouse. Only Suppress outline For Mouse Users Is there a way to allow users navigating with the keyboard to retain the standard outline behaviour they’ve come to expect from their browser, while also ensuring that it doesn’t show display for mouse users? Testing some convoluted style combinations After playing with various approaches (see Better CSS outline suppression for more details), the most elegant solution also seemed to be the simplest: don’t remove the outline on :focus, do it on :active instead – after all, :active is the dynamic pseudo-class that deals explicitly with the styles that should be applied when a focusable element is clicked or otherwise activated. a:active { outline: none; } The only minor issues with this method: if a user activates a link and then uses the browser’s back button, the outline becomes visible. Oh, and old versions of Internet Explorer notoriously get confused by the exact meaning of :focus, :hover and :active, so this method fails in IE6 and below. Personally, I can live with both of these. Note: at the last minute before submitting this article, I discovered a fatal flaw in my test. It appears that outline still manages to appear in the time between activating a link and the link target loading (which in hindsight is logical – after activation, the link does indeed receive focus). As my test page only used in-page links, this issue never came up before. The slightly less elegant solution is to also suppress the outline on :hover. a:hover, a:active { outline: none; } In Conclusion Of course, many web designers may argue that they know what’s best, even for their keyboard-using audience. Maybe they’ve removed the default outline and are instead providing some carefully designed :focus styles. If they know for sure that these custom styles are indeed a reliable alternative for their users, more power to them… but, at the risk of sounding like Jakob “blue underlined links” Nielsen, I’d still argue that sometimes the default browser behaviours are best left alone. Complemented, yes (and if you’re already defining some fancy styles for :hover, by all means feel free to also make them display on :focus)… but not suppressed. 2009 Patrick Lauke patricklauke 2009-12-09T00:00:00+00:00 https://24ways.org/2009/dont-lose-your-focus/ code
191 CSS Animations Friend: You should learn how to write CSS! Me: … Friend: CSS; Cascading Style Sheets. If you’re serious about web design, that’s the next thing you should learn. Me: What’s wrong with <font> tags? That was 8 years ago. Thanks to the hard work of Jeffrey, Andy, Andy, Cameron, Colly, Dan and many others, learning how to decently markup a website and write lightweight stylesheets was surprisingly easy. They made it so easy even a complete idiot (OH HAI) was able to quickly master it. And then… nothing. For a long time, it seemed like there wasn’t happening anything in the land of CSS, time stood still. Once you knew the basics, there wasn’t anything new to keep up with. It looked like a great band split, but people just kept re-releasing their music in various “Best Of!” or “Remastered!” albums. Fast forward a couple of years to late 2006. On the official WebKit blog Surfin’ Safari, there’s an article about something called CSS animations. Great new stuff to play with, but only supported by nightly builds (read: very, very beta) of WebKit. In the following months, they release other goodies, like CSS gradients, CSS reflections, CSS masks, and even more CSS animation sexiness. Whoa, looks like the band got back together, found their second youth, and went into overdrive! The problem was that if you wanted to listen to their new albums, you had to own some kind of new high-tech player no one on earth (besides some early adopters) owned. Back in the time machine. It is now late 2009, close to Christmas. Things have changed. Browsers supporting these new toys are widely available left and right. Even non-techies are using these advanced browsers to surf the web on a daily basis! Epic win? Almost, but at least this gives us enough reason to start learning how we could use all this new CSS voodoo. On Monday, Natalie Downe showed you a good tutorial on Going Nuts with CSS Transitions. Today, I’m taking it one step further… Howto: A basic spinner No matter how fast internet tubes or servers are, we’ll always need spinners to indicate something’s happening behind the scenes. Up until now, people would go to some site, pick one of the available templates, customize their foreground and background colors, and download a beautiful GIF image. There are some downsides to this though: It’s only _semi_-transparent: If you change your mind and pick a slightly different background color, you need to go back to the site, set all the parameters again, and replace your current image. There isn’t even a way to pick an image or gradient as background. Limited number of frames, probable to keep the file-size as small as possible (don’t forget this thing needs to be loaded before whatever process is finished in the background), and you don’t have that 24 frames per second smoothness. This is just too fucking easy. As a front-end code geek, there must be a “cooler” way to do this! What do we need to make a spinner with CSS animations? One image, and one element on our webpage we can hook on to. Yes, that’s it. I created a simple transparent PNG that looks it might be a spinner, and for the element on the page, I wrote this piece of genius HTML: <p id="spinner">Please wait while we do what we do best.</p> Looks semantic enough to me! Here’s the basic HTML I’m using to position the element in the center of the screen, and make the text inside it disappear: #spinner { position: absolute; top: 50%; left: 50%; margin: -100px 0 0 -100px; height: 200px; width: 200px; text-indent: 250px; white-space: nowrap; overflow: hidden; } Cool, but now we don’t see anything. Let’s pull rabbit number one out of the hat: -webkit-mask-image (accompanied by the previously mentioned transparent PNG image): #spinner { ... -webkit-mask-image: url(../img/spinner.png); } By now you should be feeling like a magician already. Oh, wait, we still have a blank screen, looks like we left something in the hat (tip: not rabbit droppings): #spinner { ... -webkit-mask-image: url(../img/spinner.png); background-color: #000; } Nice! What we’ve done right here is telling the element to clip onto the PNG. It’s a lot like clipping layers in Photoshop. So, spinners, they move, right? Into the hat again, and look what we pull out this time: CSS animations! #spinner { ... -webkit-mask-image: url(../img/spinner.png); background-color: #000; -webkit-animation-name: spinnerRotate; -webkit-animation-duration: 2s; -webkit-animation-iteration-count: infinite; -webkit-animation-timing-function: linear; } Some explanation: -webkit-animation-name: Name of the animation we’ll be defining later. -webkit-animation-duration: The timespan of the animation. -webkit-animation-iteration-count: Repeat once, a defined number of times or infinitely? -webkit-animation-timing-function: Linear is the one you’ll be using mostly. Other options are ease-in, ease-out, ease-in-out… Let’s define spinnerRotate: @-webkit-keyframes spinnerRotate { from { -webkit-transform:rotate(0deg); } to { -webkit-transform:rotate(360deg); } } En Anglais: Rotate #spinner starting at 0 degrees, ending at 360 degrees, over a timespan of 2 seconds, at a constant speed, and keep repeating this animation forever. That’s it! See it in action on the demo page. Note: these examples only work when you’re using a WebKit-based browser like Safari, Mobile Safari or Google Chrome. I’m confident though that Mozilla and Opera will try their very best catching up with all this new CSS goodness soon. When looking at this example, you see the possibilities are endless. Another advantage is you can change the look of it entirely by only changing a couple of lines of CSS, instead of re-creating and re-downloading the image from some website smelling like web 2.0 gone bad. I made another demo that shows how great it is to be able to change background and foreground colors (even on the fly!). So there you have it, a smoothly animated, fully transparent and completely customizable spinner. Cool? I think so. (Ladies?) But you can do a lot more with CSS animations than just create pretty spinners. Since I was fooling around with it anyway, I decided to test how far you can push this, space is the final limit, right? Conclusion CSS has never been more exciting than it is right now. I’m even prepared to say CSS is “cool” again, both for the more experienced front-end developers as for the new designers discovering CSS every day now. But… Remember when Javascript became popular? Remember when Flash became popular? Every time we’re been given new toys, some people aren’t ashamed to use it in a way you can barely call constructive. I’m thinking of Geocities websites, loaded with glowing blocks of text, moving images, bad color usage… In the wise words of Stan Lee: With great power there must also come great responsibility! A sprinkle of CSS animations is better than a bucket load. Apply with care. 2009 Tim Van Damme timvandamme 2009-12-15T00:00:00+00:00 https://24ways.org/2009/css-animations/ code
192 Cleaner Code with CSS3 Selectors The parts of CSS3 that seem to grab the most column inches on blogs and in articles are the shiny bits. Rounded corners, text shadow and new ways to achieve CSS layouts are all exciting and bring with them all kinds of possibilities for web design. However what really gets me, as a developer, excited is a bit more mundane. In this article I’m going to take a look at some of the ways our front and back-end code will be simplified by CSS3, by looking at the ways we achieve certain visual effects now in comparison to how we will achieve them in a glorious, CSS3-supported future. I’m also going to demonstrate how we can use these selectors now with a little help from JavaScript – which can work out very useful if you find yourself in a situation where you can’t change markup that is being output by some server-side code. The wonder of nth-child So why does nth-child get me so excited? Here is a really common situation, the designer would like the tables in the application to look like this: Setting every other table row to a different colour is a common way to enhance readability of long rows. The tried and tested way to implement this is by adding a class to every other row. If you are writing the markup for your table by hand this is a bit of a nuisance, and if you stick a row in the middle you have to change the rows the class is applied to. If your markup is generated by your content management system then you need to get the server-side code to add that class – if you have access to that code. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Striping every other row - using classes</title> <style type="text/css"> body { padding: 40px; margin: 0; font: 0.9em Arial, Helvetica, sans-serif; } table { border-collapse: collapse; border: 1px solid #124412; width: 600px; } th { border: 1px solid #124412; background-color: #334f33; color: #fff; padding: 0.4em; text-align: left; } td { padding: 0.4em; } tr.odd td { background-color: #86B486; } </style> </head> <body> <table> <tr> <th>Name</th> <th>Cards sent</th> <th>Cards received</th> <th>Cards written but not sent</th> </tr> <tr> <td>Ann</td> <td>40</td> <td>28</td> <td>4</td> </tr> <tr class="odd"> <td>Joe</td> <td>2</td> <td>27</td> <td>29</td> </tr> <tr> <td>Paul</td> <td>5</td> <td>35</td> <td>2</td> </tr> <tr class="odd"> <td>Louise</td> <td>65</td> <td>65</td> <td>0</td> </tr> </table> </body> </html> View Example 1 This situation is something I deal with on almost every project, and apart from being an extra thing to do, it just isn’t ideal having the server-side code squirt classes into the markup for purely presentational reasons. This is where the nth-child pseudo-class selector comes in. The server-side code creates a valid HTML table for the data, and the CSS then selects the odd rows with the following selector: tr:nth-child(odd) td { background-color: #86B486; } View Example 2 The odd and even keywords are very handy in this situation – however you can also use a multiplier here. 2n would be equivalent to the keyword ‘odd’ 3n would select every third row and so on. Browser support Sadly, nth-child has pretty poor browser support. It is not supported in Internet Explorer 8 and has somewhat buggy support in some other browsers. Firefox 3.5 does have support. In some situations however, you might want to consider using JavaScript to add this support to browsers that don’t have it. This can be very useful if you are dealing with a Content Management System where you have no ability to change the server-side code to add classes into the markup. I’m going to use jQuery in these examples as it is very simple to use the same CSS selector used in the CSS to target elements with jQuery – however you could use any library or write your own function to do the same job. In the CSS I have added the original class selector to the nth-child selector: tr:nth-child(odd) td, tr.odd td { background-color: #86B486; } Then I am adding some jQuery to add a class to the markup once the document has loaded – using the very same nth-child selector that works for browsers that support it. <script src="http://code.jquery.com/jquery-latest.js"></script> <script> $(document).ready(function(){ $("tr:nth-child(odd)").addClass("odd"); }); </script> View Example 3 We could just add a background colour to the element using jQuery, however I prefer not to mix that information into the JavaScript as if we change the colour on our table rows I would need to remember to change it both in the CSS and in the JavaScript. Doing something different with the last element So here’s another thing that we often deal with. You have a list of items all floated left with a right hand margin on each element constrained within a fixed width layout. If each element has the right margin applied the margin on the final element will cause the set to become too wide forcing that last item down to the next row as shown in the below example where I have used a grey border to indicate the fixed width. Currently we have two ways to deal with this. We can put a negative right margin on the list, the same width as the space between the elements. This means that the extra margin on the final element fills that space and the item doesn’t drop down. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>The last item is different</title> <style type="text/css"> body { padding: 40px; margin: 0; font: 0.9em Arial, Helvetica, sans-serif; } div#wrapper { width: 740px; float: left; border: 5px solid #ccc; } ul.gallery { margin: 0 -10px 0 0; padding: 0; list-style: none; } ul.gallery li { float: left; width: 240px; margin: 0 10px 10px 0; } </style> </head> <body> <div id="wrapper"> <ul class="gallery"> <li><img src="xmas1.jpg" alt="baubles" /></li> <li><img src="xmas2.jpg" alt="star" /></li> <li><img src="xmas3.jpg" alt="wreath" /></li> </ul> </div> </body> </html> View Example 4 The other solution will be to put a class on the final element and in the CSS remove the margin for this class. ul.gallery li.last { margin-right: 0; } This second solution may not be easy if the content is generated from server-side code that you don’t have access to change. It could all be so different. In CSS3 we have marvellously common-sense selectors such as last-child, meaning that we can simply add rules for the last list item. ul.gallery li:last-child { margin-right: 0; } View Example 5 This removed the margin on the li which is the last-child of the ul with a class of gallery. No messing about sticking classes on the last item, or pushing the width of the item out wit a negative margin. If this list of items repeated ad infinitum then you could also use nth-child for this task. Creating a rule that makes every 3rd element margin-less. ul.gallery li:nth-child(3n) { margin-right: 0; } View Example 6 A similar example is where the designer has added borders to the bottom of each element – but the last item does not have a border or is in some other way different. Again, only a class added to the last element will save you here if you cannot rely on using the last-child selector. Browser support for last-child The situation for last-child is similar to that of nth-child, in that there is no support in Internet Explorer 8. However, once again it is very simple to replicate the functionality using jQuery. Adding our .last class to the last list item. $("ul.gallery li:last-child").addClass("last"); We could also use the nth-child selector to add the .last class to every third list item. $("ul.gallery li:nth-child(3n)").addClass("last"); View Example 7 Fun with forms Styling forms can be a bit of a trial, made difficult by the fact that any CSS applied to the input element will effect text fields, submit buttons, checkboxes and radio buttons. As developers we are left adding classes to our form fields to differentiate them. In most builds all of my text fields have a simple class of text whereas I wouldn’t dream of adding a class of para to every paragraph element in a document. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Syling form fields</title> <style type="text/css"> body { padding: 40px; margin: 0; font: 0.9em Arial, Helvetica, sans-serif; } form div { clear: left; padding: 0 0 0.8em 0; } form label { float: left; width: 120px; } form .text, form textarea { border:1px solid #333; padding: 0.2em; width: 400px; } form .button { border: 1px solid #333; background-color: #eee; color: #000; padding: 0.1em; } </style> </head> <body> <h1>Send your Christmas list to Santa</h1> <form method="post" action="" id="christmas-list"> <div><label for="fName">Name</label> <input type="text" name="fName" id="fName" class="text" /></div> <div><label for="fEmail">Email address</label> <input type="text" name="fEmail" id="fEmail" class="text" /></div> <div><label for="fList">Your list</label> <textarea name="fList" id="fList" rows="10" cols="30"></textarea></div> <div><input type="submit" name="btnSubmit" id="btnSubmit" value="Submit" class="button" ></div> </form> </body> </html> View Example 8 Attribute selectors provide a way of targeting elements by looking at the attributes of those elements. Unlike the other examples in this article which are CSS3 selectors, the attribute selector is actually a CSS2.1 selector – it just doesn’t get much use because of lack of support in Internet Explorer 6. Using attribute selectors we can write rules for text inputs and form buttons without needing to add any classes to the markup. For example after removing the text and button classes from my text and submit button input elements I can use the following rules to target them: form input[type="text"] { border: 1px solid #333; padding: 0.2em; width: 400px; } form input[type="submit"]{ border: 1px solid #333; background-color: #eee; color: #000; padding: 0.1em; } View Example 9 Another problem that I encounter with forms is where I am using CSS to position my labels and form elements by floating the labels. This works fine as long as I want all of my labels to be floated, however sometimes we get a set of radio buttons or a checkbox, and I don’t want the label field to be floated. As you can see in the below example the label for the checkbox is squashed up into the space used for the other labels, yet it makes more sense for the checkbox to display after the text. I could use a class on this label element however CSS3 lets me to target the label attribute directly by looking at the value of the for attribute. label[for="fOptIn"] { float: none; width: auto; } Being able to precisely target attributes in this way is incredibly useful, and once IE6 is no longer an issue this will really help to clean up our markup and save us from having to create all kinds of special cases when generating this markup on the server-side. Browser support The news for attribute selectors is actually pretty good with Internet Explorer 7+, Firefox 2+ and all other modern browsers all having support. As I have already mentioned this is a CSS2.1 selector and so we really should expect to be able to use it as we head into 2010! Internet Explorer 7 has slightly buggy support and will fail on the label example shown above however I discovered a workaround in the Sitepoint CSS reference comments. Adding the selector label[htmlFor="fOptIn"] to the correct selector will create a match for IE7. IE6 does not support these selector but, once again, you can use jQuery to plug the holes in IE6 support. The following jQuery will add the text and button classes to your fields and also add a checks class to the label for the checkbox, which you can use to remove the float and width for this element. $('form input[type="submit"]').addClass("button"); $('form input[type="text"]').addClass("text"); $('label[for="fOptIn"]').addClass("checks"); View Example 10 The selectors I’ve used in this article are easy to overlook as we do have ways to achieve these things currently. As developers – especially when we have frameworks and existing code that cope with these situations – it is easy to carry on as we always have done. I think that the time has come to start to clean up our front and backend code and replace our reliance on classes with these more advanced selectors. With the help of a little JavaScript almost all users will still get the full effect and, where we are dealing with purely visual effects, there is definitely a case to be made for not worrying about the very small percentage of people with old browsers and no JavaScript. They will still receive a readable website, it may just be missing some of the finesse offered to the modern browsing experience. 2009 Rachel Andrew rachelandrew 2009-12-20T00:00:00+00:00 https://24ways.org/2009/cleaner-code-with-css3-selectors/ code
193 Web Content Accessibility Guidelines—for People Who Haven't Read Them I’ve been a huge fan of the Web Content Accessibility Guidelines 2.0 since the World Wide Web Consortium (W3C) published them, nine years ago. I’ve found them practical and future-proof, and I’ve found that they can save a huge amount of time for designers and developers. You can apply them to anything that you can open in a browser. My favourite part is when I use the guidelines to make a website accessible, and then attend user-testing and see someone with a disability easily using that website. Today, the United Nations International Day of Persons with Disabilities, seems like a good time to re-read Laura Kalbag’s explanation of why we should bother with accessibility. That should motivate you to devour this article. If you haven’t read the Web Content Accessibility Guidelines 2.0, you might find them a bit off-putting at first. The editors needed to create a single standard that countries around the world could refer to in legislation, and so some of the language in the guidelines reads like legalese. The editors also needed to future-proof the guidelines, and so some terminology—such as “time-based media” and “programmatically determined”—can sound ambiguous. The guidelines can seem lengthy, too: printing the guidelines, the Understanding WCAG 2.0 document, and the Techniques for WCAG 2.0 document would take 1,200 printed pages. This festive season, let’s rip off that legalese and ambiguous terminology like wrapping paper, and see—in a single article—what gifts the Web Content Accessibility Guidelines 2.0 editors have bestowed upon us. Can your users perceive the information on your website? The first guideline has criteria that help you prevent your users from asking “What the **** is this thing here supposed to be?” 1.1.1 Text is the most accessible format for information. Screen readers—such as the “VoiceOver” setting on your iPhone or the “TalkBack” app on your Android phone—understand text better than any other format. The same applies for other assistive technology, such as translation apps and Braille displays. So, if you have anything on your webpage that’s not text, you must add some text that gives your user the same information. You probably know how to do this already; for example: for images in webpages, put some alternative text in an alt attribute to tell your user what the image conveys to the user; for photos in tweets, add a description to make the images accessible; for Instagram posts, write a caption that conveys the photo’s information. The alternative text should allow the user to get the same information as someone who can see the image. For websites that have too many images for someone to add alternative text to, consider how machine learning and Dynamically Generated Alt Text might—might—be appropriate. You can probably think of a few exceptions where providing text to describe an image might not make sense. Remember I described these guidelines as “practical”? They cover all those exceptions: User interface controls such as buttons and text inputs must have names or labels to tell your user what they do. If your webpage has video or audio (more about these later on!), you must—at least—have text to tell the user what they are. Maybe your webpage has a test where your user has to answer a question about an image or some audio, and alternative text would give away the answer. In that case, just describe the test in text so your users know what it is. If your webpage features a work of art, tell your user the experience it evokes. If you have to include a Captcha on your webpage—and please avoid Captchas if at all possible, because some users cannot get past them—you must include text to tell your user what it is, and make sure that it doesn’t rely on only one sense, such as vision. If you’ve included something just as decoration, you must make sure that your user’s assistive technology can ignore it. Again, you probably know how to do this. For example, you could use CSS instead of HTML to include decorative images, or you could add an empty alt attribute to the img element. (Please avoid that recent trend where developers add empty alt attributes to all images in a webpage just to make the HTML validate. You’re better than that.) (Notice that the guidelines allow you to choose how to conform to them, with whatever technology you choose. To make your website conform to a guideline, you can either choose one of the techniques for WCAG 2.0 for that guideline or come up with your own. Choosing a tried-and-tested technique usually saves time!) 1.2.1 If your website includes a podcast episode, speech, lecture, or any other recorded audio without video, you must include a transcription or some other text to give your user the same information. In a lot of cases, you might find this easier than you expect: professional transcription services can prove relatively inexpensive and fast, and sometimes a speaker or lecturer can provide the speech or lecture notes that they read out word-for-word. Just make sure that all your users can get the same information and the same results, whether they can hear the audio or not. For example, David Smith and Marco Arment always publish episode transcripts for their Under the Radar podcast. Similarly, if your website includes recorded video without audio—such as an animation or a promotional video—you must either use text to detail what happens in the video or include an audio version. Again, this might work out easier then you perhaps fear: for example, you could check to see whether the animation started life as a list of instructions, or whether the promotional video conveys the same information as the “About Us” webpage. You want to make sure that all your users can get the same information and the same results, whether they can see that video or not. 1.2.2 If your website includes recorded videos with audio, you must add captions to those videos for users who can’t hear the audio. Professional transcription services can provide you with time-stamped text in caption formats that YouTube supports, such as .srt and .sbv. You can upload those to YouTube, so captions appear on your videos there. YouTube can auto-generate captions, but the quality varies from impressively accurate to comically inaccurate. If you have a text version of what the people in the video said—such as the speech that a politician read or the bedtime story that an actor read—you can create a transcript file in .txt format, without timestamps. YouTube then creates captions for your video by synchronising that text to the audio in the video. If you host your own videos, you can ask a professional transcription service to give you .vtt files that you can add to a video element’s track element—or you can handcraft your own. (A quick aside: if your website has more videos than you can caption in a reasonable amount of time, prioritise the most popular videos, the most important videos, and the videos most relevant to people with disabilities. Then make sure your users know how to ask you to caption other videos as they encounter them.) 1.2.3 If your website has recorded videos that have audio, you must add an “audio description” narration to the video to describe important visual details, or add text to the webpage to detail what happens in the video for users who cannot see the videos. (I like to add audio files from videos to my Huffduffer account so that I can listen to them while commuting.) Maybe your home page has a video where someone says, “I’d like to explain our new TPS reports” while “Bill Lumbergh, division Vice President of Initech” appears on the bottom of the screen. In that case, you should add an audio description to the video that announces “Bill Lumbergh, division Vice President of Initech”, just before Bill starts speaking. As always, you can make life easier for yourself by considering all of your users, before the event: in this example, you could ask the speaker to begin by saying, “I’m Bill Lumbergh, division Vice President of Initech, and I’d like to explain our new TPS reports”—so you won’t need to spend time adding an audio description afterwards. 1.2.4 If your website has live videos that have some audio, you should get a stenographer to provide real-time captions that you can include with the video. I’ll be honest: this can prove tricky nowadays. The Web Content Accessibility Guidelines 2.0 predate YouTube Live, Instagram live Stories, Periscope, and other such services. If your organisation creates a lot of live videos, you might not have enough resources to provide real-time captions for each one. In that case, if you know the contents of the audio beforehand, publish the contents during the live video—or failing that, publish a transcription as soon as possible. 1.2.5 Remember what I said about the recorded videos that have audio? If you can choose to either add an audio description or add text to the webpage to detail what happens in the video, you should go with the audio description. 1.2.6 If your website has recorded videos that include audio information, you could provide a sign language version of the audio information; some people understand sign language better than written language. (You don’t need to caption a video of a sign language version of audio information.) 1.2.7 If your website has recorded videos that have audio, and you need to add an audio description, but the audio doesn’t have enough pauses for you to add an “audio description” narration, you could provide a separate version of that video where you have added pauses to fit the audio description into. 1.2.8 Let’s go back to the recorded videos that have audio once more! You could add text to the webpage to detail what happens in the video, so that people who can neither read captions nor hear dialogue and audio description can use braille displays to understand your video. 1.2.9 If your website has live audio, you could get a stenographer to provide real-time captions. Again, if you know the contents of the audio beforehand, publish the contents during the live audio or publish a transcription as soon as possible. (Congratulations on making it this far! I know that seems like a lot to remember, but keep in mind that we’ve covered a complex area: helping your users to understand multimedia information that they can’t see and/or hear. Grab a mince pie to celebrate, and let’s keep going.) 1.3.1 You must mark up your website’s content so that your user’s browser, and any assistive technology they use, can understand the hierarchy of the information and how each piece of information relates to the rest. Once again, you probably know how to do this: use the most appropriate HTML element for each piece of information. Mark up headings, lists, buttons, radio buttons, checkboxes, and links with the most appropriate HTML element. If you’re looking for something to do to keep you busy this Christmas, scroll through the list of the elements of HTML. Do you notice any elements that you didn’t know, or that you’ve never used? Do you notice any elements that you could use on your current projects, to mark up the content more accurately? Also, revise HTML table advanced features and accessibility, how to structure an HTML form, and how to use the native form widgets—you might be surprised at how much you can do with just HTML! Once you’ve mastered those, you can make your website much more usable for your all of your users. 1.3.2 If your webpage includes information that your user has to read in a certain order, you must make sure that their browser and assistive technology can present the information in that order. Don’t rely on CSS or whitespace to create that order visually. Check that the order of the information makes sense when CSS and whitespace aren’t formatting it. Also, try using the Tab key to move the focus through the links and form widgets on your webpage. Does the focus go where you expect it to? Keep this in mind when using order in CSS Grid or Flexbox. 1.3.3 You must not presume that your users can identify sensory characteristics of things on your webpage. Some users can’t tell what you’ve positioned where on the screen. For example, instead of asking your users to “Choose one of the options on the left”, you could ask them to “Choose one of our new products” and link to that section of the webpage. 1.4.1 You must not rely on colour as the only way to convey something to your users. Some of your users can’t see, and some of your users can’t distinguish between colours. For example, if your webpage uses green to highlight the products that your shop has in stock, you could add some text to identify those products, or you could group them under a sub-heading. 1.4.2 If your webpage automatically plays a sound for more than 3 seconds, you must make sure your users can stop the sound or change its volume. Don’t rely on your user turning down the volume on their computer; some users need to hear the screen reader on their computer, and some users just want to keep listening to whatever they were listening before your webpage interrupted them! 1.4.3 You should make sure that your text contrasts enough with its background, so that your users can read it. Bookmark Lea Verou’s Contrast Ratio calculator now. You can enter the text colour and background colour as named colours, or as RGB, RGBa, HSL, or HSLa values. You should make sure that: normal text that set at 24px or larger has a ratio of at least 3:1; bold text that set at 18.75px or larger has a ratio of at least 3:1; all other text has a ratio of at least 4½:1. You don’t have to do this for disabled form controls, decorative stuff, or logos—but you could! 1.4.4 You should make sure your users can resize the text on your website up to 200% without using their assistive technology—and still access all your content and functionality. You don’t have to do this for subtitles or images of text. 1.4.5 You should avoid using images of text and just use text instead. In 1998, Jeffrey Veen’s first Hot Design Tip said, “Text is text. Graphics are graphics. Don’t confuse them.” Now that you can apply powerful CSS text-styling properties, use CSS Grid to precisely position text, and choose from thousands of web fonts (Jeffrey co-founded Typekit to help with this), you pretty much never need to use images of text. The guidelines say you can use images of text if you let your users specify the font, size, colour, and background of the text in the image of text—but I’ve never seen that on a real website. Also, this doesn’t apply to logos. 1.4.6 Let’s go back to colour contrast for a second. You could make your text contrast even more with its background, so that even more of your users can read it. To do that, use Lea Verou’s Contrast Ratio calculator to make sure that: normal text that is 24px or larger has a ratio of at least 4½:1; bold text that 18.75px or larger has a ratio of at least 4½:1; all other text has a ratio of at least 7:1. 1.4.7 If your website has recorded speech, you could make sure there are no background sounds, or that your users can turn off any background sounds. If that’s not possible, you could make sure that any background sounds that last longer than a couple of seconds are at least four times quieter than the speech. This doesn’t apply to audio Captchas, audio logos, singing, or rapping. (Yes, these guidelines mention rapping!) 1.4.8 You could make sure that your users can reformat blocks of text on your website so they can read them better. To do this, make sure that your users can: specify the colours of the text and the background, and make the blocks of text less than 80-characters wide, and align text to the left (or right for right-to-left languages), and set the line height to 150%, and set the vertical distance between paragraphs to 1½ times the line height of the text, and resize the text (without using their assistive technology) up to 200% and still not have to scroll horizontally to read it. By the way, when you specify a colour for text, always specify a colour for its background too. Don’t rely on default background colours! 1.4.9 Let’s return to images of text for a second. You could make sure that you use them only for decoration and logos. Can users operate the controls and links on your website? The second guideline has criteria that help you prevent your users from asking, “How the **** does this thing work?” 2.1.1 You must make sure that you users can carry out all of your website’s activities with just their keyboard, without time limits for pressing keys. (This doesn’t apply to drawing or anything else that requires a pointing device such as a mouse.) Again, if you use the most appropriate HTML element for each piece of information and for each form element, this should prove easy. 2.1.2 You must make sure that when the user uses the keyboard to focus on some part of your website, they can then move the focus to some other part of your webpage without needing to use a mouse or touch the screen. If your website needs them to do something complex before they can move the focus elsewhere, explain that to your user. These “keyboard traps” have become rare, but beware of forms that move focus from one text box to another as soon as they receive the correct number of characters. 2.1.3 Let’s revisit making sure that you users can carry out all of your website’s activities with just their keyboard, without time limits for pressing keys. You could make sure that your user can do absolutely everything on your website with just the keyboard. 2.2.1 Sometimes people need more time than you might expect to complete a task on your website. If any part of your website imposes a time limit on a task, you must do at least one of these: let your users turn off the time limit before they encounter it; or let your users increase the time limit to at least 10 times the default time limit before they encounter it; or warn your users before the time limit expires and give them at least 20 seconds to extend it, and let them extend it at least 10 times. Remember: these guidelines are practical. They allow you to enforce time limits for real-time events such as auctions and ticket sales, where increasing or extending time limits wouldn’t make sense. Also, the guidelines allow you to enforce a maximum time limit of 20 hours. The editors chose 20 hours because people need to go to sleep at some stage. See? Practical! 2.2.2 In my experience, this criterion remains the least well-known—even though some users can only use websites that conform to it. If your website presents content alongside other content that can distract users by automatically moving, blinking, scrolling, or updating, you must make sure that your users can: pause, stop, or hide the other content if it’s not essential and lasts more than 5 seconds; and pause, stop, hide, or control the frequency of the other content if it automatically updates. It’s OK if your users miss live information such as stock price updates or football scores; you can’t do anything about that! Also, this doesn’t apply to animations such as progress bars that you put on a website to let all users know that the webpage isn’t frozen. (If this one sounds complex, just add a pause button to anything that might distract your users.) 2.2.3 Let’s go back to time limits on tasks on your website. You could make your website even easier to use by removing all time limits except those on real-time events such as auctions and ticket sales. That would mean your user wouldn’t need to interact with a timer at all. 2.2.4 You could let your users turn off all interruptions—server updates, promotions, and so on—apart from any emergency information. 2.2.5 This is possibly my favourite of these criteria! After your website logs your user out, you could make sure that when they log in again, they can continue from where they were without having lost any information. Do that, and you’ll be on everyone’s Nice List this Christmas. 2.3.1 You must make sure that nothing flashes more than three times a second on your website, unless you can make sure that the flashes remain below the acceptable general flash and red flash thresholds… 2.3.2 …or you could just make sure that nothing flashes more than three times per second on your website. This is usually an easier goal. 2.4.1 You must make sure that your users can jump past any blocks of content, such as navigation menus, that are repeated throughout your website. You know the drill here: using HTML’s sectioning elements such as header, nav, main, aside, and footer allows users with assistive technology to go straight to the content they need, and adding “Skip Navigation” links allows everyone to get to your main content faster. 2.4.2 You must add a proper title to describe each webpage’s topic. Your webpage won’t even validate without a title element, so make it a useful one. 2.4.3 If your users can focus on links and native form widgets, you must make sure that they can focus on elements in an order that makes sense. 2.4.4 You must make sure that your users can understand the purpose of a link when they read: the text of the link; or the text of the paragraph, list item, table cell, or table header for the cell that contains the link; or the heading above the link. You don’t have to do that for games and quizzes. 2.4.5 You should give your users multiple ways to find any webpage within a set of webpages. Add site-wide search and a site map and you’re done! This doesn’t apply for a webpage that is part of a series of actions (like a shopping cart and checkout flow) or to a webpage that is a result of a series of actions (like a webpage confirming that the user has bought what was in the shopping cart). 2.4.6 You should help your users to understand your content by providing: headings that describe the topics of you content; labels that describe the purpose of the native form widgets on the webpage. 2.4.7 You should make sure that users can see which element they have focussed on. Next time you use your website, try hitting the Tab key repeatedly. Does it visually highlight each item as it moves focus to it? If it doesn’t, search your CSS to see whether you’ve applied outline: 0; to all elements—that’s usually the culprit. Use the :focus pseudo-element to define how elements should appear when they have focus. 2.4.8 You could help your user to understand where the current webpage is located within your website. Add “breadcrumb navigation” and/or a site map and you’re done. 2.4.9 You could make links even easier to understand, by making sure that your users can understand the purpose of a link when they read the text of the link. Again, you don’t have to do that for games and quizzes. 2.4.10 You could use headings to organise your content by topic. Can users understand your content? The third guideline has criteria that help you prevent your users from asking, “What the **** does this mean?” 3.1.1 Let’s start this section with the criterion that possibly takes the least time to implement; you must make sure that the user’s browser can identify the main language that your webpage’s content is written in. For a webpage that has mainly English content, use <html lang="en">. 3.1.2 You must specify when content in another language appears in your webpage, like so: <q>I wish you a <span lang="fr">Joyeux Noël</span>.</q>. You don’t have to do this for proper names, technical terms, or words that you can’t identify a language for. You also don’t have to do it for words from a different language that people consider part of the language around those words; for example, <q>Come to our Christmas rendezvous!</q> is OK. 3.1.3 You could make sure that your users can find out the meaning of any unusual words or phrases, including idioms like “stocking filler” or “Bah! Humbug!” and jargon such as “VoiceOver” and “TalkBack”. Provide a glossary or link to a dictionary. 3.1.4 You could make sure that your users can find out the meaning of any abbreviation. For example, VoiceOver pronounces “Xmas” as “Smas” instead of “Christmas”. Using the abbr element and linking to a glossary can help. (Interestingly, VoiceOver pronounces “abbr” as “abbreviation”!) 3.1.5 Do your users need to be able to read better than a typically educated nine-year-old, to read your content (apart from proper names and titles)? If so, you could provide a version that doesn’t require that level of reading ability, or you could provide images, videos, or audio to explain your content. (You don’t have to add captions or audio description to those videos.) 3.1.6 You could make sure that your users can access the pronunciation of any word in your content if that word’s meaning depends on its pronunciation. For example, the word “close” could have one of two meanings, depending on pronunciation, in a phrase such as, “Ready for Christmas? Close now!” 3.2.1 Some users need to focus on elements to access information about them. You must make sure that focusing on an element doesn’t trigger any major changes, such as opening a new window, focusing on another element, or submitting a form. 3.2.2 Webpages are easier for users when the controls do what they’re supposed to do. Unless you have warned your users about it, you must make sure that changing the value of a control such as a text box, checkbox, or drop-down list doesn’t trigger any major changes, such as opening a new window, focusing on another element, or submitting a form. 3.2.3 To help your users to find the content they want on each webpage, you should put your navigation elements in the same place on each webpage. (This doesn’t apply when your user has changed their preferences or when they use assistive technology to change how your content appears.) 3.2.4 When a set of webpages includes things that have the same functionality on different webpages, you should name those things consistently. For example, don’t use the word “Search” for the search box on one webpage and “Find” for the search box on another webpage within that set of webpages. 3.2.5 Let’s go back to major changes, such as a new window opening, another element taking focus, or a form being submitted. You could make sure that they only happen when users deliberately make them happen, or when you have warned users about them first. For example, you could give the user a button for updating some content instead of automatically updating that content. Also, if a link will open in a new window, you could add the words “opens in new window” to the link text. 3.3.1 Users make mistakes when filling in forms. Your website must identify each mistake to your user, and must describe the mistake to your users in text so that the user can fix it. One way to identify mistakes reliably to your users is to set the aria-invalid attribute to true in the element that has a mistake. That makes sure that users with assistive technology will be alerted about the mistake. Of course, you can then use the [aria-invalid="true"] attribute selector in your CSS to visually highlight any such mistakes. Also, look into how certain attributes of the input element such as required, type, and list can help prevent and highlight mistakes. 3.3.2 You must include labels or instructions (and possibly examples) in your website’s forms, to help your users to avoid making mistakes. 3.3.3 When your user makes a mistake when filling in a form, your webpage should suggest ways to fix that mistake, if possible. This doesn’t apply in scenarios where those suggestions could affect the security of the content. 3.3.4 Whenever your user submits information that: has legal or financial consequences; or affects information that they have previously saved in your website; or is part of a test …you should make sure that they can: undo it; or correct any mistakes, after your webpage checks their information; or review, confirm, and correct the information before they finally submit it. 3.3.5 You could help prevent your users from making mistakes by providing obvious, specific help, such as examples, animations, spell-checking, or extra instructions. 3.3.6 Whenever your user submits any information, you could make sure that they can: undo it; or correct any mistakes, after your webpage checks their information; or review, confirm, and correct the information before they finally submit it. Have you made your website robust enough to work on your users’ browsers and assistive technologies? The fourth and final guideline has criteria that help you prevent your users from asking, “Why the **** doesn’t this work on my device?” 4.1.1 You must make sure that your website works as well as possible with current and future browsers and assistive technology. Prioritise complying with web standards instead of relying on the capabilities of currently popular devices and browsers. Web developers didn’t expect their users to be unwrapping the Wii U Browser five years ago—who knows what browsers and assistive technologies our users will be unwrapping in five years’ time? Avoid hacks, and use the W3C Markup Validation Service to make sure that your HTML has no errors. 4.1.2 If you develop your own user interface components, you must make their name, role, state, properties, and values available to your user’s browsers and assistive technologies. That should make them almost as accessible as standard HTML elements such as links, buttons, and checkboxes. “…and a partridge in a pear tree!” …as that very long Christmas song goes. We’ve covered a lot in this article—because your users have a lot of different levels of ability. Hopefully this has demystified the Web Content Accessibility Guidelines 2.0 for you. Hopefully you spotted a few situations that could arise for users on your website, and you now know how to tackle them. To start applying what we’ve covered, you might like to look at Sarah Horton and Whitney Quesenbery’s personas for Accessible UX. Discuss the personas, get into their heads, and think about which aspects of your website might cause problems for them. See if you can apply what we’ve covered today, to help users like them to do what they need to do on your website. How to know when your website is perfectly accessible for everyone LOL! There will never be a time when your website becomes perfectly accessible for everyone. Don’t aim for that. Instead, aim for regularly testing and making your website more accessible. Web Content Accessibility Guidelines (WCAG) 2.1 The W3C hope to release the Web Content Accessibility Guidelines (WCAG) 2.1 as a “recommendation” (that’s what the W3C call something that we should start using) by the middle of next year. Ten years may seem like a long time to move from version 2.0 to version 2.1, but consider the scale of the task: the editors have to update the guidelines to cover all the new ways that people interact with new technologies, while keeping the guidelines backwards-compatible. Keep an eye out for 2.1! You’ll go down in history One last point: I’ve met a surprising number of web designers and developers who do great work to make their websites more accessible without ever telling their users about it. Some of your potential customers have possibly tried and failed to use your website in the past. They probably won’t try again unless you let them know that things have improved. A quick Twitter search for your website’s name alongside phrases like “assistive technology”, “doesn’t work”, or “#fail” can let you find frustrated users—so you can tell them about how you’re making your website more accessible. Start making your websites work better for everyone—and please, let everyone know. 2017 Alan Dalton alandalton 2017-12-03T00:00:00+00:00 https://24ways.org/2017/wcag-for-people-who-havent-read-them/ code
195 Levelling Up for Junior Developers If you are a junior developer starting out in the web industry, things can often seem a little daunting. There are so many things to learn, and as soon as you’ve learnt one framework or tool, there seems to be something new out there. I am lucky enough to lead a team of developers building applications for the web. During a recent One to One meeting with one of our junior developers, he asked me about a learning path and the basic fundamentals that every developer should know. After a bit of digging around, I managed to come up with a (not so exhaustive) list of principles that was shared with him. In this article, I will share the list with you, and hopefully help you level up from junior developer and become a better developer all round. This list doesn’t focus on an particular programming language, but rather coding concepts as a whole. The idea behind this list is that whether you are a front-end developer, back-end developer, full stack developer or just a curious one, these principles apply to everyone that writes code. I have tried to be technology agnostic, so that you can use these tips to guide you, whatever your tech stack might be. Without any further ado and in no particular order, let’s get started. Refactoring code like a boss The Boy Scouts have a rule that goes “always leave the campground cleaner than you found it.” This rule can be applied to code too and ensures that you leave code cleaner than you found it. As a junior developer, it’s almost certain that you will either create or come across older code that could be improved. The resources below are a guide that will help point you in the right direction. My favourite book on this subject has to be Clean Code by Robert C. Martin. It’s a must read for anyone writing code as it helps you identify bad code and shows you techniques that you can use to improve existing code. If you find that in your day to day work you deal with a lot of legacy code, Improving Existing Technology through Refactoring is another useful read. Design Patterns are a general repeatable solution to a commonly occurring problem in software design. My friend and colleague Ranj Abass likes to refer to them as a “common language” that helps developers discuss the way that we write code as a pattern. My favourite book on this subject is Head First Design Patterns which goes right back to the basics. Another great read on this topic is Refactoring to Patterns. Working Effectively With Legacy Code is another one that I found really valuable. Improving your debugging skills A solid understanding of how to debug code is a must for any developer. Whether you write code for the web or purely back-end code, the ability to debug will save you time and help you really understand what is going on under the hood. If you write front-end code for the web, one of my favourite resources to help you understand how to debug code in Chrome can be found on the Chrome Dev Tools website. While some of the tips are specific to Chrome, these techniques apply to any modern browser of your choice. At Settled, we use Node.js for much of our server side code. Without a doubt, our most trusted IDE has to be Visual Studio Code and the built-in debuggers are amazing. Regardless of whether you use Node.js or not, there are a number of plugins and debuggers that you can use in the IDE. I recommend reading the website of your favourite IDE for more information. As a side note, it is worth mentioning that Chrome Developer Tools actually has functionality that allows you to debug Node.js code too. This makes it a seamless transition from front-end code to server-side code debugging. The Debugging Mindset is an informative online article by Devon H. O’Dell and discusses the the psychology of learning strategies that lead to effective problem-solving skills. A good understanding of relational databases and NoSQL databases Almost all developers will need to persist data at some point in their career. Even if you don’t write SQL queries in your day to day job, a solid understanding of how they work will help you become a better developer. If you are a complete newbie when it comes to databases, I recommend checking out Code Academy. They offer a free online course that can help you get your head around how relational databases work. The course is quite basic, but is a useful hands-on approach to learning this topic. This article provides a great explainer for the difference between the SQL and NoSQL databases, and this Stackoverflow answer goes a little deeper into the subject of the two database types. If you’d like to learn more about NoSQL queries, I would recommend starting with this article on MongoDB queries. Unfortunately, there isn’t one overall course as most NoSQL databases have their own syntax. You may also have noticed that I haven’t included other types of databases such as Graph or In-memory; it’s worth focussing on the basics before going any deeper. Performance on the web If you build for the web today, it is important to understand how the browser receives and renders the content that you send it. I am pretty passionate about Web Performance, and hope that everyone can learn how to make websites faster and more efficient. It can be fun at the same time! Steve Souders High Performance Websites is the godfather of web performance books. While it was created a few years ago and many of the techniques might have changed slightly, it is the original book on the subject and set up many of the ground rules that we know about web performance today. A free online resource on this topic is the Google Developers website. The site is an up to date guide on the best web performance techniques for your site. It is definitely worth a read. The network plays a key role in delivering data to your users, and it plays a big role in performance on the web. A fantastic book on this topic is Ilya Grigorik’s High Performance Browser Networking. It is also available to read online at hpbn.co. Understand the end to end architecture of your software project I find that one of the best ways to improve my knowledge is to learn about the architecture of the software at the company I work at. It gives you a good understanding as to why things are designed the way they are, why certain decisions were made, and gives you an understanding of how you might do things differently with hindsight. Try and find someone more senior, such as a Technical Lead or Software Architect, at your company and ask them to explain the overall architecture and draw a few high-level diagrams for you. Not to mention that they will be impressed with your willingness to learn. I recommend reading Clean Architecture: A Craftsman’s Guide to Software Structure and Design for more detail on this subject. Far too often, software projects can be over-engineered and over-architected, it is worth reading Just Enough Software Architecture. The book helps developers understand how the smallest of changes can affect the outcome of your software architecture. How are things deployed A big part of creating software is actually shipping it! How is the software at your company released into the wild? Does your company do Continuous Integration? Continuous Deployment? Even if you answered no to any of these questions, it is worth finding someone with the knowledge in your company to explain these things to you. If it is not already documented, perhaps you could start a wiki to document everything you’re learning about the system - this is a great way to level up and be appreciated and invaluable. A streamlined deployment process is a beautiful thing, and understanding how they work can help you grow your knowledge as a developer. Continuous Integration is a practical read on the ins and outs of implementing this deployment technique. Docker is another great tool to use when it comes to software deployment. It can be tricky at first to wrap your head around, but it is definitely worth learning about this great technology. The documentation on the website will teach and guide you on how to get started using Docker. Writing Tests Testing is an essential tool in the developer bag of skills. They help you to make big refactoring changes to your code, and feel a lot more confident knowing that your changes haven’t broken anything. There are so many benefits to testing, which make it so important for developers at every level to become acquainted with it/them. The book that started it all for me was Roy Osherove’s The Art of Unit Testing. The code in the book is written in C#, but the principles apply to every language. It’s a great, easy-to-understand read. Another great read is How Google Tests Software and covers exactly what it says on the tin. It covers many different testing techniques such as exploratory, black box, white box, and acceptance testing and really helps you understand how large organisations test their code. Soft skills Whilst reading through this article, you’ve probably noticed that a large chunk of it focusses on code and technical ability. Without a doubt, I’d say that it is even more important to be a good teammate. If you look up the definition of soft skills in the dictionary, it is defined as “personal attributes that enable someone to interact effectively and harmoniously with other people” and I think that it sums this up perfectly. Working on your “soft skills” is something that can truly help you level up in your career. You may be the world’s greatest coder, but if you colleagues can’t get along with you, your coding skills won’t matter! While you may not learn how to become the perfect co-worker overnight, I really try and live by the motto “don’t be an arsehole”. Think about how you like to be treated and then try and treat your co-workers with the same courtesy and respect. The next time you need to make a decision at work, ask yourself “is this something an arsehole would do”? If you answered yes to that question, you probably shouldn’t do it! Summary Levelling up as a junior developer doesn’t have to be scary. Focus on the fundamentals and they should hold you in good stead, regardless of the new things that come along. Software engineering is built on these great principles that have stood the test of time. Whilst researching for this article, I came across a useful Github repo that is worth mentioning. Things Every Programmer Should Know is packed with useful information. I have to admit, I didn’t know everything on there! I hope that you have found this list helpful. Some of the topics I have mentioned might not be relevant for you at this stage in your career, but should give a nudge in the right direction. After all, knowledge is power! If you are a junior developer reading this article, what would you add to it? 2017 Dean Hume deanhume 2017-12-05T00:00:00+00:00 https://24ways.org/2017/levelling-up-for-junior-developers/ code
201 Lint the Web Forward With Sonarwhal Years ago, when I was in a senior in college, much of my web development courses focused on two things: the basics like HTML and CSS (and boy, do I mean basic), and Adobe Flash. I spent many nights writing ActionScript 3.0 to build interactions for the websites that I would add to my portfolio. A few months after graduating, I built one website in Flash for a client, then never again. Flash was dying, and it became obsolete in my résumé and portfolio. That was my first lesson in the speed at which things change in technology, and what a daunting realization that was as a new graduate looking to enter the professional world. Now, seven years later, I work on the Microsoft Edge team where I help design and build a tool that would have lessened my early career anxieties: sonarwhal. Sonarwhal is a linting tool, built by and for the web community. The code is open source and lives under the JS Foundation. It helps web developers and designers like me keep up with the constant change in technology while simultaneously teaching how to code better websites. Introducing sonarwhal’s mascot Nellie Good web development is hard. It is more than HTML, CSS, and JavaScript: developers are expected to have a grasp of accessibility, performance, security, emerging standards, and more, all while refreshing this knowledge every few months as the web evolves. It’s a lot to keep track of.   Web development is hard Staying up-to-date on all this knowledge is one of the driving forces for developing this scanning tool. Whether you are just starting out, are a student, or you have over a decade of experience, the sonarwhal team wants to help you build better websites for all browsers. Currently sonarwhal checks for best practices in five categories: Accessibility, Interoperability, Performance, PWAs, and Security. Each check is called a “rule”. You can configure them and even create your own rules if you need to follow some specific guidelines for your project (e.g. validate analytics attributes, title format of pages, etc.). You can use sonarwhal in two ways: An online version, that provides a quick and easy way to scan any public website. A command line tool, if you want more control over the configuration, or want to integrate it into your development flow. The Online Scanner The online version offers a streamlined way to scan a website; just enter a URL and you will get a web page of scan results with a permalink that you can share and revisit at any time. The online version of sonarwal When my team works on a new rule, we spend the bulk of our time carefully researching each subject, finding sources, and documenting it rather than writing the rule’s code. Not only is it important that we get you the right results, but we also want you to understand why something is failing. Next to each failing rule you’ll find a link to its detailed documentation, explaining why you should care about it, what exactly we are testing, examples that pass and examples that don’t, and useful links to even more in-depth documentation if you are interested in the subject. We hope that between reading the documentation and continued use of sonarwhal, developers can stay on top of best practices. As devs continue to build sites and identify recurring issues that appear in their results, they will hopefully start to automatically include those missing elements or fix those pieces of code that are producing errors. This also isn’t a one-way communication: the documentation is not only available on the sonarwhal site, but also on GitHub for editing so you can help us make it even better! A results report The current configuration for the online scanner is very strict, so it might hurt your feelings (it did when I first tested it on my personal website). But you can configure sonarwhal to any level of strictness as well as customize the command line tool to your needs! Sonarwhal’s CLI  The CLI gives you full control of sonarwhal: what rules to use, tweaks to them, domains that are out of your control, and so on. You will need the latest node LTS (v8) or Stable (v9) and your favorite package manager, such as npm: npm install -g sonarwhal You can now run sonarwhal from anywhere via: sonarwhal https://example.com Using the CLI The configuration is done via a .sonarwhalrc file. When analyzing a site, if no file is available, you will be prompted to answer a series of questions: What connector do you want to use? Connectors are what sonarwhal uses to access a website and gather all the information about the requests, resources, HTML, etc. Currently it supports jsdom, Microsoft Edge, and Google Chrome. What formatter? This is how you want to see the results: summary, stylish, etc. Make sure to look at the full list. Some are concise for, perfect for a quick build assessment, while others are more verbose and informative. Do you want to use the recommended rules configuration? Rules are the things we are validating. Unless you’ve read the documentation and know what you are doing, first timers should probably use the recommended configuration. What browsers are you targeting? One of the best features of sonarwhal is that rules can adapt their feedback depending on your targeted browsers, suggesting to add or remove things. For example, the rule “Highest Document Mode” will tell you to add the “X-UA-Compatible” header if IE10 or lower is targeted or remove if the opposite is true. sonarwhal configuration generator questions Once you answer all these questions the scan will start and you will have a .sonarwhalrc file similar to the following: { "connector": { "name": "jsdom", "options": { "waitFor": 1000 } }, "formatters": "stylish", "rulesTimeout": 120000, "rules": { "apple-touch-icons": "error", "axe": "error", "content-type": "error", "disown-opener": "error", "highest-available-document-mode": "error", "validate-set-cookie-header": "warning", // ... } } You should see the scan initiate in the command line and within a few seconds the results should start to appear. Remember, the scan results will look different depending on which formatter you selected so try each one out to see which one you like best. sonarwhal results on my website and hurting my feelings 💔 Now that you have a list of errors, you can get to work improving the site! Note though, that when you scan your website, it scans all the resources on that page and if you’ve added something like analytics or fonts hosted elsewhere, you are unable to change those files. You can configure the CLI to ignore files from certain domains so that you are only getting results for files you are in control of. The documentation should give enough guidance on how to fix the errors, but if it’s insufficient, please help us and suggest edits or contribute back to it. This is a community effort and chances are someone else will have the same question as you. When I scanned both my websites, sonarwhal alerted me to not having an Apple Touch Icon. If I search on the web as opposed to using the sonarwhal documentation, the first top 3 results give me outdated information: I need to include many different icon sizes. I don’t need to include all the different size icons that target different devices. Declaring one icon sized 180px x 180px will provide a large enough icon for devices and it will scale down as appropriate for people on older devices. The information at the top of the search results isn’t always the correct answer to an issue and we don’t want you to have to search through outdated documentation. As sonarwhal’s capabilities expand, the goal is for it to be the one stop shop for helping preflight your website. The journey up until now and looking forward On the Microsoft Edge team, we’re passionate about empowering developers to build great websites. Every day we see so many sites come through our issue tracker. (Thanks for filing those bugs, they help us make Microsoft Edge better and better!) Some issues we see over and over are honest mistakes or outdated ‘best practices’ that could be avoided, so we built this tool to help everyone help make the web a better place. When we decided to create sonarwhal, we wanted to create a tool that would help developers write better and more up-to-date code for their websites. We want sonarwhal to be useful to anyone so, early on, we defined three guiding principles we’ve used along the way: Community Driven. We build for the community’s best interests. The web belongs to everyone and this project should too. Not only is it open source, we’ve also donated it to the JS Foundation and have an inclusive governance model that welcomes the collaboration of anyone, individual or company. User Centric. We want to put the user at the center, making sonarwhal configurable for your needs and easy to use no matter what your skill level is. Collaborative. We didn’t want to reinvent the wheel, so we collaborated with existing tools and services that help developers build for the web. Some examples are aXe, snyk.io, Cloudinary, etc. This is just the beginning and we still have lots to do. We’re hard at work on a backlog of exciting features for future releases, such as: New rules for a variety of areas like performance, accessibility, security, progressive web apps, and more. A plug-in for Visual Studio Code: we want sonarwhal to help you write better websites, and what better moment than when you are in your editor. Configuration options for the online service: as we fine tune the infrastructure, the rule configuration for our scanner is locked, but we look forward to adding CLI customization options here in the near future. This is a tool for the web community by the web community so if you are excited about sonarwhal, making a better web, and want to contribute, we have a few issues where you might be able to help. Also, don’t forget to check the rest of the sonarwhal GitHub organization. PRs are always welcome and appreciated! Let us know what you think about the scanner at @NarwhalNellie on Twitter and we hope you’ll help us lint the web forward! 2017 Stephanie Drescher stephaniedrescher 2017-12-02T00:00:00+00:00 https://24ways.org/2017/lint-the-web-forward-with-sonarwhal/ code
202 Design Systems and CSS Grid Recently, my client has been looking at creating a few new marketing pages for their website. They currently have a design system in place but they’re looking to push this forward into 2018 with some small and possibly some larger changes. To start with we are creating a couple of new marketing pages. As well as making use of existing components within the design systems component library there are a couple of new components. Looking at the first couple of sketch files I felt this would be a great opportunity to use CSS Grid, to me the newer components need to be laid out on that page and grid would help with this perfectly. As well as this layout of the new components and the text within it, imagery would be used that breaks out of the grid and pushes itself into the spaces where the text is aligned. The existing grid system When the site was rebuilt in 2015 the team decided to make use of Sass and Susy, a “lightweight grid-layout engine using Sass”. It was built separating the grid system from the components that would be laid out on the page with a container, a row, an optional column, and a block. To make use of the grid system on a page for a component that would take the full width of the row you would have to write something like this: <div class="grid-container"> <div class="grid-row"> <div class="grid-column-4"> <div class="grid-block"> <!-- component code here --> </div> </div> </div> </div> Using a grid system similar to this can easily create quite the tag soup. It could fill the HTML full of divs that may become complex to understand and difficult to edit. Although there is this reliance on several <div>s to lay out the components on a page it does allow a tidy way to place the component code within that page. It abstracts the layout of the page to its own code, its own system, so the components can ‘fit’ where needed. The requirements of the new grid system Moving forward I set myself some goals for what I’d like to have achieved in this new grid system: It needs to behave like the existing grid systems We are not ripping up the existing grid system, it would be too much work, for now, to retrofit all of the existing components to work in a grid that has a different amount of columns, and spacing at various viewport widths. Allow full-width components Currently the grid system is a 14 column grid that becomes centred on the page when viewport is wide enough. We have, in the past, written some CSS that would allow for a full-width component, but his had always felt like a hack. We want the option to have a full-width element as part of the new grid system, not something that needs CSS to fight against. Less of a tag soup Ideally we want to end up writing less HTML to layout the page. Although the existing system can be quite clear as to what each element is doing, it can also become a little laborious in working out what each grid row or block is doing where. I would like to move the layout logic to CSS as much as is possible, potentially creating some utility classes or additional ‘layout classes’ for the components. Easier for people to use and author With many people using the existing design systems codebase we need to create a new grid system that is as easy or easier to use than the existing one. I think and hope this would be helped by removing as many <div>s as needed and would require new documentation and examples, and potentially some initial training. Separating layout from style There still needs to be a separation of layout from the styles for the component. To allow for the component itself to be placed wherever needed in the page we need to make sure that the CSS for the layout is a separate entity to the CSS for that styling. With these base requirements I took to CodePen and started working on some throwaway code to get started. Making the new grid(s) The Full-Width Grid To start with I created a grid that had three columns, one for the left, one for the middle, and one for the right. This would give the full-width option to components. Thankfully, one of Rachel Andrew’s many articles on Grid discussed this exact requirement of the new grid system to break out with Grid. I took some of the code in the examples and edited to make grid we needed. .container { display: grid; grid-template-columns: [full-start] minmax(.75em, 1fr) [main-start] minmax(0, 1008px) [main-end] minmax(.75em, 1fr) [full-end]; } We are declaring a grid, we have four grid column lines which we name and we define how the three columns they create react to the viewport width. We have a left and right column that have a minimum of 12px, and a central column with a maximum width of 1008px. Both left and right columns fill up any additional space if the viewport is wider that 1032px wide. We are also not declaring any gutters to this grid, the left and right columns would act as gutters at smaller viewports. At this point I noticed that older versions of Sass cannot parse the brackets in this code. To combat this I used Sass’ unquote method to wrap around the value of the grid-template-column. .container { display: grid; grid-template-columns: unquote(" [full-start] minmax(.75em, 1fr) [main-start] minmax(0, 1008px) [main-end] minmax(.75em, 1fr) [full-end] "); } The existing codebase makes use of Sass variables, mixins and functions so to remove that would be a problem, but luckily the version of Sass used is up-to-date (note: example CodePens will be using CSS). The initial full-width grid displays on a webpage as below: The 14 column grid I decided to work out the 14 column grid as a separate prototype before working out how it would fit within the full-width grid. This grid is very similar to the 12 column grids that have been used in web design. Here we need 14 columns with a gutter between each one. Along with the many other resources on Grid, Mozilla’s MDN site had a page on common layouts using CSS Grid. This gave me the perfect CSS I needed to create my grid and I edited it as required: .inner { display: grid; grid-template-columns: repeat(14, [col-start] 1fr); grid-gap: .75em; } We, again, are declaring a grid, and we are splitting up the available space by creating 14 columns with 1 fr-unit and giving each one a starting line named col-start. This grid would display on web page as below: Bringing the grids together Now that we have got the two grids we need to help fulfil our requirements we need to put them together so that they are actually we we need. The subgrid There is no subgrid in CSS, yet. To workaround this for the new grid system we could nest the 14 column grid inside the full-width grid. In the HTML we nest the 14 column inner grid inside the full-width container. <div class="container"> <div class="inner"> </div> </div> So that the inner knows where to be laid out within the container we tell it what column to start and end with, with this code it would be the start and end of the main column. .inner { display: grid; grid-column: main-start / main-end; grid-template-columns: repeat(14, [col-start] 1fr); grid-gap: .75em; } The CSS for the container remains unchanged. This works, but we have added another div to our HTML. One of our requirements is to try and remove the potential for tag soup. The faux subgrid subgrid I wanted to see if it would be possible to place the CSS for the 14 column grid within the CSS for the full-width grid. I replaced the CSS for the main grid and added the grid-column-gap to the .container. .container { display: grid; grid-gap: .75em; grid-template-columns: [full-start] minmax(.75em, 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(.75em, 1fr) [full-end]; } What this gave me was a 16 column grid. I was unable to find a way to tell the main grid, the grid betwixt main-start and main-end to be a maximum of 1008px as required. I trawled the internet to find if it was possible to create our main requirement, a 14 column grid which also allows for full-width components. I found that we could not reverse minmax to minmax(1fr, 72px) as 1fr is not allowed as a minimum if there is a maximum. I tried working out if we could make the min larger than its max but in minmax it would be ignored. I was struggling, I was hoping for a cleaner version of the grid system we currently use but getting to the point where needing that extra <div> would be a necessity. At 3 in the morning, when I was failing to get to sleep, my mind happened upon an question: “Could you use calc?” At some point I drifted back to sleep so the next day I set upon seeing if this was possible. I knew that the maximum width of the central grid needed to be 1008px. The left and right columns needed to be however many pixels were left in the viewport divided by 2. In CSS it looked like I would need to use calc twice. The first time to takeaway 1008px from 100% of the viewport width and the second to divide that result by 2. calc(calc(100% - 1008px) / 2) The CSS above was part of the value that I would need to include in the declaration for the grid. .container { display: grid; grid-gap: .75em; grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; } We have created the grid required. A full-width grid, with a central 14 column grid, using fewer <div> elements. See the Pen Design Systems and CSS Grid, 6 by Stuart Robson (@sturobson) on CodePen. Success! Progressive enhancement Now that we have created the grid system required we need to back-track a little. Not all browsers support Grid, over the last 9 months or so this has gotten a lot better. However there will still be browsers that visit that potentially won’t have support. The effort required to make the grid system fall back for these browsers depends on your product or sites browser support. To determine if we will be using Grid or not for a browser we will make use of feature queries. This would mean that any version of Internet Explorer will not get Grid, as well as some mobile browsers and older versions of other browsers. @supports (display: grid) { /* Styles for browsers that support Grid */ } If a browser does not pass the requirements for @supports we will fallback to using flexbox where possible, and if that is not supported we are happy for the page to be laid out in one column. A website doesn’t have to look the same in every browser after all. A responsive grid We started with the big picture, how the grid would be at a large viewport and the grid system we have created gets a little silly when the viewport gets smaller. At smaller viewports we have a single column layout where every item of content, every component stacks atop each other. We don’t start to define a grid before we the viewport gets to 700px wide. At this point we have an 8 column grid and if the viewport gets to 1100px or wider we have our 14 column grid. /* * to start with there is no 'grid' just a single column */ .container { padding: 0 .75em; } /* * when we get to 700px we create an 8 column grid with * a left and right area to breakout of the grid. */ @media (min-width: 700px) { .container { display: grid; grid-gap: .75em; grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(8, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; padding: 0; } } /* * when we get to 1100px we create an 14 column grid with * a left and right area to breakout of the grid. */ @media (min-width: 1100px) { .container { grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; } } Being explicit in creating this there is some repetition that we could avoid, we will define the number of columns for the inner grid by using a Sass variable or CSS custom properties (more commonly termed as CSS variables). Let’s use CSS custom properties. We need to declare the variable first by adding it to our stylesheet. :root { --inner-grid-columns: 8; } We then need to edit a few more lines. First make use of the variable for this line. repeat(8, [col-start] 1fr) /* replace with */ repeat(var(--inner-grid-columns), [col-start] 1fr) Then at the 1100px breakpoint we would only need to change the value of the —inner-grid-columns value. @media (min-width: 1100px) { .container { grid-template-columns: [full-start] minmax(calc(calc(100% - 1008px) / 2), 1fr) [main-start] repeat(14, [col-start] 1fr) [main-end] minmax(calc(calc(100% - 1008px) / 2), 1fr) [full-end]; } } /* replace with */ @media (min-width: 1100px) { .container { --inner-grid-columns: 14; } } See the Pen Design Systems and CSS Grid, 8 by Stuart Robson (@sturobson) on CodePen. The final grid system We have finally created our new grid for the design system. It stays true to the existing grid in place, adds the ability to break-out of the grid, removes a <div> that could have been needed for the nested 14 column grid. We can move on to the new component. Creating a new component Back to the new components we are needing to create. To me there are two components one of which is a slight variant of the first. This component contains a title, subtitle, a paragraph (potentially paragraphs) of content, a list, and a call to action. To start with we should write the HTML for the component, something like this: <article class="features"> <h3 class="features__title"></h3> <p class="features__subtitle"></p> <div class="features__content"> <p class="features__paragraph"></p> </div> <ul class="features__list"> <li></li> <li></li> </ul> <a href="" class="features__button"></a> </article> To place the component on the existing grid is fine, but as child elements are not affected by the container grid we need to define another grid for the features component. As the grid doesn’t get invoked until 700px it is possible to negate the need for a media query. .features { grid-column: col-start 1 / span 6; } @supports (display: grid) { @media (min-width: 1100px) { .features { grid-column-end: 9; } } } We can also avoid duplication of declarations by making use of the grid-column shorthand and longhand. We need to write a little more CSS for the variant component, the one that will sit on the right side of the page too. .features:nth-of-type(even) { grid-column-start: 4; grid-row: 2; } @supports (display: grid) { @media (min-width: 1100px) { .features:nth-of-type(even) { grid-column-start: 9; grid-column-end: 16; } } } We cannot place the items within features on the container grid as they are not direct children. To make this work we have to define a grid for the features component. We can do this by defining the grid at the first breakpoint of 700px making use of CSS custom properties again to define how many columns there will need to be. .features { grid-column: col-start 1 / span 6; --features-grid-columns: 5; } @supports (display: grid) { @media (min-width: 700px) { .features { display: grid; grid-gap: .75em; grid-template-columns: repeat(var(--features-grid-columns), [col-start] 1fr); } } } @supports (display: grid) { @media (min-width: 1100px) { .features { grid-column-end: 9; --features-grid-columns: 7; } } } See the Pen Design Systems and CSS Grid, 10 by Stuart Robson (@sturobson) on CodePen. Laying out the parts Looking at the spec and reading several articles I feel there are two ways that I could layout the text of this component on the grid. We could use the grid-column shorthand that incorporates grid-column-start and grid-column-end or we can make use of grid-template-areas. grid-template-areas allow for a nice visual way of representing how the parts of the component would be laid out. We can take the the mock of the features on the grid and represent them in text in our CSS. Within the .features rule we can add the relevant grid-template-areas value to represent the above. .features { display: grid; grid-template-columns: repeat(var(--features-grid-columns), [col-start] 1fr); grid-template-areas: ". title title title title title title" ". subtitle subtitle subtitle subtitle subtitle . " ". content content content content . . " ". list list list . . . " ". . . . link link link "; } In order to make the variant of the component we would have to create the grid-template-areas for that component too. We then need to tell each element of the component in what grid-area it should be placed within the grid. .features__title { grid-area: title; } .features__subtitle { grid-area: subtitle; } .features__content { grid-area: content; } .features__list { grid-area: list; } .features__link { grid-area: link; } See the Pen Design Systems and CSS Grid, 12 by Stuart Robson (@sturobson) on CodePen. The other way would be to use the grid-column shorthand and the grid-column-start and grid-column-end we have used previously. .features .features__title { grid-column: col-start 2 / span 6; } .features .features__subtitle { grid-column: col-start 2 / span 5; } .features .features__content { grid-column: col-start 2 / span 4; } .features .features__list { grid-column: col-start 2 / span 4; } .features .features__link { grid-column: col-start 5 / span 3; } For the variant of the component we can use the grid-column-start property as it will inherit the span defined in the grid-column shorthand. .features:nth-of-type(even) .features__title { grid-column-start: col-start 1; } .features:nth-of-type(even) .features__subtitle { grid-column-start: col-start 1; } .features:nth-of-type(even) .features__content { grid-column-start: col-start 3; } .features:nth-of-type(even) .features__list { grid-column-start: col-start 3; } .features:nth-of-type(even) .features__link { grid-column-start: col-start 1; } See the Pen Design Systems and CSS Grid, 14 by Stuart Robson (@sturobson) on CodePen. I think, for now, we will go with using grid-column properties rather than grid-template-areas. The repetition needed for creating the variant feels too much where we can change the grid-column-start instead, keeping the components elements layout properties tied a little closer to the elements rather than the grid. Some additional decisions The current component library has existing styles for titles, subtitles, lists, paragraphs of text and calls to action. These are name-spaced so that they shouldn’t clash with any other components. Looking forward there will be a chance that other products adopt the component library, but they may bring their own styles for titles, subtitles, etc. One way that we could write our code now for that near future possibility is to make sure our classes are working hard. Using class-attribute selectors we can target part of the class attributes that we know the elements in the component will have using *=. .features [class*="title"] { grid-column: col-start 2 / span 6; } .features [class*="subtitle"] { grid-column: col-start 2 / span 5; } .features [class*="content"] { grid-column: col-start 2 / span 4; } .features [class*="list"] { grid-column: col-start 2 / span 4; } .features [class*="link"] { grid-column: col-start 5 / span 3; } See the Pen Design Systems and CSS Grid, 15 by Stuart Robson (@sturobson) on CodePen. Although the component we have created have a title, subtitle, paragraphs, a list, and a call to action there may be a time where one ore more of these is not required or available. One thing I found out is that if the element doesn’t exist then grid will not create space for it. This may be obvious, but it can be really helpful in making a nice malleable component. We have only looked at columns, as existing components have their own spacing for the vertical rhythm of the page we don’t really want to have them take up equal space in the component and just take up the space as needed. We can do this by adding grid-auto-rows: min-content; to our .features. This is useful if you also need your component to take up a height that is more than the component itself. The grid of the future From prototyping this new grid and components in CSS Grid, I’ve found it a fantastic way to reimagine how we can create a layout or grid system for our sites. It gives us options to create the same layouts in differing ways that could suit a project and its needs. It allows us to carry on – if we choose to – using a <div>-based grid but swapping out floats for CSS Grid or to tie it to our components so they have specific places to go depending on what component is being used. Or we could have several ‘grid components’ in our design system that we could use to layout various components throughout a page. If you find yourself tasked with creating some new components for your design system try it. If you are starting from scratch I believe you really should start with CSS Grid for your layout. It really feels like the possibilities are endless in terms of layout for the web. Resources Here are just a few resources I have pawed over these last few weeks whilst getting acquainted with CSS Grid. A collection of CodePens from this article Grid by Example from Rachel Andrew A Complete Guide to CSS Grid on Codrops from Hui Jing Chen Rachel Andrew’s Blog Archive tagged: cssgrid CSS Grid Layout Examples MDN’s CSS Grid Layout A Complete Guide to Grid from CSS-Tricks CSS Grid Layout Module Level 1 Specification 2017 Stuart Robson stuartrobson 2017-12-12T00:00:00+00:00 https://24ways.org/2017/design-systems-and-css-grid/ code
204 Cascading Web Design with Feature Queries Feature queries, also known as the @supports rule, were introduced as an extension to the CSS2 as part of the CSS Conditional Rules Module Level 3, which was first published as a working draft in 2011. It is a conditional group rule that tests if the browser’s user agent supports CSS property:value pairs, and arbitrary conjunctions (and), disjunctions (or), and negations (not) of them. The motivation behind this feature was to allow authors to write styles using new features when they were supported but degrade gracefully in browsers where they are not. Even though the nature of CSS already allows for graceful degradation, for example, by ignoring unsupported properties or values without disrupting other styles in the stylesheet, sometimes we need a bit more than that. CSS is ultimately a holistic technology, in that, even though you can use properties in isolation, the full power of CSS shines through when used in combination. This is especially evident when it comes to building web layouts. Having native feature detection in CSS makes it much more convenient to build with cutting-edge CSS for the latest browsers while supporting older browsers at the same time. Browser support Opera first implemented feature queries in November 2012, both Chrome and Firefox had it since May 2013. There have been several articles about feature queries written over the years, however, it seems that awareness of its broad support isn’t that well-known. Much of the earlier coverage on feature queries was not written in English, and perhaps that was a limiting factor. @supports ― CSSのFeature Queries by Masataka Yakura, August 8 2012 Native CSS Feature Detection via the @supports Rule by Chris Mills, December 21 2012 CSS @supports by David Walsh, April 3 2013 Responsive typography with CSS Feature Queries by Aral Balkan, April 9 2013 How to use the @supports rule in your CSS by Lea Verou, January 31 2014 CSS Feature Queries by Amit Tal, June 2 2014 Coming Soon: CSS Feature Queries by Adobe Web Platform Team, August 21 2014 CSS feature queries mittels @supports by Daniel Erlinger, November 27 2014 As of December 2017, all current major browsers and their previous 2 versions support feature queries. Feature queries are also supported on Opera Mini, UC Browser and Samsung Internet. The only browsers that do not support feature queries are Internet Explorer and Blackberry Mobile, but that may be less of an issue than you might think. Can I Use css-featurequeries? Data on support for the css-featurequeries feature across the major browsers from caniuse.com. Granted, there is still a significant number of organisations that require support of Internet Explorer. Microsoft still continues to support IE11 for the life-cycle of Windows 7, 8 and 10. They have, however, stopped supporting older versions since January 12, 2016. It is inevitable that there will be organisations that, for some reason or another, make it mandatory to support IE, but as time goes on, this number will continue to shrink. Jen Simmons wrote an extensive article called Using Feature Queries in CSS which discussed a matrix of potential situations when it comes to the usage of feature queries. The following image is a summary of the aforementioned matrix. The most tricky situation we have to deal with is the box in the top-left corner, which are “browsers that don’t support feature queries, yet do support the feature in question”. For cases like those, it really depends on the specific CSS feature you want to use and a subsequent evaluation of the pros and cons of not including that feature in spite of the fact the browser (most likely Internet Explorer) supports it. The basics of feature queries As with any conditional, feature queries operate on boolean logic, in other words, if the query resolves to true, apply the CSS properties within the block, or else just ignore the entire block altogether. The syntax of a simple feature query is as follows: .selector { /* Styles that are supported in old browsers */ } @supports (property:value) { .selector { /* Styles for browsers that support the specified property */ } } Note that the parentheses around the property:value pair are mandatory and the rule is invalid without them. Styles that apply to older browsers, i.e. fallback styles, should come first, followed by the newer properties, which are contained within the @supports conditional. Because of the cascade, fallback styles will be overridden by the newer properties in the modern browsers that support them. main { background-color: red; } @supports (display:grid) { main { background-color: green; } } In this example, browsers that support CSS grid will have a main element with a green background colour because the conditional resolves to true, while browsers that do not support grid will have a main element with a red background colour. The implication of such behaviour means that we can layer on enhanced styles based on the features we want to use and these styles will show up in browsers that support them. But for those that do not, they will get a more basic look that still works anyway. And that will be our approach moving forward. Boolean operators for feature queries The and operator allows us to test for support of multiple properties within a single conditional. This would be useful for cases where the desired output requires multiple cutting-edge features to be supported at the same time to work. All the property:value pairs listed in the conditional must resolve to true for the styles within the rule to be applied. @supports (transform: rotate(45deg)) and (writing-mode: vertical-rl) { /* Some CSS styles */ } The or operator allows us to list multiple property:value pairs in the conditional and as long as one of them resolves to true, the styles within the block will be applied. A relevant use-case would be for properties with vendor-prefixes. @supports (background: -webkit-gradient(linear, left top, left bottom, from(white), to(black))) or (background: -o-linear-gradient(top, white, black)) or (background: linear-gradient(to bottom, white, black)) { /* Some CSS styles */ } The not operator negates the resolution of the property:value pair in the conditional, resolving to false when the property is supported and vice versa. This is useful when there are two distinct sets of styles to be applied depending on the support of a specific feature. However, we do need to keep in mind the case where a browser does not support feature queries, and handle the styles for those browsers accordingly. @supports not (shape-outside: polygon(100% 80%,20% 0,100% 0)) { /* Some CSS styles */ } To avoid confusion between and and or, these operators must be explicitly declared as opposed to using commas or spaces. To prevent confusion caused by precedence rules, and, or and not operators cannot be mixed without a layer of parentheses. This rule is not valid and the styles within the block will be ignored. @supports (transition-property: background-color) or (animation-name: fade) and (transform: scale(1.5)) { /* Some CSS styles */ } To make it work, parentheses must be added either around the two properties adjacent to the or or the and operator like so: @supports ((transition-property: background-color) or (animation-name: fade)) and (transform: scale(1.5)) { /* Some CSS styles */ } @supports (transition-property: background-color) or ((animation-name: fade) and (transform: scale(1.5))) { /* Some CSS styles */ } The current specification states that whitespace is required after a not and on both sides of an and or or, but this may change in a future version of the specification. It is acceptable to add extra parentheses even when they are not needed, but omission of parentheses is considered invalid. Cascading web design I’d like to introduce the concept of cascading web design, an approach made possible with feature queries. Browser update cycles are much shorter these days, so new features and bug fixes are being pushed out a lot more frequently as compared to the early days of the web. With the maturation of web standards, browser behaviour is less unpredictable than before, but each browser will still have their respective quirks. Chances are, the latest features will not ship across all browsers at the same time. But you know what? That’s perfectly fine. If we accept this as a feature of the web, instead of a bug, we’ve just opened up a lot more web design possibilities. The following example is a basic, responsive grid layout of items laid out with flexbox, as viewed on IE11. We can add a block of styles within an @supports rule to apply CSS grid properties for browsers that support them to enhance this layout, like so: The web is not a static medium. It is dynamic and interactive and we manipulate this medium by writing code to tell the browser what we want it to do. Rather than micromanaging the pixels in our designs, maybe it’s time we cede control of our designs to the browsers that render them. This means being okay with your designs looking different across browsers and devices. As mentioned earlier, CSS works best when various properties are combined. It’s one of those things whose whole is greater than the sum of its parts. So feature queries, when combined with media queries, allow us to design layouts that are most effective in the environment they have to perform in. Such an approach requires interpolative thinking, on multiple levels. As web designers and developers, we don’t just think in one fixed dimension, we get to think about how our design will morph on a narrow screen, or on an older browser, in addition to how it will appear on a browser with the latest features. In the following example, the layout on the left is what IE11 users will see, the one in the middle is what Firefox users will see, because Firefox doesn’t support CSS shapes yet, but once it does, it will then look like the layout on the right, which is what Chrome users see now. With the release of CSS Grid this year, we’ve hit another milestone in the evolution of the web as a medium. The beauty of the web is its backwards compatibility and generous fault tolerance. Browser features are largely additive, holding onto the good parts and building on top of them, while deprecating the bits that didn’t work well. Feature queries allow us to progressively enhance our CSS, establishing a basic level of user experience across the widest range of browsers, while building in more advanced functionality for browsers who can use them. And hopefully, this will allow more of us to create designs that truly embrace the nature of the web. 2017 Chen Hui Jing chenhuijing 2017-12-01T00:00:00+00:00 https://24ways.org/2017/cascading-web-design/ code
206 Getting Hardboiled with CSS Custom Properties Custom Properties are a fabulous new feature of CSS and have widespread support in contemporary browsers. But how do we handle browsers without support for CSS Custom Properties? Do we wait until those browsers are lying dead in a ditch before we use them? Do we tool up and prop up our CSS using a post-processor? Or do we get tough? Do we get hardboiled? Previously only pre-processing tools like LESS and Sass enabled developers to use variables in their stylesheets, but now Custom Properties have brought variables natively to CSS. How do you write a custom property? It’s hardly a mystery. Simply add two dashes to the start of a style rule. Like this: --color-text-default : black; If you’re more the underscore type, try this: --color_text_default : black; Hyphens or underscores are allowed in property names, but don’t be a chump and try to use spaces. Custom property names are also case-sensitive, so --color-text-default and --Color_Text_Default are two distinct properties. To use a custom property in your style rules, var() tells a browser to retrieve the value of a property. In the next example, the browser retrieves the black colour from the color-text-default variable and applies it to the body element: body { color : var(--color-text-default); } Like variables in LESS or Sass, CSS Custom Properties mean you don’t have to be a dumb mug and repeat colour, font, or size values multiple times in your stylesheets. Unlike a preprocessor variable though, CSS Custom Properties use the cascade, can be modified by media queries and other state changes, and can also be manipulated by Javascript. (Serg Hospodarets wrote a fabulous primer on CSS Custom Properties where he dives deeper into the code and possible applications.) Browser support Now it’s about this time that people normally mention browser support. So what about support for CSS Custom Properties? Current versions of Chrome, Edge, Firefox, Opera, and Safari are all good. Internet Explorer 11 and before? Opera Mini? Nasty. Sound familiar? Can I Use css-variables? Data on support for the css-variables feature across the major browsers from caniuse.com. Not to worry, we can manually check for Custom Property support in a browser by using an @support directive, like this: --color-text-default : black; body { color : black; } @supports ((--foo : bar)) { body { color : var(--color-text-default); } } In that example we first set body element text to black and then override that colour with a Custom Property value when the browser supports our fictitious foo bar variable. Substitutions If we reference a variable that hasn’t been defined, that won’t be a problem as browsers are smart enough to ignore the value altogether. If we need a cast iron alibi, use substitutions to specify a fall-back value. body { color : var(--color-text-default, black); } Substitutions are similar to font stacks in that they contain a comma separated list of values. If there’s no value associated with a property, a browser will ignore it and move onto the next value in the list. Post-processing Of course we could use a post-processor plugin to turn Custom Properties into plain CSS, but hang on one goddam minute kiddo. Haven’t we been down this road before? Didn’t we engineer elaborate workarounds to enable us to use ‘advanced’ CSS3 properties like border-radius, CSS columns, and Flexbox in the past? We did what we had to do to get the job done, but came away feeling dirty. I think there’s a better way, one that allows us to enjoy the benefits of CSS Custom Properties in browsers that support them, while providing an appropriate, but not identical experience, for people who use less capable browsers. Guess what, I’ve been down this road before too. 2Tone Stuff & Nonsense When Internet Explorer 6 was the big dumb browser everyone hated, I served two different designs on my website. For the modern browsers of the time, mod arrows and targets were everywhere in glorious red, white, and blue, and I implemented all of them using CSS attribute selectors which were considered advanced at the time: [class="banner"] { background-colour : red; } Internet Explorer 6 ignored any selectors it didn’t understand, so people using that browser saw a simpler black and white, 2Tone-based design that I’d implemented for them using class selectors: .banner { background-colour : black; } [class="banner"] { background-colour : red; } You don’t have to be a detective to find out that most people thought I’d lost my wits, but Microsoft even used my website as a reference when they tested attribute selectors in Internet Explorer 7. They did, as I suggested, “Stomp to da betta browser.” Dumb browsers look the other way So how does this approach relate to tackling any lack of support for CSS Custom Properties? How can we take advantage of them without worrying about browsers with no support and having to implement complex workarounds, or spending hours specifying fallbacks that perfectly match our designs? Turns out, the answer is built into CSS, and always has been, because when browsers don’t know what they’re looking at, they look away. All we have to do is first specify values for a simpler design first, and then follow that up with the values in our CSS Custom Properties: body { color : black; color : var(--color-text-default, black); } All browsers understand the first value (black,) and if they‘re smart enough to understand the second (var(--color-text-default)), they’ll use it and override the first. If they’re too damn stupid to understand the custom property value, they’ll ignore it. Nobody dies. Repeat this for every style that contains a variable, baking an alternative, perhaps simpler design into your stylesheets for people who use less capable browsers, just like I did with Stuff & Nonsense. Conclusion I doubt that anyone agrees with presenting a design that looks broken or unloved—and I’m not advocating for that—but websites need not look the same in every browser. We can use substitutions to present a simpler design to people using less capable browsers. The decision when to start using new CSS properties isn‘t always a technical one. Sometimes a change in attitude about browser support is all that’s required. So get tough with dumb browsers and benefit from all the advantages that CSS Custom Properties offer. Get hardboiled. Resources: It’s Time To Start Using CSS Custom Properties—Smashing Magazine Using CSS variables correctly—Mike Riethmuller Developing Inspired Guides with CSS Custom Properties (variables)—Andy Clarke 2017 Andy Clarke andyclarke 2017-12-13T00:00:00+00:00 https://24ways.org/2017/getting-hardboiled-with-css-custom-properties/ code
209 Feeding the Audio Graph In 2004, I was given an iPod. I count this as one of the most intuitive pieces of technology I’ve ever owned. It wasn’t because of the the snazzy (colour!) menus or circular touchpad. I loved how smoothly it fitted into my life. I could plug in my headphones and listen to music while I was walking around town. Then when I got home, I could plug it into an amplifier and carry on listening there. There was no faff. It didn’t matter if I could find my favourite mix tape, or if my WiFi was flakey - it was all just there. Nowadays, when I’m trying to pair my phone with some Bluetooth speakers, or can’t find my USB-to-headphone jack, or even access any music because I don’t have cellular reception; I really miss this simplicity. The Web Audio API I think the Web Audio API feels kind of like my iPod did. It’s different from most browser APIs - rather than throwing around data, or updating DOM elements - you plug together a graph of audio nodes, which the browser uses to generate, process, and play sounds. The thing I like about it is that you can totally plug it into whatever you want, and it’ll mostly just work. So, let’s get started. First of all we want an audio source. <audio src="night-owl.mp3" controls /> (Song - Night Owl by Broke For Free) This totally works. However, it’s not using the Web Audio API, so we can’t access or modify the sound it makes. To hook this up to our audio graph, we can use an AudioSourceNode. This captures the sound from the element, and lets us connect to other nodes in a graph. const audioCtx = new AudioContext() const audio = document.querySelector('audio') const input = audioCtx.createAudioSourceNode(audio) input.connect(audioCtx.destination) Great. We’ve made something that looks and sounds exactly the same as it did before. Go us. Gain Let’s plug in a GainNode - this allows you to alter the amplitude (volume) of an an audio stream. We can hook this node up to an <input> element by setting the gain property of the node. (The syntax for this is kind of weird because it’s an AudioParam which has options to set values at precise intervals). const node = audioCtx.createGain() const input = document.querySelector('input') input.oninput = () => node.gain.value = parseFloat(input.value) input.connect(node) node.connect(audioCtx.destination) You can now see a range input, which can be dragged to update the state of our graph. This input could be any kind of element, so now you’ll be free to build the volume control of your dreams. There’s a number of nodes that let you modify/filter an audio stream in more interesting ways. Head over to the MDN Web Audio page for a list of them. Analysers Something else we can add to our graph is an AnalyserNode. This doesn’t modify the audio at all, but allows us to inspect the sounds that are flowing through it. We can put this into our graph between our AudioSourceNode and the GainNode. const analyser = audioCtx.createAnalyser() input.connect(analyser) analyser.connect(gain) gain.connect(audioCtx.destination) And now we have an analyser. We can access it from elsewhere to drive any kind of visuals. For instance, if we wanted to draw lines on a canvas we could totally do that: const waveform = new Uint8Array(analyser.fftSize) const frequencies = new Uint8Array(analyser.frequencyBinCount) const ctx = canvas.getContext('2d') const loop = () => { requestAnimationFrame(loop) analyser.getByteTimeDomainData(waveform) analyser.getByteFrequencyData(frequencies) ctx.beginPath() waveform.forEach((f, i) => ctx.lineTo(i, f)) ctx.lineTo(0,255) frequencies.forEach((f, i) => ctx.lineTo(i, 255-f)) ctx.stroke() } loop() You can see that we have two arrays of data available (I added colours for clarity): The waveform - the raw samples of the audio being played. The frequencies - a fourier transform of the audio passing through the node. What’s cool about this is that you’re not tied to any specific functionality of the Web Audio API. If it’s possible for you to update something with an array of numbers, then you can just apply it to the output of the analyser node. For instance, if we wanted to, we could definitely animate a list of emoji in time with our music. spans.forEach( (s, i) => s.style.transform = `scale(${1 + (frequencies[i]/100)})` ) 🔈🎤🎤🎤🎺🎷📯🎶🔊🎸🎺🎤🎸🎼🎷🎺🎻🎸🎻🎺🎸🎶🥁🎶🎵🎵🎷📯🎸🎹🎤🎷🎻🎷🔈🔊📯🎼🎤🎵🎼📯🥁🎻🎻🎤🔉🎵🎹🎸🎷🔉🔈🔉🎷🎶🔈🎸🎸🎻🎤🥁🎼📯🎸🎸🎼🎸🥁🎼🎶🎶🥁🎤🔊🎷🔊🔈🎺🔊🎻🎵🎻🎸🎵🎺🎤🎷🎸🎶🎼📯🔈🎺🎤🎵🎸🎸🔊🎶🎤🥁🎵🎹🎸🔈🎻🔉🥁🔉🎺🔊🎹🥁🎷📯🎷🎷🎤🎸🔉🎹🎷🎸🎺🎼🎤🎼🎶🎷🎤🎷📯📯🎻🎤🎷📯🎹🔈🎵🎹🎼🔊🔉🔉🔈🎶🎸🥁🎺🔈🎷🎵🔉🥁🎷🎹🎷🔊🎤🎤🔊🎤🎤🎹🎸🎹🔉🎷 Generating Audio So far, we’ve been using the <audio> element as a source of sound. There’s a few other sources of audio that we can use. We’ll look at the AudioBufferNode - which allows you to manually generate a sound sample, and then connect it to our graph. First we have to create an AudioBuffer, which holds our raw data, then we pass that to an AudioBufferNode which we can then treat just like our AudioSource node. This can get a bit boring, so we’ll use a helper method that makes it simpler to generate sounds. const generator = (audioCtx, target) => (seconds, fn) => { const { sampleRate } = audioCtx const buffer = audioCtx.createBuffer( 1, sampleRate * seconds, sampleRate ) const data = buffer.getChannelData(0) for (var i = 0; i < data.length; i++) { data[i] = fn(i / sampleRate, seconds) } return () => { const source = audioCtx.createBufferSource() source.buffer = audioBuffer source.connect(target || audioCtx.destination) source.start() } } const sound = generator(audioCtx, gain) Our wrapper will let us provide a function that maps time (in seconds) to a sample (between 1 and -1). This generates a waveform, like we saw before with the analyser node. For example, the following will generate 0.75 seconds of white noise at 20% volume. const noise = sound(0.75, t => Math.random() * 0.2) button.onclick = noise Noise Now we’ve got a noisy button! Handy. Rather than having a static set of audio nodes, each time we click the button, we add a new node to our graph. Although this feels inefficient, it’s not actually too bad - the browser can do a good job of cleaning up old nodes once they’ve played. An interesting property of defining sounds as functions is that we can combine multiple function to generate new sounds. So if we wanted to fade our noise in and out, we could write a higher order function that does that. const ease = fn => (t, s) => fn(t) * Math.sin((t / s) * Math.PI) const noise = sound(0.75, ease(t => Math.random() * 0.2)) ease(noise) And we can do more than just white noise - if we use Math.sin, we can generate some nice pure tones. // Math.sin with period of 0..1 const wave = v => Math.sin(Math.PI * 2 * v) const hz = f => t => wave(t * f) const _440hz = sound(0.75, ease(hz(440))) const _880hz = sound(0.75, ease(hz(880))) 440Hz 880Hz We can also make our functions more complex. Below we’re combining several frequencies to make a richer sounding tone. const harmony = f => [4, 3, 2, 1].reduce( (v, h, i) => (sin(f * h) * (i+1) ) + v ) const a440 = sound(0.75, ease(harmony(440))) 440Hz 880Hz Cool. We’re still not using any audio-specific functionality, so we can repurpose anything that does an operation on data. For example, we can use d3.js - usually used for interactive data visualisations - to generate a triangular waveform. const triangle = d3.scaleLinear() .domain([0, .5, 1]) .range([-1, 1, -1]) const wave = t => triangle(t % 1) const a440 = sound(0.75, ease(harmony(440))) 440Hz 880Hz It’s pretty interesting to play around with different functions. I’ve plonked everything in jsbin if you want to have a play yourself. A departure from best practice We’ve been generating our audio from scratch, but most of what we’ve looked at can be implemented by a series of native Web Audio nodes. This would be way performant (because it’s not happening on the main thread), and more flexible in some ways (because you can set timings dynamically whilst the note is playing). But we’re going to stay with this approach because it’s fun, and sometimes the fun thing to do might not technically be the best thing to do. Making a keyboard Having a button that makes a sound is totally great, but how about lots of buttons that make lots of sounds? Yup, totally greater-er. The first thing we need to know is the frequency of each note. I thought this would be awkward because pianos were invented more than 250 years before the Hz unit was defined, so surely there wouldn’t be a simple mapping between the two? const freq = note => 27.5 * Math.pow(2, (note - 21) / 12) This equation blows my mind; I’d never really figured how tightly music and maths fit together. When you see a chord or melody, you can directly map it back to a mathematical pattern. Our keyboard is actually an SVG picture of a keyboard, so we can traverse the elements of it and map each element to a sound generated by one of the functions that we came up with before. Array.from(svg.querySelector('rect')) .sort((a, b) => + a.x - b.x) .forEach((key, i) => key.addEventListener('touchstart', sound(0.75, ease(harmony(freq(i + 48)))) ) ) rect {stroke: #ddd;} rect:hover {opacity: 0.8; stroke: #000} Et voilà. We have a keyboard. What I like about this is that it’s completely pure - there’s no lookup tables or hardcoded attributes; we’ve just defined a mapping from SVG elements to the sound they should probably make. Doing better in the future As I mentioned before, this could be implemented more performantly with Web Audio nodes, or even better - use something like Tone.js to be performant for you. Web Audio has been around for a while, though we’re getting new challenges with immersive WebXR experiences, where spatial audio becomes really important. There’s also always support and API improvements (if you like AudioBufferNode, you’re going to love AudioWorklet) Conclusion And that’s about it. Web Audio isn’t some black box, you can easily link it with whatever framework, or UI that you’ve built (whether you should is an entirely different question). If anyone ever asks you “could you turn this SVG into a musical instrument?” you don’t have to stare blankly at them any more. (function(a,c){var b=a.createElement("script");if(!("noModule"in b)&&"on"+c in b){var d=!1;a.addEventListener(c,function(a){if(a.target===b)d=!0;else if(!a.target.hasAttribute("nomodule")||!d)return;a.preventDefault()},!0);b.type="module";b.src=".";a.head.appendChild(b);b.remove()}})(document,"beforeload"); 2017 Ben Foxall benfoxall 2017-12-17T00:00:00+00:00 https://24ways.org/2017/feeding-the-audio-graph/ code
211 Automating Your Accessibility Tests Accessibility is one of those things we all wish we were better at. It can lead to a bunch of questions like: how do we make our site better? How do we test what we have done? Should we spend time each day going through our site to check everything by hand? Or just hope that everyone on our team has remembered to check their changes are accessible? This is where automated accessibility tests can come in. We can set up automated tests and have them run whenever someone makes a pull request, and even alongside end-to-end tests, too. Automated tests can’t cover everything however; only 20 to 50% of accessibility issues can be detected automatically. For example, we can’t yet automate the comparison of an alt attribute with an image’s content, and there are some screen reader tests that need to be carried out by hand too. To ensure our site is as accessible as possible, we will still need to carry out manual tests, and I will cover these later. First, I’m going to explain how I implemented automated accessibility tests on Elsevier’s ecommerce pages, and share some of the lessons I learnt along the way. Picking the right tool One of the hardest, but most important parts of creating our automated accessibility tests was choosing the right tool. We began by investigating aXe CLI, but soon realised it wouldn’t fit our requirements. It couldn’t check pages that required a visitor to log in, so while we could test our product pages, we couldn’t test any customer account pages. Instead we moved over to Pa11y. Its beforeScript step meant we could log into the site and test pages such as the order history. The example below shows the how the beforeScript step completes a login form and then waits for the login to complete before testing the page: beforeScript: function(page, options, next) { // An example function that can be used to make sure changes have been confirmed before continuing to run Pa11y function waitUntil(condition, retries, waitOver) { page.evaluate(condition, function(err, result) { if (result || retries < 1) { // Once the changes have taken place continue with Pa11y testing waitOver(); } else { retries -= 1; setTimeout(function() { waitUntil(condition, retries, waitOver); }, 200); } }); } // The script to manipulate the page must be run with page.evaluate to be run within the context of the page page.evaluate(function() { const user = document.querySelector('#login-form input[name="email"]'); const password = document.querySelector('#login-form input[name="password"]'); const submit = document.querySelector('#login-form input[name="submit"]'); user.value = 'user@example.com'; password.value = 'password'; submit.click(); }, function() { // Use the waitUntil function to set the condition, number of retries and the callback waitUntil(function() { return window.location.href === 'https://example.com'; }, 20, next); }); } The waitUntil callback allows the test to be delayed until our test user is successfully logged in. Another thing to consider when picking a tool is the type of error messages it produces. aXe groups all elements with the same error together, so the list of issues is a lot easier to read, and it’s easier to identify the most commons problems. For example, here are some elements that have insufficient colour contrast: Violation of "color-contrast" with 8 occurrences! Ensures the contrast between foreground and background colors meets WCAG 2 AA contrast ratio thresholds. Correct invalid elements at: - #maincontent > .make_your_mark > div:nth-child(2) > p > span > span - #maincontent > .make_your_mark > div:nth-child(4) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(2) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(4) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(6) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(8) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(10) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(12) > p > span > span For details, see: https://dequeuniversity.com/rules/axe/2.5/color-contrast aXe also provides links to their site where they discuss the best way to fix the problem. In comparison, Pa11y lists each individual error which can lead to a very verbose list. However, it does provide helpful suggestions of how to fix problems, such as suggesting an alternative shade of a colour to use: • Error: This element has insufficient contrast at this conformance level. Expected a contrast ratio of at least 4.5:1, but text in this element has a contrast ratio of 2.96:1. Recommendation: change text colour to #767676. ⎣ WCAG2AA.Principle1.Guideline1_4.1_4_3.G18.Fail ⎣ #maincontent > div:nth-child(10) > div:nth-child(8) > p > span > span ⎣ <span style="color:#969696">Featured products:</span> Integrating into our build pipeline We decided the perfect time to run our accessibility tests would be alongside our end-to-end tests. We have a Jenkins job that detects changes to our staging site and then triggers the end-to-end tests, and in turn our accessibility tests. Our Jenkins job retrieves the contents of a GitHub repository containing our Pa11y script file and npm package manifest. Once Jenkins has cloned the repository, it installs any dependencies and executes the tests via: npm install && npm test Bundling the URLs to be tested into our test script means we don’t have a command line style test where we list each URL we wish to test in the Jenkins CLI. It’s an effective method but can also be cluttered, and obscure which URLs are being tested. In the middle of the office we have a monitor displaying a Jenkins dashboard and from this we can see if the accessibility tests are passing or failing. Everyone in the team has access to the Jenkins logs and when the build fails they can see why and fix the issue. Fixing the issues As mentioned earlier, Pa11y can generate a long list of areas for improvement which can be very verbose and quite overwhelming. I recommend going through the list to see which issues occur most frequently and fix those first. For example, we initially had a lot of errors around colour contrast, and one shade of grey in particular. By making this colour darker, the number of errors decreased, and we could focus on the remaining issues. Another thing I like to do is to tackle the quick fixes, such as adding alt text to images. These are small things that allow us to make an impact instantly, giving us time to fix more detailed concerns such as addressing tabindex issues, or speaking to our designers about changing the contrast of elements on the site. Manual testing Adding automated tests to check our site for accessibility is great, but as I mentioned earlier, this can only cover 20-50% of potential issues. To improve on this, we need to test by hand too, either by ourselves or by asking others. One way we can test our site is to throw our mouse or trackpad away and interact with the site using only a keyboard. This allows us to check items such as tab order, and ensure menu items, buttons etc. can be used without a mouse. The commands may be different on different operating systems, but there are some great guides online for learning more about these. It’s tempting to add alt text and aria-labels to make errors go away, but if they don’t make any sense, what use are they really? Using a screenreader we can check that alt text accurately represents the image. This is also a great way to double check that our ARIA roles make sense, and that they correctly identify elements and how to interact with them. When testing our site with screen readers, it’s important to remember that not all screen readers are the same and some may interact with our site differently to others. Consider asking a range of people with different needs and abilities to test your site, too. People experience the web in numerous ways, be they permanent, temporary or even situational. They may interact with your site in ways you hadn’t even thought about, so this is a good way to broaden your knowledge and awareness. Tips and tricks One of our main issues with Pa11y is that it may find issues we don’t have the power to solve. A perfect example of this is the one pixel image Facebook injects into our site. So, we wrote a small function to go though such errors and ignore the ones that we cannot fix. const test = pa11y({ .... hideElements: '#ratings, #js-bigsearch', ... }); const ignoreErrors: string[] = [ '<img src="https://books.google.com/intl/en/googlebooks/images/gbs_preview_button1.gif" border="0" style="cursor: pointer;" class="lightbox-is-image">', '<script type="text/javascript" id="">var USI_orderID=google_tag_mana...</script>', '<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=123456789012345&ev=PageView&noscript=1">' ]; const filterResult = result => { if (ignoreErrors.indexOf(result.context) > -1) { return false; } return true; }; Initially we wanted to focus on fixing the major problems, so we added a rule to ignore notices and warnings. This made the list or errors much smaller and allowed us focus on fixing major issues such as colour contrast and missing alt text. The ignored notices and warnings can be added in later after these larger issues have been resolved. const test = pa11y({ ignore: [ 'notice', 'warning' ], ... }); Jenkins gotchas While using Jenkins we encountered a few problems. Sometimes Jenkins would indicate a build had passed when in reality it had failed. This was because Pa11y had timed out due to PhantomJS throwing an error, or the test didn’t go past the first URL. Pa11y has recently released a new beta version that uses headless Chrome instead of PhantomJS, so hopefully these issues will less occur less often. We tried a few approaches to solve these issues. First we added error handling, iterating over the array of test URLs so that if an unexpected error happened, we could catch it and exit the process with an error indicating that the job had failed (using process.exit(1)). for (const url of urls) { try { console.log(url); let urlResult = await run(url); urlResult = urlResult.filter(filterResult); urlResult.forEach(result => console.log(result)); } catch (e) { console.log('Error:', e); process.exit(1); } } We also had issues with unhandled rejections sometimes caused by a session disconnecting or similar errors. To avoid Jenkins indicating our site was passing with 100% accessibility, when in reality it had not executed any tests, we instructed Jenkins to fail the job when an unhandled rejection or uncaught exception occurred: process.on('unhandledRejection', (reason, p) => { console.log('Unhandled Rejection at:', p, 'reason:', reason); process.exit(1); }); process.on('uncaughtException', (err) => { console.log('Caught exception: ${err}n'); process.exit(1); }); Now it’s your turn That’s it! That’s how we automated accessibility testing for Elsevier ecommerce pages, allowing us to improve our site and make it more accessible for everyone. I hope our experience can help you automate accessibility tests on your own site, and bring the web a step closer to being accessible to all. 2017 Seren Davies serendavies 2017-12-07T00:00:00+00:00 https://24ways.org/2017/automating-your-accessibility-tests/ code
212 Refactoring Your Way to a Design System I love refactoring code. Absolutely love it. There’s something about taking a piece of UI or a bit of code and reworking it in a way that is simpler, modular, and reusable that makes me incredibly happy. I also love design systems work. It gives hybrids like me a home. It seems like everyone is talking about design systems right now. Design systems teams are perfect for those who enjoy doing architectural work and who straddle the line between designer and developer. Una Kravets recently identified some of the reasons that design systems fail, and chief among them are lack of buy-in, underlying architecture, and communication. While it’s definitely easier to establish these before project work begins, that doesn’t mean it is the only path to success. It’s a privilege to work on a greenfield project, and one that is not afforded to many. Companies with complex and/or legacy codebases may not be able to support a full rewrite of their product. In addition, many people feel overwhelmed at the thought of creating a complete system and are at a loss of how or where to even begin the process. This is where refactoring comes into play. According to Martin Fowler, “refactoring is the process of changing a software system in such a way that it does not alter the external behavior of the code yet improves its internal structure.” It’s largely invisible work, and if you do it right, the end user will never know the difference. What it will do is provide a decent foundation to begin more systematic work. Build a solid foundation When I was first asked to create Pantsuit, the design system for Hillary for America, I was tasked with changing our codebase to be more modular and scalable, without changing the behavior or visual design of the UI. We needed a system in place that would allow for the rapid creation of new projects while maintaining a consistent visual language. In essence, I was asked to refactor our code into a design system. During that refactor, I focused the majority of my efforts on creating a scalable architecture based on the UI components in a single workflow. Since I needed to maintain a 1:1 parity with production, the only changes I could create were under-the-hood. I started with writing coding standards and deciding on a CSS architecture that I would then use as I rewrote sections of the codebase. If you already have these in place, great! If not, then this is an excellent place to start. Even if your dream of a design system is never fully realized, having a coding philosophy and architecture in place will still have far-reaching benefits and implications. I want to note that if your refactor includes creating new coding standards or a CSS architecture, don’t try to switch everything over right away. Instead, focus on a single new feature and isolate/encapsulate your work from the rest of the codebase. Focus on the features The key principle to cleaning up a complex codebase is to always refactor in the service of a feature. — Max Kanat-Alexander Refactoring for the sake of refactoring can easily lead to accusations of misused time and lack of results. Another danger of refactoring is that it can turn into yak-shaving if you aren’t disciplined in your approach. To that end, tying your refactored components to feature work is a great way to limit scope and reduce the rest of unintended changes. For example, the initial work on Pantsuit focused only on components related to the donations flow. Every line of code I wrote was in service to improving the maintainability and modularity of that UI. Because we didn’t have any standards in place, I started with those. From there, I identified all the components present in every step of the donations flow, which included some type styles, buttons, form inputs and error states. Then came the refactor of each individual component. Finally, I reintegrated the newly refactored components into the existing donations flow and tested it against production, checking for visual and behavioral diffs. At the end of this process, I had the beginning of a design system that would grow to serve over 50 applications, and a case study to demonstrate its effectiveness. Ideally, you’ll want to get buy-in from your stakeholders and product owners before you begin any design systems work. However, in the absence of buy-in, linking your work to new feature development is a good way to both limit the scope of your refactor and jump start component creation. In addition, if you’re still trying to convince your team of the benefits of a design system, starting small and using the newly refactored, feature-driven work as a case study is one way showcase a design systems’ value. By providing a concrete example of how working towards a design system contributed to the project’s success, you’re gathering the data necessary to secure buy-in for a larger-scale effort. It’s a great way to show value, rather than just talking about it. Show, don’t tell Perhaps the most important thing you can do for any design system is to document it. The key is to create a frictionless way to keep the documentation up-to-date, otherwise no one will contribute to it, and in turn, it will become obsolete and useless. There are lots of tools out there to help you get started documenting your new system. One of my favorites is KSS, which parses comments in the code and uses them to generate a style guide. For Pantsuit, I used the node version of KSS, along with a template to quickly spin up a documentation site. I’ve listed just a few tools below; for even more, check out the tools sections of styleguides.io. Fractal Pattern Lab Drizzle Fabricator Astrum Catalog Regardless of what tool you settle on, it needs to integrate well with your current workflow. Conclusion: always be refactoring If you’re not lucky enough to be able to start a new design system from scratch, you can start small and work on a single feature or component. With each new project comes a new opportunity to flesh out a new part of the system, and another potential case study to secure buy-in and showcase its value. Make sure to carefully and thoroughly document each new portion of the system as it’s built. After a few projects, you’ll find yourself with a decent start to a design system. Good luck, and happy holidays! Further reading: Why Design Systems Fail CSS Architecture for Design Systems Refactoring: Improving the Design of Existing Code Refactoring CSS: The Three I’s Refactoring is About Features 2017 Mina Markham minamarkham 2017-12-23T00:00:00+00:00 https://24ways.org/2017/refactoring-your-way-to-a-design-system/ code
213 Accessibility Through Semantic HTML Working on Better, a tracker blocker, I spend an awful lot of my time with my nose in other people’s page sources. I’m mostly there looking for harmful tracking scripts, but often notice the HTML on some of the world’s most popular sites is in a sad state of neglect. What does neglected HTML look like? Here’s an example of the markup I found on a news site just yesterday. There’s a bit of text, a few links, and a few images. But mostly it’s div elements. <div class="block_wrapper"> <div class="block_content"> <div class="box"> <div id="block1242235"> <div class="column"> <div class="column_content"> <a class="close" href="#"><i class="fa"></i></a> </div> <div class="btn account_login"></div> Some text <span>more text</span> </div> </div> </div> </div> </div> divs and spans, why do we use them so much? While I find tracking scripts completely inexcusable, I do understand why people write HTML like the above. As developers, we like to use divs and spans as they’re generic elements. They come with no associated default browser styles or behaviour except that div displays as a block, and span displays inline. If we make our page up out of divs and spans, we know we’ll have absolute control over styles and behaviour cross-browser, and we won’t need a CSS reset. Absolute control may seem like an advantage, but there’s a greater benefit to less generic, more semantic elements. Browsers render semantic elements with their own distinct styles and behaviours. For example, button looks and behaves differently from a. And ul is different from ol. These defaults are shortcuts to a more usable and accessible web. They provide consistent and well-tested components for common interactions. Semantic elements aid usability A good example of how browser defaults can benefit the usability of an element is in the <select> option menu. In Safari on the desktop, the browser renders <select> as a popover-style menu. On a touchscreen, Safari overlays the same menu over the lower half of the screen as a “picker view.” Option menu in Safari on macOS. Option menu picker in Safari on iOS. The iOS picker is a much better experience than struggling to pick from a complicated interface inside the page. The menu is shown more clearly than in the confined space on the page, which makes the options easier to read. The required swipe and tap gestures are consistent with the rest of the operating system, making the expected interaction easier to understand. The whole menu is scaled up, meaning the gestures don’t need such fine motor control. Good usability is good accessibility. When we choose to use a div or span over a more semantic HTML element, we’re also doing hard work the browser could be doing for us. We don’t need to tie ourselves in knots making a custom div into a keyboard navigable option menu. Using select passes the bulk of the responsibility over to the browser.  Letting the browser do most of the work is also more future-friendly. More devices, with different expected interactions, will be released in the future. When that happens, the devices’ browsers can adapt our sites according to those interactions. Then we can spend our time doing something more fun than rewriting cross-browser JavaScript for each new device. HTML’s impact on accessibility Assistive technology also uses semantic HTML to understand how best to convey each element to its user. For screen readers Semantic HTML gives context to screen readers. Screen readers are a type of assistive technology that reads the content of the screen to the person using it. All sites have a linear page source. Sighted visitors can use visual cues on the page to navigate to their desired content in a non-linear fashion. As screen readers output audio (and sometimes braille), those visual cues aren’t usable in the same way. Screen readers provide alternative means of navigation, enabling people to jump between different types of content, such as links, forms, headings, lists, and paragraphs. If all our content is marked up using divs and spans, we’re not giving screen readers a chance to index the valuable content. For keyboard navigation Keyboard-only navigation is also aided by semantic HTML. Forms, option menus, navigation, video, and audio are particularly hard for people relying on a keyboard to access. For instance, option menus and navigation can be very fiddly if you need to use a mouse to hover a menu open and move to select the desired item at the same time.  Again, we can leave much of the interaction to the browser through semantic HTML. Semantic form elements can convey if a check box has been checked, or which label is associated with which input field. These default behaviours can make the difference between a person being able to use a form or leaving the site out of frustration. Did I convince you yet? I hope so. Let’s finish with some easy guidelines to follow. 1. Use the most semantic HTML element for the job When you reach for a div, first check if there’s a better element to do the job. What is the role of that element? How should a person be interacting with the element? Are you using class names like nav, header, or main? There are HTML5 elements for those sections! Using specific elements can also make writing CSS simpler, and ensure a consistent design with minimal effort. 2. Separate structure and style Don’t choose HTML elements based on how they’re styled in your CSS. Nowadays, common practice is to use class names rather than elements for CSS selectors. You’re unlikely to wrap all your page content in an <h1> element because you want all the text to be big and bold. Still, it can be easy to choose an HTML element because it will be the easiest to style. Focusing on content without style will help us choose the most semantic HTML element without that temptation. For example, you could add a class of .btn to a div to make it look like a button. But we all know that only a button will really behave like a button. 3. Use progressive enhancement for enhanced functionality Airbnb and Groupon recently proved we’re not past the laziness of “this site only works in X browser.” Baffling disregard for the open web aside, making complex interactive experiences work cross-browser and cross-device is not easy. We can use progressive enhancement to layer fancy or unsupported features on top of a baseline “it works” experience.  We should build the baseline experience on a foundation of accessible, semantic HTML. Then, if you really want to add a specific feature for a proprietary browser, you can layer that on top, without breaking the underlying experience. 4. Test your work Validators are always valuable for checking the browser will be able to correctly interpret your markup. Document outline checkers can be valuable for testing your structure, but be aware that the HTML5 document outline is not actually implemented in browsers. Once you’ve got something resembling a web page, test the experience! Ensure that semantic HTML element you chose looks and behaves in a predictable manner consistent with its use across the web. Test cross-browser, test cross-device, and test with assistive technology. Testing with assistive technology is not as expensive as it used to be, you can even use your smartphone for testing on iOS and Android. Your visitors will thank you! Further reading Accessibility For Everyone by Laura Kalbag HTML5 Doctor HTML5 Accessibility An overview of HTML5 Semantics HTML reference on MDN  Heydon Pickering’s Inclusive Design Checklist The Paciello Group’s Inclusive Design Principles 2017 Laura Kalbag laurakalbag 2017-12-15T00:00:00+00:00 https://24ways.org/2017/accessibility-through-semantic-html/ code
214 Christmas Gifts for Your Future Self: Testing the Web Platform In the last year I became a CSS specification editor, on a mission to revitalise CSS Multi-column layout. This has involved learning about many things, one of which has been the Web Platform Tests project. In this article, I’m going to share what I’ve learned about testing the web platform. I’m also going to explain why I think you might want to get involved too. Why test? At one time or another it is likely that you have been frustrated by an issue where you wrote some valid CSS, and one browser did one thing with it and another something else entirely. Experiences like this make many web developers feel that browser vendors don’t work together, or they are actively doing things in a different way to one another to the detriment of those of us who use the platform. You’ll be glad to know that isn’t the case, and that the people who work on browsers want things to be consistent just as much as we do. It turns out however that interoperability, which is the official term for “works in all browsers”, is hard. Thanks to web-platform-tests, a test from another browser vendor just found genuine bug in our code before we shipped 😻— Brian Birtles (@brianskold) February 10, 2017 In order for W3C Specifications to move on to become W3C Recommendations we need to have interoperable implementations. 6.2.4 Implementation Experience Implementation experience is required to show that a specification is sufficiently clear, complete, and relevant to market needs, to ensure that independent interoperable implementations of each feature of the specification will be realized. While no exhaustive list of requirements is provided here, when assessing that there is adequate implementation experience the Director will consider (though not be limited to): is each feature of the current specification implemented, and how is this demonstrated? are there independent interoperable implementations of the current specification? are there implementations created by people other than the authors of the specification? are implementations publicly deployed? is there implementation experience at all levels of the specification’s ecosystem (authoring, consuming, publishing…)? are there reports of difficulties or problems with implementation? https://www.w3.org/2017/Process-20170301/#transition-reqs We all want interoperability, achieving interoperability is part of the standards process. The next question is, how do we make sure that we get it? Unimplemented vs uninteroperable implementations Before looking at how we can try to improve interoperability, I’d like to look at the reasons we don’t always meet that aim. There are a couple of reasons why browser X is not doing the same thing as browser Y. The first reason is that browser X has not implemented that feature yet. Relatively small teams of people work on browser engines, and their resources are spread as thinly as those of any company. Behind those browsers are business or organisational goals which may not match our desire for a shiny feature to be made available. There are ways in which we as the web community can help gently encourage implementations - by requesting the feature, by using it so it shows up in usage reports, or writing about it to show interest. However, there will always be some degree of lag based on priorities. A browser not supporting a feature at all, is reasonably easy to deal with these days. We can test for support with Feature Queries, and create sensible fallbacks. What is harder to deal with is when a feature is implemented in different ways by different browsers. In that situation you use the feature, perhaps referring to the specification to ensure that you are writing your CSS correctly. It looks exactly as you expect in one browser and it’s all broken when you test in another. A frequent cause of this kind of issue is that the specification is not well defined in a particular area or that the specification has changed since one or other browser implemented it. CSS specifications are not developed in a darkened room, then presented to browser vendors to implement as a completed document. It would be nice if it worked like that, however the web platform is a gnarly thing. Before we can be sure that a specification is correct, it needs implementing in order that we can get the interoperable implementations I described earlier. A circular process has to happen. Specifications have to be written, browsers have to implement and find the problems, and then the specification has to be revised. Many people reading this will be familiar with how flexbox changed three times in browsers, leaving us with a mess of incompatibilities and the need to use at least two versions of the spec. This story was an example of this circular process, in this case the specification was flagged as experimental using vendor prefixes. We had become used to using vendor prefixes in production and early adopters of flexbox were bitten by this. Today, specifications are developed behind experimental flags as we saw with CSS Grid Layout. Yet there has to come a time when implementations ship, and remove those flags, and it may be that knowingly or unknowingly some interop issues slip through. You will know these interop issues as “browser bugs”, perhaps you have even reported one (thank you!) and none of us want them, so how do we make the platform as robust as possible? How do we ensure we have interoperability? If you were working on a large web application, with several people committing code, it would be very easy for one person to make a change that inadvertently broke some part of the application. They might not realise the fact that their change would cause a problem, due to not having a complete understanding of the entire codebase. To prevent this from happening, it is accepted good practice to write tests as well as code. The tests can then be run before the application is deployed. Unless you start out from the beginning writing tests, and are very good at writing a test for every bit of code, it is likely that some issues do slip through from time to time. When this happens, a good approach is to not only fix the issue but also to write a test that would stop it ever happening again. That way the test suite improves over time and hopefully fewer issues happen. The web platform is essentially a giant, sprawling application, with a huge range of people working on it in different ways. There is therefore plenty of opportunity for issues to creep in, so it seems like having some way of writing tests and automating those tests on browsers would be a good thing. That, is what the Web Platform Tests project has set out to achieve. Web Platform Tests Web Platform Tests is the test suite for the web platform. It is set of tests for all parts of the web platform, which can be run in any browser and the results reported. This article mostly discusses CSS tests, because I work on CSS. You will find that there are tests covering the full platform, and you can look into whichever area you have the most interest and experience in. If we want to create a test suite for a CSS specification then we need to ensure that every feature of the specification has a related test. If a change is made to the spec, and a test committed that reflects that change, then it should be straightforward to run that test against each browser and see if it passes. Currently, at the CSS Working Group, specifications that are at Candidate Recommendation Status should commit at test with every normative change to the spec. To explain the terminology, a normative change is one that changes some of the normative text of a specification - text that contains instructions as to how a browser should render a certain thing. A Candidate Recommendation is the status at which the Working Group officially request implementations of the spec, therefore it is reasonable to assume that any change may cause an interoperability issue. It is usually the case that representatives from all browsers will have discussed the change, so anyone who needs to change code will be aware. In this case the test allows them to check that their change passes and matches everyone else. Tests would also highlight the situation where a change to the spec caused an issue in a browser that otherwise wouldn’t be aware if it. Just as a test suite for your web application should alert a person committing code, that their change will cause a problem elsewhere. Discovering the tests I’ve found that the more I have understood the effort that goes into interoperability, and the reasons why creating an interoperable web is so hard, running into browser issues has become less frustrating. I have somewhere to go, even if all I can do is log the bug. If you are even slightly interested in the subject, go have a poke around wpt.fyi. You can explore the various parts of the web platform and see how many tests have been committed. All the the CSS tests are under the directory /css where you will find each specification. Find a specification you are interested in, and look at the tests. Each test has a link to run it in your own browser to see if it passes. This can be useful in itself, if you are battling with an issue and have reduced it down to something specific, you can go and look to see if there is a test covering that and whether it appears to pass or fail in the browser you are battling with. If it turns out that the test fails, it’s probably not you! A test on the wpt.fyi dashboard Note: In some tests you will come across mention of a font called Ahem. This is a font designed for testing which contains consistent glyphs. You can read about how to use the font and download it here. Contributing to Web Platform Tests You can also become involved with Web Platform Tests. People often ask me how they can become involved in CSS, and I can think of no better way than by writing tests. You need to really understand a feature to accurately come up with a method of testing if it works or not in the different engines. This is not glamorous work, it is however a very useful thing to be involved with. In addition to helping yourself, and developing the sort of deep knowledge of the platform that enables contribution, you will really help the progress of specifications. There are only a very few people writing specs. If those people also have to write and review all of the tests it slows down their work. If you want a better, more interoperable web, and to massively improve your ability to have nerdy conversations about highly specific things, testing is the place to start. A local testing setup Your first stop should be to visit the home of Web Platform Tests. There is some documentation here, which does tend to assume you know about the tests and what you are looking for - having read this article you know as much as I do. To be able to work on tests you will want to: Clone the WPT repo, this is where all the tests are stored Install some tools so you can run up a local copy of the tests The instructions on the Readme in the repo should get you up and running, you can then load your own version of the test suite in a browser at http://web-platform-test:8000, or whichever port you set up. Running tests locally Finding things to test It’s currently not straightforward to locate low-hanging fruit in order to start committing tests. There are some issues flagged up as a good first issue in the GitHub repo, if any of those match your interest and knowledge. Otherwise, a good place to start is where you know of existing interoperability issues. If you are aware of a browser bug, have a look and see if there is a test that addresses it. If not, then a test highlights the interoperability issue, and if it is an issue that you are running into means that you have a nice way to see if it has been fixed! Talk to people There is an IRC channel at irc://irc.w3.org:6667/testing, where you will find people who are writing tests as well as people who are working on the test suite framework itself. They have always been very friendly, and are likely to welcome people with a real interest in creating tests. Gathering information First you need to read the spec. To be able to create a test you need to know and to understand what the specification says should be happening. As I mentioned, writing tests will improve your knowledge dramatically! In general I find that web developers assume their favourite browser has got it right, this isn’t about right or wrong however, or good browsers versus bad ones. The browser with the incorrect implementation may have had a perfect, as per the spec implementation, until something changed. Do some investigation and work out what the spec says, and which – if any – browser is doing it correctly. Another good place to look when trying to create a test for an interop issue, is to look at the browser issue trackers. It is quite likely that someone has already logged the issue, and detailed what it is, and even which browsers are as per the spec. This is useful information, as you then have a clue as to which browsers should pass your test. Remember to check version numbers - an issue may well be fixed in a pre-release version of Chrome for example, but not in the public release. Edge Issue Tracker Mozilla Issue Tracker WebKit Issue Tracker Chromium Issue Tracker Writing the test If you’ve ever created a Reduced Test Case to isolate a browser issue, you already have some idea of what we are trying to do with a test. We want to test one thing, in isolation, and to be able to confirm “yes this works as per the spec” or “no, this does not”. The main two types of test are: testharness.js tests reftests The testharness.js tests use JavaScript to test an assertion, this framework is designed as a way to test Web APIs and as this quickly gets fairly complicated - and I’m a complete beginner myself at writing these - I’ll refer you to the excellent tutorial Using testharness.js. Many CSS tests will be reftests. A reftest involves getting two pages to lay out in the same way, so that they are visually the same. For example, you can find a reftest for Grid Layout at:https://w3c-test.org/css/css-grid/alignment/grid-gutters-001.html or at http://web-platform.test:8000/css/css-grid/alignment/grid-gutters-001.html if you have run up your own copy of WPT. <!DOCTYPE html> <meta charset="utf-8"> <title>CSS Grid Layout Test: Support for gap shorthand property of row-gap and column-gap</title> <link rel="help" href="https://www.w3.org/TR/css-grid-1/#gutters"> <link rel="help" href="https://www.w3.org/TR/css-align-3/#gap-shorthand"> <link rel="match" href="../reference/grid-equal-gutters-ref.html"> <link rel="author" title="Rachel Andrew" href="mailto:me@rachelandrew.co.uk"> <style> #grid { display: grid; width:200px; gap: 20px; grid-template-columns: 90px 90px; grid-template-rows: 90px 90px; background-color: green; } #grid > div { background-color: silver; } </style> <p>The test passes if it has the same visual effect as reference.</p> <div id="grid"> <div></div> <div></div> <div></div> <div></div> </div> I am testing the new gap property (renamed grid-gap). The reference file can be found by looking for the line: <link rel="match" href="../reference/grid-equal-gutters-ref.html"> In that file, I am using absolute positioning to mock up the way the file would look if gap is implemented correctly. <!DOCTYPE html> <meta charset="utf-8"> <title>CSS Grid Layout Reference: a square with a green cross</title> <link rel="author" title="Rachel Andrew" href="mailto:me@rachelandrew.co.uk" /> <style> #grid { width:200px; height: 200px; background-color: green; position: relative; } #grid > div { background-color: silver; width: 90px; height: 90px; position: absolute; } #grid :nth-child(1) { top: 0; left: 0; } #grid :nth-child(2) { top: 0; left: 110px; } #grid :nth-child(3) { top: 110px; left: 0; } #grid :nth-child(4) { top: 110px; left: 110px; } </style> <div id="grid"> <div></div> <div></div> <div></div> <div></div> </div> The tests are compared in an automated way by taking screenshots of the test and reference. These are relatively simple tests to write, you will find the work is not in writing the test however. The work is really in doing the research, and making sure you understand what is supposed to happen so you can write the test. Which is why, if you really want to get your hands dirty in the web platform, this is a good place to start. Committing a test Once you have written a test you can run the lint tool to make sure that everything is tidy. This tool is run automatically after you submit your pull request, and reviewers won’t accept a test with lint errors, so do this locally first to catch anything obvious. Tests are added as a pull request, once you have your test ready to go you can create a pull request to add it to the repository. Your test will be tested and it will then wait for a review. You may well then find yourself in a bit of a waiting game, as the test needs to be reviewed. How long that takes will depend on how active work is on that spec. People who are in the OWNERS file for that spec should be notified. You can always ask in IRC to see if someone is available who can look at and potentially merge your test. Usually the reviewer will have some comments as to how the test can be improved, in the same as the owner of an open source project you submit a PR to might ask you to change some things. Work with them to make your test as good as it can be, the things you learn on the first test you submit will make future ones easier. You can then bask in the glow of knowing you have done something towards the aim of a more interoperable web for all of us. Christmas gifts for your future self I have been a web developer for over 20 years. I have no idea what the web platform will look like in 20 more years, but for as long as I’m working on it I’ll keep on trying to make it better. Making the web more interoperable makes it a better place to be a web developer, storing up some Christmas gifts for my future self, while learning new things as I do so. Resources I rounded up everything I could find on WPT while researching this article. As well as some other links that might be helpful for you. These links are below. Happy testing! Web Platform Tests Using testharness.js IRC Channel irc://irc.w3.org:6667/testing Edge Issue Tracker Mozilla Issue Tracker WebKit Issue Tracker Chromium Issue Tracker Reducing an Issue - guide to created a reduced test case Effectively Using Web Platform Tests: Slides and Video An excellent walkthrough from Lyza Gardner on her working on tests for the HTML specification - Moving Targets: a case study on testing web standards. Improving interop with web-platform-tests: Slides and Video 2017 Rachel Andrew rachelandrew 2017-12-10T00:00:00+00:00 https://24ways.org/2017/testing-the-web-platform/ code
215 Teach the CLI to Talk Back The CLI is a daunting tool. It’s quick, powerful, but it’s also incredibly easy to screw things up in – either with a mistyped command, or a correctly typed command used at the wrong moment. This puts a lot of people off using it, but it doesn’t have to be this way. If you’ve ever interacted with Slack’s Slackbot to set a reminder or ask a question, you’re basically using a command line interface, but it feels more like having a conversation. (My favourite Slack app is Lunch Train which helps with the thankless task of herding colleagues to a particular lunch venue on time.) Same goes with voice-operated assistants like Alexa, Siri and Google Home. There are even games, like Lifeline, where you interact with a stranded astronaut via pseudo SMS, and KOMRAD where you chat with a Soviet AI. I’m not aiming to build an AI here – my aspirations are a little more down to earth. What I’d like is to make the CLI a friendlier, more forgiving, and more intuitive tool for new or reluctant users. I want to teach it to talk back. Interactive command lines in the wild If you’ve used dev tools in the command line, you’ve probably already used an interactive prompt – something that asks you questions and responds based on your answers. Here are some examples: Yeoman If you have Yeoman globally installed, running yo will start a command prompt. The prompt asks you what you’d like to do, and gives you options with how to proceed. Seasoned users will run specific commands for these options rather than go through this prompt, but it’s a nice way to start someone off with using the tool. npm If you’re a Node.js developer, you’re probably familiar with typing npm init to initialise a project. This brings up prompts that will populate a package.json manifest file for that project. The alternative would be to expect the user to craft their own package.json, which is more error-prone since it’s in JSON format, so something as trivial as an extraneous comma can throw an error. Snyk Snyk is a dev tool that checks for known vulnerabilities in your dependencies. Running snyk wizard in the CLI brings up a list of all the known vulnerabilities, and gives you options on how to deal with it – such as patching the issue, applying a fix by upgrading the problematic dependency, or ignoring the issue (you are then prompted for a reason). These decisions get mapped to the manifest and a .snyk file, and committed into the repo so that the settings are the same for everyone who uses that project. I work at Snyk, and running the wizard is what made me think about building my own personal assistant in the command line to help me with some boring, repetitive tasks. Writing your own Something I do a lot is add bookmarks to styleguides.io – I pull down the entire repo, copy and paste a template YAML file, and edit to contents. Sometimes I get it wrong and break the site. So I’ve been putting together a tool to help me add bookmarks. It’s called bookmarkbot – it’s a personal assistant squirrel called Mark who will collect and bury your bookmarks for safekeeping.* *Fortunately, this metaphor also gives me a charming excuse for any situation where bookmarks sometimes get lost – it’s not my poorly-written code, honest, it’s just being realistic because sometimes squirrels forget where they buried things! When you run bookmarkbot, it will ask you for some information, and save that information as a Markdown file in YAML format. For this demo, I’m going to use a Node.js package called inquirer, which is a well supported tool for creating command line prompts. I like it because it has a bunch of different question types; from input, which asks for some text back, confirm which expects a yes/no response, or a list which gives you a set of options to choose from. You can even nest questions, Choose Your Own Adventure style. Prerequisites Node.js npm RubyGems (Only if you want to go as far as serving a static site for your bookmarks, and you want to use Jekyll for it) Disclaimer Bear in mind that this is a really simplified walkthrough. It doesn’t have any error states, and it doesn’t handle the situation where we save a file with the same name. But it gets you in a good place to start building out your tool. Let’s go! Create a new folder wherever you keep your projects, and give it an awesome name (I’ve called mine bookmarks and put it in the Sites directory because I’m unimaginative). Now cd to that directory. cd Sites/bookmarks Let’s use that example I gave earlier, the trusty npm init. npm init Pop in the information you’d like to provide, or hit ENTER to skip through and save the defaults. Your directory should now have a package.json file in it. Now let’s install some of the dependencies we’ll need. npm install --save inquirer npm install --save slugify Next, add the following snippet to your package.json to tell it to run this file when you run npm start. "scripts": { … "start": "node index.js" } That index.js file doesn’t exist yet, so let’s create it in the root of our folder, and add the following: // Packages we need var fs = require('fs'); // Creates our file (part of Node.js so doesn't need installing) var inquirer = require('inquirer'); // The engine for our questions prompt var slugify = require('slugify'); // Will turn a string into a usable filename // The questions var questions = [ { type: 'input', name: 'name', message: 'What is your name?', }, ]; // The questions prompt function askQuestions() { // Ask questions inquirer.prompt(questions).then(answers => { // Things we'll need to generate the output var name = answers.name; // Finished asking questions, show the output console.log('Hello ' + name + '!'); }); } // Kick off the questions prompt askQuestions(); This is just some barebones where we’re including the inquirer package we installed earlier. I’ve stored the questions in a variable, and the askQuestions function will prompt the user for their name, and then print “Hello <your name>” in the console. Enough setup, let’s see some magic. Save the file, go back to the command line and run npm start. Extending what we’ve learnt At the moment, we’re just saving a name to a file, which isn’t really achieving our goal of saving bookmarks. We don’t want our tool to forget our information every time we talk to it – we need to save it somewhere. So I’m going to add a little function to write the output to a file. Saving to a file Create a folder in your project’s directory called _bookmarks. This is where the bookmarks will be saved. I’ve replaced my questions array, and instead of asking for a name, I’ve extended out the questions, asking to be provided with a link and title (as a regular input type), a list of tags (using inquirer’s checkbox type), and finally a description, again, using the input type. So this is how my code looks now: // Packages we need var fs = require('fs'); // Creates our file var inquirer = require('inquirer'); // The engine for our questions prompt var slugify = require('slugify'); // Will turn a string into a usable filename // The questions var questions = [ { type: 'input', name: 'link', message: 'What is the url?', }, { type: 'input', name: 'title', message: 'What is the title?', }, { type: 'checkbox', name: 'tags', message: 'Would you like me to add any tags?', choices: [ { name: 'frontend' }, { name: 'backend' }, { name: 'security' }, { name: 'design' }, { name: 'process' }, { name: 'business' }, ], }, { type: 'input', name: 'description', message: 'How about a description?', }, ]; // The questions prompt function askQuestions() { // Say hello console.log('🐿 Oh, hello! Found something you want me to bookmark?\n'); // Ask questions inquirer.prompt(questions).then((answers) => { // Things we'll need to generate the output var title = answers.title; var link = answers.link; var tags = answers.tags + ''; var description = answers.description; var output = '---\n' + 'title: "' + title + '"\n' + 'link: "' + link + '"\n' + 'tags: [' + tags + ']\n' + '---\n' + description + '\n'; // Finished asking questions, show the output console.log('\n🐿 All done! Here is what I\'ve written down:\n'); console.log(output); // Things we'll need to generate the filename var slug = slugify(title); var filename = '_bookmarks/' + slug + '.md'; // Write the file fs.writeFile(filename, output, function () { console.log('\n🐿 Great! I have saved your bookmark to ' + filename); }); }); } // Kick off the questions prompt askQuestions(); The output is formatted into YAML metadata as a Markdown file, which will allow us to turn it into a static HTML file using a build tool later. Run npm start again and have a look at the file it outputs. Getting confirmation Before the user makes critical changes, it’s good to verify those changes first. We’re going to add a confirmation step to our tool, before writing the file. More seasoned CLI users may favour speed over a “hey, can you wait a sec and just check this is all ok” step, but I always think it’s worth adding one so you can occasionally save someone’s butt. So, underneath our questions array, let’s add a confirmation array. // Packages we need … // The questions … // Confirmation questions var confirm = [ { type: 'confirm', name: 'confirm', message: 'Does this look good?', }, ]; // The questions prompt … As we’re adding the confirm step before the file gets written, we’ll need to add the following inside the askQuestions function: // The questions prompt function askQuestions() { // Say hello … // Ask questions inquirer.prompt(questions).then((answers) => { … // Things we'll need to generate the output … // Finished asking questions, show the output … // Confirm output is correct inquirer.prompt(confirm).then(answers => { // Things we'll need to generate the filename var slug = slugify(title); var filename = '_bookmarks/' + slug + '.md'; if (answers.confirm) { // Save output into file fs.writeFile(filename, output, function () { console.log('\n🐿 Great! I have saved your bookmark to ' + filename); }); } else { // Ask the questions again console.log('\n🐿 Oops, let\'s try again!\n'); askQuestions(); } }); }); } // Kick off the questions prompt askQuestions(); Now run npm start and give it a go! Typing y will write the file, and n will take you back to the start. Ideally, I’d store the answers already given as defaults so the user doesn’t have to start from scratch, but I want to keep this demo simple. Serving the files Now that your bookmarking tool is successfully saving formatted Markdown files to a folder, the next step is to serve those files in a way that lets you share them online. The easiest way to do this is to use a static-site generator to convert your YAML files into HTML, and pop them all on one page. Now, you’ve got a few options here and I don’t want to force you down any particular path, as there are plenty out there – it’s just a case of using the one you’re most comfortable with. I personally favour Jekyll because of its tight integration with GitHub Pages – I don’t want to mess around with hosting and deployment, so it’s really handy to have my bookmarks publish themselves on my site as soon as I commit and push them using Git. I’ll give you a very brief run-through of how I’m doing this with bookmarkbot, but I recommend you read my Get Started With GitHub Pages (Plus Bonus Jekyll) guide if you’re unfamiliar with them, because I’ll be glossing over some bits that are already covered in there. Setting up a build tool If you haven’t already, install Jekyll and Bundler globally through RubyGems. Jekyll is our static-site generator, and Bundler is what we use to install Ruby dependencies. gem install jekyll bundler In my project folder, I’m going to run the following which will install the Jekyll files we’ll need to build our listing page. I’m using --force, otherwise it will complain that the directory isn’t empty. jekyll new . --force If you check your project folder, you’ll see a bunch of new files. Now run the following to start the server: bundle exec jekyll serve This will build a new directory called _site. This is where your static HTML files have been generated. Don’t touch anything in this folder because it will get overwritten the next time you build. Now that serve is running, go to http://127.0.0.1:4000/ and you’ll see the default Jekyll page and know that things are set up right. Now, instead, we want to see our list of bookmarks that are saved in the _bookmarks directory (make sure you’ve got a few saved). So let’s get that set up next. Open up the _config.yml file that Jekyll added earlier. In here, we’re going to tell it about our bookmarks. Replace everything in your _config.yml file with the following: title: My Bookmarks description: These are some of my favourite articles about the web. markdown: kramdown baseurl: /bookmarks # This needs to be the same name as whatever you call your repo on GitHub. collections: - bookmarks This will make Jekyll aware of our _bookmarks folder so that we can call it later. Next, create a new directory and file at _layouts/home.html and paste in the following. <!doctype html> <html lang="en"> <head> <meta charset="UTF-8" /> <title>{{site.title}}</title> <meta name="description" content="{{site.description}}"> </head> <body> <h1>{{site.title}}</h1> <p>{{site.description}}</p> <ul> {% for bookmark in site.bookmarks %} <li> <a href="{{bookmark.link}}"> <h2>{{bookmark.title}}</h2> </a> {{bookmark.content}} {% if bookmark.tags %} <ul> {% for tags in bookmark.tags %}<li>{{tags}}</li>{% endfor %} </ul> {% endif %} </li> {% endfor %} </ul> </body> </html> Restart Jekyll for your config changes to kick in, and go to the url it provides you (probably http://127.0.0.1:4000/bookmarks, unless you gave something different as your baseurl). It’s a decent start – there’s a lot more we can do in this area but now we’ve got a nice list of all our bookmarks, let’s get it online! If you want to use GitHub Pages to host your files, your first step is to push your project to GitHub. Go to your repository and click “settings”. Scroll down to the section labelled “GitHub Pages”, and from here you can enable it. Select your master branch, and it will provide you with a url to view your published pages. What next? Now that you’ve got a framework in place for publishing bookmarks, you can really go to town on your listing page and make it your own. First thing you’ll probably want to do is add some CSS, then when you’ve added a bunch of bookmarks, you’ll probably want to have some filtering in place for the tags, perhaps extend the types of questions that you ask to include an image (if you’re feeling extra-fancy, you could just ask for a url and pull in metadata from the site itself). Maybe you’ve got an idea that doesn’t involve bookmarks at all. You could use what you’ve learnt to build a place where you can share quotes, a list of your favourite restaurants, or even Christmas gift ideas. Here’s one I made earlier My demo, bookmarkbot, is on GitHub, and I’ve reused a lot of the code from styleguides.io. Feel free to grab bits of code from there, and do share what you end up making! 2017 Anna Debenham annadebenham 2017-12-11T00:00:00+00:00 https://24ways.org/2017/teach-the-cli-to-talk-back/ code
216 Styling Components - Typed CSS With Stylable There’s been a lot of debate recently about how best to style components for web apps so that styles don’t accidentally ‘leak’ out of the component they’re meant for, or clash with other styles on the page. Elaborate CSS conventions have sprung up, such as OOCSS, SMACSS, BEM, ITCSS, and ECSS. These work well, but they are methodologies, and require everyone in the team to know them and follow them, which can be a difficult undertaking across large or distributed teams. Others just give up on CSS and put all their styles in JavaScript. Now, I’m not bashing JS, especially so close to its 22nd birthday, but CSS-in-JS has problems of its own. Browsers have 20 years experience in optimising their CSS engines, so JavaScript won’t be as fast as using real CSS, and in any case, this requires waiting for JS to download, parse, execute then render the styles. There’s another problem with CSS-in-JS, too. Since Responsive Web Design hit the streets, most designers no longer make comps in Photoshop or its equivalents; instead, they write CSS. Why hire an expensive design professional and require them to learn a new way of doing their job? A recent thread on Twitter asked “What’s your biggest gripe with CSS-in-JS?”, and the replies were illuminating: “Always having to remember to camelCase properties then spending 10min pulling hair out when you do forget”, “the cryptic domain-specific languages that each of the frameworks do just ever so slightly differently”, “When I test look and feel in browser, then I copy paste from inspector, only to have to re-write it as a JSON object”, “Lack of linting, autocomplete, and css plug-ins for colors/ incrementing/ etc”. If you’re a developer, and you’re still unconvinced, I challenge you to let designers change the font in your IDE to Zapf Chancery and choose a new colour scheme, simply because they like it better. Does that sound like fun? Will that boost your productivity? Thought not. Some chums at Wix Engineering and I wanted to see if we could square this circle. Wix-hosted sites have always used CSS-in-JS (the concept isn’t new; it was in Netscape 4!) but that was causing performance problems. Could we somehow devise a method of extending CSS (like SASS and LESS do) that gives us styles that are guaranteed not to leak or clash, that is compatible with code editors’ autocompletion, and which could be pre-processed at build time to valid, cross-browser, static CSS? After a few months and a few proofs of concept later (drumroll), yes – we could! We call it Stylable. Introducing Stylable Stylable is a CSS pre-processor, like SASS or LESS. It uses CSS syntax so all your development tools will work. At build time, the Stylable CSS extensions are transpiled to flat, valid, cross-browser vanilla CSS for maximum performance. There’s quite a bit to it, and this is a short article, so let’s look at the basic concepts. Components all the way down Stylable is designed for component-based systems. Imagine you have a Gallery component. Within that, there is a Navigation component (for example, containing a ‘next’, ‘previous’, ‘show all thumbnails’, and ‘show all albums’ controls), and within that there are NavButton components. Each component is discrete, used elsewhere in the system in different contexts, perhaps maintained by different team members or even different organisations — you can use Stylable to add a typed interface to non-Stylable component libraries, as well as using it to build an app from scratch. Firstly, Stylable will automatically namespace styles so they only apply inside that component, by rewriting them at build time with a unique (but human-readable) prefix. So, for example, <div className="jingle bells" /> might be re-written as <div class="header183--jingle header183--bells"></div>. So far, so BEM-like (albeit without the headache of remembering a convention). But what else can it do? Custom pseudo-elements An important feature of Stylable is the ability to reach into a component and style it from the outside, without having to know about its internal structure. Let’s see the guts of a simple JSX button component in the file button.jsx: render () { return ( <button> <span className="icon" /> <span className="label">Submit</span> </button> ); } (Note:className is the JSX way of setting a class on an element; this example uses React, but Stylable itself is framework-agnostic.) I style it using a Stylable stylesheet (the .st.css suffix tells the preprocessor to process this file): /* button.st.css */ /* note that the root class is automatically placed on the root HTML element by Stylable React integration */ .root { background: #b0e0e6; } .icon { display: block; height: 2em; background-image: url('./assets/btnIcon.svg'); } .label { font-size: 1.2em; color: rgba(81, 12, 68, 1.0); } Note that Stylable allows all the CSS that you know and love to be included. As Drew Powers wrote in his review: with Stylable, you get CSS, and every part of CSS. This seems like a “duh” observation, but this is significant if you’ve ever battled with a CSS-in-JS framework over a lost or “hacky” implementation of a basic CSS feature. I can import my Button component into another component - this time, panel.jsx: /* panel.jsx */ import * as React from 'react'; import {properties, stylable} from 'wix-react-tools'; import {Button} from '../button'; import style from './panel.st.css'; export const Panel = stylable(style)(() => ( <div> <Button className="cancelBtn" /> </div> )); In panel.st.css: /* panel.st.css */ :import { -st-from: './button.st.css'; -st-default: Button; } /* cancelBtn is of type Button */ .cancelBtn { -st-extends: Button; background: cornflowerblue; } /* targets the label of <Button className="cancelBtn" /> */ .cancelBtn::label { color: honeydew; font-weight: bold; } Here, we’re reaching into the Button component from the Panel component. Buttons that are not inside a Panel won’t be affected. We do this by extending the CSS concept of pseudo-elements. As MDN says “A CSS pseudo-element is a keyword added to a selector that lets you style a specific part of the selected element(s)”. We don’t use a descendant selector because the label isn’t part of the Panel component, it’s part of the Button component. This syntax allows us three important features: Piercing the Shadow Boundary Because, like a Matroshka doll of code, you can have components inside components inside components, you can chain pseudo-elements. In Stylable, Gallery::NavigationPanel::Button::Icon is a legitimate selector. We were worried by this (even though all Stylable CSS is transpiled to flat, valid CSS) because it’s not allowed in CSS, albeit with the note “A future version of this specification may allow multiple pseudo-elements per selector”. So I asked the CSS Working Group and was told “we intend to only allow specific combinations”, so we feel this extension to CSS is in the spirit of the language. While we’re on the subject of those pesky Web Standards, note that the proposed ::part and ::theme pseudo-elements are meant to fulfil the same function. However, those are coming in two years (YouTube link) and, when they do, Stylable will support them. Structure-agnostic The second totez-groovy™ feature of Stylable’s pseudo-element syntax is that you don’t have to care about the internal structure of the component whose boundary you’re piercing. Any element with a class attribute is exposed as a pseudo-element to any component that imports it. It acts as an interface on any component, whether written in-house or by a third party. Code completion When we started writing Stylable, our objective was to do for CSS what TypeScript does for JavaScript. Wikipedia says Challenges with dealing with complex JavaScript code led to demand for custom tooling to ease developing of components in the language. TypeScript developers sought a solution that would not break compatibility with the standard and its cross-platform support … [with] static typing that enables static language analysis, which facilitates tooling and IDE support. Similarly, because Stylable knows about components, their stylable parts and states, and how they inter-relate, we can develop language services like code completion and validation. That means we can see our errors at build time or even while working in our IDE. Wave goodbye to silent run-time breakage misery, with the Stylable Intelligence VS Code extension ! An action replay of Visual Studio Code offering code completion etc, filmed in super StyloVision. Pseudo-classes for state Stylable makes it easy to apply styles to custom states (as well as the usual :active, :checked, :visited etc) by extending the CSS pseudo-class syntax. We do this by declaring the possible custom states on the component: /* Gallery.st.css */ .root { -st-states: toggled, loading; } .root:toggled { color: red; } .root:loading { color: green; } .root:loading:toggled { color: blue; } The -st-states “property” is actually a directive for the transpiler, so Stylable knows about possible pseudo-elements and can offer code completion etc. It looks like a vendor prefix by design, because it’s therefore valid CSS syntax and IDEs won’t flag it as an error, but is removed at build time. Remember, Stylable resolves to flat, valid, cross-browser CSS. As with plain CSS, it can’t set a state, but can only react to states set externally. In the case of custom pseudo-classes, your JavaScript logic is responsible for maintaining state — by default, by setting a data-* attribute. And there’s more! Hopefully, I’ve shown you how Stylable extends CSS to allow you to style components and sub-components without worrying about that styles will leak, or knowing too much about internal structure. There isn’t time to tell you about mixins (CSS macros in JavaScript), variables or our theming capabilities, because I have wine to wrap and presents to mull. We made Stylable because we ♥ CSS. But there’s a practical reason, too. As James Kyle, a core team member of Yarn, Babel and TC39 (the JavaScript Standards Technical Committee), said of Styable “pretty sure all the CSS-in-JS libraries just died for me”, explaining CSS could be perfectly static if given the right tools, that’s exactly what stylable does. It gives you the tools you need in CSS so that you don’t need to do a bunch of dynamic shit in JS. Making it static is a huge performance win. Wix is currently battle-testing Stylable in its back-office systems, before rolling it out to power Wix-hosted sites to make them more performant. There are 110 million Wix-hosted sites, so there will be a lot of Stylable on the web in a few months. And it’s open-sourced so you, dear Reader, can try it out and use it too. There’s a Stylable boilerplate based on create-react-app to get you started (more integrations are in the pipeline). Happy Hols ‘n’ Hugz from the Stylable team: Bruce, Arnon, Tom, Ido. Read more Stylable documentation centre Stylable on Twitter A nice picture of a hedgehog 2017 Bruce Lawson brucelawson 2017-12-09T00:00:00+00:00 https://24ways.org/2017/styling-components-typed-css-with-stylable/ code
220 Finding Your Way with Static Maps Since the introduction of the Google Maps service in 2005, online maps have taken off in a way not really possible before the invention of slippy map interaction. Although quickly followed by a plethora of similar services from both commercial and non-commercial parties, Google’s first-mover advantage, and easy-to-use developer API saw Google Maps become pretty much the de facto mapping service. It’s now so easy to add a map to a web page, there’s no reason not to. Dropping an iframe map into your page is as simple as embedding a YouTube video. But there’s one crucial drawback to both the solution Google provides for you to drop into your page and the code developers typically implement themselves – they don’t work without JavaScript. A bit about JavaScript Back in October of this year, The Yahoo! Developer Network blog ran some tests to measure how many visitors to the Yahoo! home page didn’t have JavaScript available or enabled in their browser. It’s an interesting test when you consider that the audience for the Yahoo! home page (one of the most visited pages on the web) represents about as mainstream a sample as you’ll find. If there’s any such thing as an ‘average Web user’ then this is them. The results surprised me. It varied from region to region, but at most just two per cent of visitors didn’t have JavaScript running. To be honest, I was expecting it to be higher, but this quote from the article caught my attention: While the percentage of visitors with JavaScript disabled seems like a low number, keep in mind that small percentages of big numbers are also big numbers. That’s right, of course, and it got me thinking about what that two per cent means. For many sites, two per cent is the number of visitors using the Opera web browser, using IE6, or using Mobile Safari. So, although a small percentage of the total, users without JavaScript can’t just be forgotten about, and catering for them is at the very heart of how the web is supposed to work. Starting with content in HTML, we layer on presentation with CSS and then enhance interactivity with JavaScript. If anything fails along the way or the network craps out, or a browser just doesn’t support one of the technologies, the user still gets something they can work with. It’s progressive enhancement – also known as doing our jobs properly. Sorry, wasn’t this about maps? As I was saying, the default code Google provides, and the example code it gives to developers (which typically just gets followed ‘as is’) doesn’t account for users without JavaScript. No JavaScript, no content. When adding the ability to publish maps to our small content management system Perch, I didn’t want to provide a solution that only worked with JavaScript. I had to go looking for a way to provide maps without JavaScript, too. There’s a simple solution, fortunately, in the form of static map tiles. All the various slippy map services use a JavaScript interface on top of what are basically rendered map image tiles. Dragging the map loads in more image tiles in the direction you want to view. If you’ve used a slippy map on a slow connection, you’ll be familiar with seeing these tiles load in one by one. The Static Map API The good news is that these tiles (or tiles just like them) can be used as regular images on your site. Google has a Static Map API which not only gives you a handy interface to retrieve a tile for the exact area you need, but also allows you to place pins, and zoom and centre the tile so that the image looks just so. This means that you can create a static, non-JavaScript version of your slippy map’s initial (or ideal) state to load into your page as a regular image, and then have the JavaScript map hijack the image and make it slippy. Clearly, that’s not going to be a perfect solution for every map’s requirements. It doesn’t allow for panning, zooming or interrogation without JavaScript. However, for the majority of straightforward map uses online, a static map makes a great alternative for those visitors without JavaScript. Here’s the how Retrieving a static map tile is staggeringly easy – it’s just a case of forming a URL with the correct arguments and then using that as the src of an image tag. <img src="http://maps.google.com/maps/api/staticmap ?center=Bethlehem+Israel &zoom=5 &size=540x280 &maptype=satellite &markers=color:red|31.4211,35.1144 &sensor=false" width="540" height="280" alt="Map of Bethlehem, Israel" /> As you can see, there are a few key options that we pass along to the base URL. All of these should be familiar to anyone who’s worked with the JavaScript API. center determines the point on which the map is centred. This can be latitude and longitude values, or simply an address which is then geocoded. zoom sets the zoom level. size is the pixel dimensions of the image you require. maptype can be roadmap, satellite, terrain or hybrid. markers sets one or more pin locations. Markers can be labelled, have different colours, and so on – there’s quite a lot of control available. sensor states whether you are using a sensor to determine the user’s location. When just embedding a map in a web page, set this to false. There are many options, including plotting paths and setting the image format, which can all be found in the straightforward documentation. Adding to your page If you’ve worked with the JavaScript API, you’ll know that it needs a container element which you inject the map into: <div id="map"></div> All you need to do is put your static image inside that container: <div id="map"> <img src="http://maps.google.com/maps/api/staticmap[...]" /> </div> And then, in your JavaScript, find the image and remove it. For example, with jQuery you’d simply use: $('#map img').remove(); Why not use a <noscript> element around the image? You could, and that would certainly work fine for browsers that do not support JavaScript. What that won’t cover, however, is the situation where the browser has JavaScript support but, for whatever reason, the JavaScript doesn’t run. This could be due to network issues, an aggressive corporate firewall, or even just a bug in your code. So for that reason, we put the image in for all browsers that show images, and then remove it when the JavaScript is successfully running. See an example in action About rate limits The Google Static Map API limits the requests per site viewer – currently at one thousand distinct maps per day per viewer. So, for most sites you really don’t need to worry about the rate limit. Requests for the same tile aren’t normally counted, as the tile has already been generated and is cached. You can embed the images direct from Google and let it worry about the distribution and caching. In conclusion As you can see, adding a static map alongside your dynamic map for those users without JavaScript is very easy indeed. There may not be a huge percentage of web visitors browsing without JavaScript but, as we’ve seen, a small percentage of a big number is still a big number. When it’s so easy to add a static map, can you really justify not doing it? 2010 Drew McLellan drewmclellan 2010-12-01T00:00:00+00:00 https://24ways.org/2010/finding-your-way-with-static-maps/ code
221 “Probably, Maybe, No”: The State of HTML5 Audio With the hype around HTML5 and CSS3 exceeding levels not seen since 2005’s Ajax era, it’s worth noting that the excitement comes with good reason: the two specifications render many years of feature hacks redundant by replacing them with native features. For fun, consider how many CSS2-based rounded corners hacks you’ve probably glossed over, looking for a magic solution. These days, with CSS3, the magic is border-radius (and perhaps some vendor prefixes) followed by a coffee break. CSS3’s border-radius, box-shadow, text-shadow and gradients, and HTML5’s <canvas>, <audio> and <video> are some of the most anticipated features we’ll see put to creative (ab)use as adoption of the ‘new shiny’ grows. Developers jumping on the cutting edge are using subsets of these features to little detriment, in most cases. The more popular CSS features are design flourishes that can degrade nicely, but the current audio and video implementations in particular suffer from a number of annoyances. The new shiny: how we got here Sound involves one of the five senses, a key part of daily life for most – and yet it has been strangely absent from HTML and much of the web by default. From a simplistic perspective, it seems odd that HTML did not include support for the full multimedia experience earlier, despite the CD-ROM-based craze of the early 1990s. In truth, standards like HTML can take much longer to bake, but eventually deliver the promise of a lowered barrier to entry, consistent implementations and shiny new features now possible ‘for free’ just about everywhere. <img> was introduced early and naturally to HTML, despite having some opponents at the time. Perhaps <audio> and <video> were avoided, given the added technical complexity of decoding various multi-frame formats, plus the hardware and bandwidth limitations of the era. Perhaps there were quarrels about choosing a standard format or – more simply – maybe these elements just weren’t considered to be applicable to the HTML-based web at the time. In any event, browser plugins from programs like RealPlayer and QuickTime eventually helped to fill the in-page audio/video gap, handling <object> and <embed> markup which pointed to .wav, .avi, .rm or .mov files. Suffice it to say, the experience was inconsistent at best and, on the standards side of the fence right now, so is HTML5 in terms of audio and video. : the theory As far as HTML goes, the code for <audio> is simple and logical. Just as with <img>, a src attribute specifies the file to load. Pretty straightforward – sounds easy, right? <audio src="mysong.ogg" controls> <!-- alternate content for unsupported case --> Download <a href="mysong.ogg">mysong.ogg</a>; </audio> Ah, if only it were that simple. The first problem is that the OGG audio format, while ‘free’, is not supported by some browsers. Conversely, nor is MP3, despite being a de facto standard used in all kinds of desktop software (and hardware). In fact, as of November 2010, no single audio format is commonly supported across all major HTML5-enabled browsers. What you end up writing, then, is something like this: <audio controls> <source src="mysong.mp3" /> <source src="mysong.ogg" /> <!-- alternate content for unsupported case, maybe Flash, etc. --> Download <a href="mysong.ogg">mysong.ogg</a> or <a href="mysong.mp3">mysong.mp3</a> </audio> Keep in mind, this is only a ‘first class’ experience for the HTML5 case; also, for non-supported browsers, you may want to look at another inline player (object/embed, or a JavaScript plus Flash API) to have inline audio. You can imagine the added code complexity in the case of supporting ‘first class’ experiences for older browsers, too. : the caveats With <img>, you typically don’t have to worry about format support – it just works – and that’s part of what makes a standard wonderful. JPEG, PNG, BMP, GIF, even TIFF images all render just fine if for no better reason, perhaps, than being implemented during the ‘wild west’ days of the web. The situation with <audio> today reflects a very different – read: business-aware – environment in 2010. (Further subtext: There’s a lot of [potential] money involved.) Regrettably, this is a collision of free and commercial interests, where the casualty is ultimately the user. Second up in the casualty list is you, the developer, who has to write additional code around this fragmented support. The HTML5 audio API as implemented in JavaScript has one of the most un-computer-like responses I’ve ever seen, and inspired the title of this post. Calling new Audio().canPlayType('audio/mp3'), which queries the system for format support according to a MIME type, is supposed to return one of “probably”, “maybe”, or “no”. Sometimes, you’ll just get a null or empty string, which is also fun. A “maybe” response does not guarantee that a format will be supported; sometimes audio/mp3 gives “maybe,” but then audio/mpeg; codecs="mp3" will give a more-solid “probably” response. This can vary by browser or platform, too, depending on native support – and finally, the user may also be able to install codecs, extending support to include other formats. (Are you excited yet?) Damn you, warring formats! New market and business opportunities go hand-in-hand with technology developments. What we have here is certainly not failure to communicate; rather, we have competing parties shouting loudly in public in attempts to influence mindshare towards a de facto standard for audio and video. Unfortunately, the current situation means that at least two formats are effectively required to serve the majority of users correctly. As it currently stands, we have the free and open source software camp of OGG Vorbis/WebM and its proponents (notably, Mozilla, Google and Opera in terms of browser makers), up against the non-free, proprietary and ‘closed’ camp of MP3 and MPEG4/HE-AAC/H.264 – which is where you’ll find commitments from Apple and Microsoft, among others. Apple is likely in with H.264 for the long haul, given its use of the format for its iTunes music store and video offerings. It is generally held that H.264 is a technically superior format in terms of file size versus quality, but it involves intellectual property and, in many use cases, requires licensing fees. To be fair, there is a business model with H.264 and much has been invested in its development, but this approach is not often the kind that wins over the web. On that front, OGG/WebM may eventually win for being a ‘free’ format that does not involve a licensing scheme. Closed software and tools ideologically clash with the open nature of the web, which exists largely thanks to free and open technology. Because of philosophical and business reasons, support for audio and video is fragmented across browsers adopting HTML5 features. It does not help that a large amount of audio and video currently exists in non-free MP3 and MPEG-4 formats. Adoption of <audio> and <video> may be slowed, since it is more complex than <img> and may feel ‘broken’ to developers when edge cases are encountered. Furthermore, the HTML5 spec does not mandate a single required format. The end result is that, as a developer, you must currently provide at least both MP3 and OGG, for example, to serve most existing HTML5-based user agents. Transitioning to There will be some growing pains as developers start to pick up the new HTML5 shiny, while balancing the needs of current and older agents that don’t support either <audio> or the preferred format you may choose (for example, MP3). In either event, Flash or other plugins can be used as done traditionally within HTML4 documents to embed and play the relevant audio. The SoundManager 2 page player demo in action. Ideally, HTML5 audio should be used whenever possible with Flash as the backup option. A few JavaScript/Flash-based audio player projects exist which balance the two; in attempting to tackle this problem, I develop and maintain SoundManager 2, a JavaScript sound API which transparently uses HTML5 Audio() and, if needed, Flash for playing audio files. The internals can get somewhat ugly, but the transition between HTML4 and HTML5 is going to be just that – and even with HTML5, you will need some form of format fall-back in addition to graceful degradation. It may be safest to fall back to MP3/MP4 formats for inline playback at this time, given wide support via Flash, some HTML5-based browsers and mobile devices. Considering the amount of MP3/MP4 media currently available, it is wiser to try these before falling through to a traditional file download process. Early findings Here is a brief list of behavioural notes, annoyances, bugs, quirks and general weirdness I have found while playing with HTML5-based audio at time of writing (November 2010): Apple iPad/iPhone (iOS 4, iPad 3.2+) Only one sound can be played at a time. If a second sound starts, the first is stopped. No auto-play allowed. Sounds follow the pop-up window security model and can only be started from within a user event handler such as onclick/touch, and so on. Otherwise, playback attempts silently fail. Once started, a sequence of sounds can be created or played via the ‘finish’ event of the previous sound (for example, advancing through a playlist without interaction after first track starts). iPad, iOS 3.2: Occasional ‘infinite loop’ bug seen where audio does not complete and stop at a sound’s logical end – instead, it plays again from the beginning. Might be specific to example file format (HE-AAC) encoded from iTunes. Apple Safari, OS X Snow Leopard 10.6.5 Critical bug: Safari 4 and 5 intermittently fail to load or play HTML5 audio on Snow Leopard due to bug(s) in QuickTime X and/or other underlying frameworks. Known Apple ‘radar’ bug: bugs.webkit.org #32159 (see also, test case.) Amusing side note: Safari on Windows is fine. Apple Safari, Windows Food for thought: if you download “Safari” alone on Windows, you will not get HTML5 audio/video support (tested in WinXP). You need to download “Safari + QuickTime” to get HTML5 audio/video support within Safari. (As far as I’m aware, Chrome, Firefox and Opera either include decoders or use system libraries accordingly. Presumably IE 9 will use OS-level APIs.) General Quirks Seeking and loading, ‘progress’ events, and calculating bytes loaded versus bytes total should not be expected to be linear, as users can arbitrarily seek within a sound. It appears that some support for HTTP ranges exists, which adds a bit of logic to UI code. Browsers seem to vary slightly in their current implementations of these features. The onload event of a sound may be of little relevance, if non-linear loading is involved (see above note re: seeking). Interestingly (perhaps I missed it), the current spec does not seem to specify a panning or left/right channel mix option. The preload attribute values may vary slightly between browsers at this time. Upcoming shiny: HTML5 Audio Data API With access to audio data, you can incorporate waveform and spectrum elements that make your designs react to music. The HTML5 audio spec does a good job covering the basics of playback, but did not initially get into manipulation or generation of audio on-the-fly, something Flash has had for a number of years now. What if JavaScript could create, monitor and change audio dynamically, like a sort of audio <canvas> element? With that kind of capability, many dynamic audio processing features become feasible and, when combined with other media, can make for some impressive demos. What started as a small idea among a small group of audio and programming enthusiasts grew to inspire a W3C audio incubator group, and continued to establish the Mozilla Audio Data API. Contributors wrote a patch for Firefox which was reviewed and revised, and is now slated to be in the public release of Firefox 4. Some background and demos are also detailed in an article from the BBC R&D blog. There are plenty of live demos to see, which give an impression of the new creative ideas this API enables. Many concepts are not new in themselves, but it is exciting to see this sort of thing happening within the native browser context. Mozilla is not alone in this effort; the WebKit folks are also working on a JavaScriptAudioNode interface, which implements similar audio buffering and sample elements. The future? It is my hope that we’ll see a common format emerge in terms of support across the major browsers for both audio and video; otherwise, support will continue to be fragmented and mildly frustrating to develop for, and that can impede growth of the feature. It’s a big call, but if <img> had lacked a common format back in the wild west era, I doubt the web would have grown to where it is today. Complaints and nitpicks aside, HTML5 brings excellent progress on the browser multimedia front, and the first signs of native support are a welcome improvement given all audio and video previously relied on plugins. There is good reason to be excited. While there is room for more, support could certainly be much worse – and as tends to happen with specifications, the implementations targeting them should improve over time. Note: Thanks to Nate Koechley, who suggested the Audio().canPlayType() response be part of the article title. 2010 Scott Schiller scottschiller 2010-12-08T00:00:00+00:00 https://24ways.org/2010/the-state-of-html5-audio/ code
223 Calculating Color Contrast Some websites and services allow you to customize your profile by uploading pictures, changing the background color or other aspects of the design. As a customer, this personalization turns a web app into your little nest where you store your data. As a designer, letting your customers have free rein over the layout and design is a scary prospect. So what happens to all the stock text and images that are designed to work on nice white backgrounds? Even the Mac only lets you choose between two colors for the OS, blue or graphite! Opening up the ability to customize your site’s color scheme can be a recipe for disaster unless you are flexible and understand how to find maximum color contrasts. In this article I will walk you through two simple equations to determine if you should be using white or black text depending on the color of the background. The equations are both easy to implement and produce similar results. It isn’t a matter of which is better, but more the fact that you are using one at all! That way, even with the craziest of Geocities color schemes that your customers choose, at least your text will still be readable. Let’s have a look at a range of various possible colors. Maybe these are pre-made color schemes, corporate colors, or plucked from an image. Now that we have these potential background colors and their hex values, we need to find out whether the corresponding text should be in white or black, based on which has a higher contrast, therefore affording the best readability. This can be done at runtime with JavaScript or in the back-end before the HTML is served up. There are two functions I want to compare. The first, I call ’50%’. It takes the hex value and compares it to the value halfway between pure black and pure white. If the hex value is less than half, meaning it is on the darker side of the spectrum, it returns white as the text color. If the result is greater than half, it’s on the lighter side of the spectrum and returns black as the text value. In PHP: function getContrast50($hexcolor){ return (hexdec($hexcolor) > 0xffffff/2) ? 'black':'white'; } In JavaScript: function getContrast50(hexcolor){ return (parseInt(hexcolor, 16) > 0xffffff/2) ? 'black':'white'; } It doesn’t get much simpler than that! The function converts the six-character hex color into an integer and compares that to one half the integer value of pure white. The function is easy to remember, but is naive when it comes to understanding how we perceive parts of the spectrum. Different wavelengths have greater or lesser impact on the contrast. The second equation is called ‘YIQ’ because it converts the RGB color space into YIQ, which takes into account the different impacts of its constituent parts. Again, the equation returns white or black and it’s also very easy to implement. In PHP: function getContrastYIQ($hexcolor){ $r = hexdec(substr($hexcolor,0,2)); $g = hexdec(substr($hexcolor,2,2)); $b = hexdec(substr($hexcolor,4,2)); $yiq = (($r*299)+($g*587)+($b*114))/1000; return ($yiq >= 128) ? 'black' : 'white'; } In JavaScript: function getContrastYIQ(hexcolor){ var r = parseInt(hexcolor.substr(0,2),16); var g = parseInt(hexcolor.substr(2,2),16); var b = parseInt(hexcolor.substr(4,2),16); var yiq = ((r*299)+(g*587)+(b*114))/1000; return (yiq >= 128) ? 'black' : 'white'; } You’ll notice first that we have broken down the hex value into separate RGB values. This is important because each of these channels is scaled in accordance to its visual impact. Once everything is scaled and normalized, it will be in a range between zero and 255. Much like the previous ’50%’ function, we now need to check if the input is above or below halfway. Depending on where that value is, we’ll return the corresponding highest contrasting color. That’s it: two simple contrast equations which work really well to determine the best readability. If you are interested in learning more, the W3C has a few documents about color contrast and how to determine if there is enough contrast between any two colors. This is important for accessibility to make sure there is enough contrast between your text and link colors and the background. There is also a great article by Kevin Hale on Particletree about his experience with choosing light or dark themes. To round it out, Jonathan Snook created a color contrast picker which allows you to play with RGB sliders to get values for YIQ, contrast and others. That way you can quickly fiddle with the knobs to find the right balance. Comparing results Let’s revisit our color schemes and see which text color is recommended for maximum contrast based on these two equations. If we use the simple ’50%’ contrast function, we can see that it recommends black against all the colors except the dark green and purple on the second row. In general, the equation feels the colors are light and that black is a better choice for the text. The more complex ‘YIQ’ function, with its weighted colors, has slightly different suggestions. White text is still recommended for the very dark colors, but there are some surprises. The red and pink values show white text rather than black. This equation takes into account the weight of the red value and determines that the hue is dark enough for white text to show the most contrast. As you can see, the two contrast algorithms agree most of the time. There are some instances where they conflict, but overall you can use the equation that you prefer. I don’t think it is a major issue if some edge-case colors get one contrast over another, they are still very readable. Now let’s look at some common colors and then see how the two functions compare. You can quickly see that they do pretty well across the whole spectrum. In the first few shades of grey, the white and black contrasts make sense, but as we test other colors in the spectrum, we do get some unexpected deviation. Pure red #FF0000 has a flip-flop. This is due to how the ‘YIQ’ function weights the RGB parts. While you might have a personal preference for one style over another, both are justifiable. In this second round of colors, we go deeper into the spectrum, off the beaten track. Again, most of the time the contrasting algorithms are in sync, but every once in a while they disagree. You can select which you prefer, neither of which is unreadable. Conclusion Contrast in color is important, especially if you cede all control and take a hands-off approach to the design. It is important to select smart defaults by making the contrast between colors as high as possible. This makes it easier for your customers to read, increases accessibility and is generally just easier on the eyes. Sure, there are plenty of other equations out there to determine contrast; what is most important is that you pick one and implement it into your system. So, go ahead and experiment with color in your design. You now know how easy it is to guarantee that your text will be the most readable in any circumstance. 2010 Brian Suda briansuda 2010-12-24T00:00:00+00:00 https://24ways.org/2010/calculating-color-contrast/ code
231 Designing for iOS: Life Beyond Media Queries Although not a new phenomenon, media queries seem to be getting a lot attention online recently and for the right reasons too – it’s great to be able to adapt a design with just a few lines of CSS – but many people are relying only on them to create an iPhone-specific version of their website. I was pleased to hear at FOWD NYC a few weeks ago that both myself and Aral Balkan share the same views on why media queries aren’t always going to be the best solution for mobile. Both of us specialise in iPhone design ourselves and we opt for a different approach to media queries. The trouble is, regardless of what you have carefully selected to be display:none; in your CSS, the iPhone still loads everything in the background; all that large imagery for your full scale website also takes up valuable mobile bandwidth and time. You can greatly increase the speed of your website by creating a specific site tailored to mobile users with just a few handy pointers – media queries, in some instances, might be perfectly suitable but, in others, here’s what you can do. Redirect your iPhone/iPod Touch users To detect whether someone is viewing your site on an iPhone or iPod Touch, you can either use JavaScript or PHP. The JavaScript if((navigator.userAgent.match(/iPhone/i)) || (navigator.userAgent.match(/iPod/i))) { if (document.cookie.indexOf("iphone_redirect=false") == -1) window.location = "http://mobile.yoursitehere.com"; } The PHP if(strstr($_SERVER['HTTP_USER_AGENT'],'iPhone') || strstr($_SERVER['HTTP_USER_AGENT'],'iPod')) { header('Location: http://mobile.yoursitehere.com'); exit(); } Both of these methods redirect the user to a site that you have made specifically for the iPhone. At this point, be sure to provide a link to the full version of the website, in case the user wishes to view this and not be thrown into an experience they didn’t want, with no way back. Tailoring your site So, now you’ve got 320 × 480 pixels of screen to play with – and to create a style sheet for, just as you would for any other site you build. There are a few other bits and pieces that you can add to your code to create a site that feels more like a fully immersive iPhone app rather than a website. Retina display When building your website specifically tailored to the iPhone, you might like to go one step further and create a specific style sheet for iPhone 4’s Retina display. Because there are four times as many pixels on the iPhone 4 (640 × 960 pixels), you’ll find specifics such as text shadows and borders will have to be increased. <link rel="stylesheet" media="only screen and (-webkit-min-device-pixel-ratio: 2)" type="text/css" href="../iphone4.css" /> (Credit to Thomas Maier) Prevent user scaling This declaration, added into the <head>, stops the user being able to pinch-zoom in and out of your design, which is perfect if you are designing to the exact pixel measurements of the iPhone screen. <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-scale=1.0;"> Designing for orientation As iPhones aren’t static devices, you’ll also need to provide a style sheet for horizontal orientation. We can do this by inserting some JavaScript into the <head> as follows: <script type="text/javascript"> function orient() { switch(window.orientation) { case 0: document.getElementById("orient_css").href = "css/iphone_portrait.css"; break; case -90: document.getElementById("orient_css").href = "css/iphone_landscape.css"; break; case 90: document.getElementById("orient_css").href = "css/iphone_landscape.css"; break; } } window.onload = orient(); </script> You can also specify orientation styles using media queries. This is absolutely fine, as by this point you’ll already be working with mobile-specific graphics and have little need to set a lot of things to display:none; <link rel="stylesheet" media="only screen and (max-device-width: 480px)" href="/iphone.css"> <link rel="stylesheet" media="only screen and (orientation: portrait)" href="/portrait.css"> <link rel="stylesheet" media="only screen and (orientation: landscape)” href="/landscape.css"> Remove the address and status bars, top and bottom To give you more room on-screen and to make your site feel more like an immersive web app, you can place the following declaration into the <head> of your document’s code to remove the address and status bars at the top and bottom of the screen. <meta name="apple-mobile-web-app-capable" content="yes" /> Making the most of inbuilt functions Similar to mailto: e-mail links, the iPhone also supports another two handy URI schemes which are great for enhancing contact details. When tapped, the following links will automatically bring up the appropriate call or text interface: <a href="tel:01234567890">Call us</a> <a href="sms:01234567890">Text us</a> iPhone-specific Web Clip icon Although I believe them to be fundamentally flawed, since they rely on the user bookmarking your site, iPhone Web Clip icons are still a nice touch. You need just two declarations, again in the <head> of your document: <link rel="apple-touch-icon" href="icons/regular_icon.png" /> <link rel="apple-touch-icon" sizes="114x114" href="icons/retina_icon.png" /> For iPhone 4 you’ll need to create a 114 × 114 pixels icon; for a non-Retina display, a 57 × 57 pixels icon will do the trick. Precomposed Apple adds its standard gloss ‘moon’ over the top of any icon. If you feel this might be too much for your particular icon and would prefer a matte finish, you can add precomposed to the end of the apple-touch-icon declaration to remove the standard gloss. <link rel="apple-touch-icon-precomposed" href="/images/touch-icon.png" /> Wrapping up Media queries definitely have their uses. They make it easy to build a custom experience for your visitor, regardless of their browser’s size. For more complex sites, however, or where you have lots of imagery and other content that isn’t necessary on the mobile version, you can now use these other methods to help you out. Remember, they are purely for presentation and not optimisation; for busy people on the go, optimisation and faster-running mobile experiences can only be a good thing. Have a wonderful Christmas fellow Webbies! 2010 Sarah Parmenter sarahparmenter 2010-12-17T00:00:00+00:00 https://24ways.org/2010/life-beyond-media-queries/ code
233 Wrapping Things Nicely with HTML5 Local Storage HTML5 is here to turn the web from a web of hacks into a web of applications – and we are well on the way to this goal. The coming year will be totally and utterly awesome if you are excited about web technologies. This year the HTML5 revolution started and there is no stopping it. For the first time all the browser vendors are rallying together to make a technology work. The new browser war is fought over implementation of the HTML5 standard and not over random additions. We live in exciting times. Starting with a bang As with every revolution there is a lot of noise with bangs and explosions, and that’s the stage we’re at right now. HTML5 showcases are often CSS3 showcases, web font playgrounds, or video and canvas examples. This is great, as it gets people excited and it gives the media something to show. There is much more to HTML5, though. Let’s take a look at one of the less sexy, but amazingly useful features of HTML5 (it was in the HTML5 specs, but grew at such an alarming rate that it warranted its own spec): storing information on the client-side. Why store data on the client-side? Storing information in people’s browsers affords us a few options that every application should have: You can retain the state of an application – when the user comes back after closing the browser, everything will be as she left it. That’s how ‘real’ applications work and this is how the web ones should, too. You can cache data – if something doesn’t change then there is no point in loading it over the Internet if local access is so much faster You can store user preferences – without needing to keep that data on your server at all. In the past, storing local data wasn’t much fun. The pain of hacky browser solutions In the past, all we had were cookies. I don’t mean the yummy things you get with your coffee, endorsed by the blue, furry junkie in Sesame Street, but the other, digital ones. Cookies suck – it isn’t fun to have an unencrypted HTTP overhead on every server request for storing four kilobytes of data in a cryptic format. It was OK for 1994, but really neither an easy nor a beautiful solution for the task of storing data on the client. Then came a plethora of solutions by different vendors – from Microsoft’s userdata to Flash’s LSO, and from Silverlight isolated storage to Google’s Gears. If you want to know just how many crazy and convoluted ways there are to store a bit of information, check out Samy’s evercookie. Clearly, we needed an easier and standardised way of storing local data. Keeping it simple – local storage And, lo and behold, we have one. The local storage API (or session storage, with the only difference being that session data is lost when the window is closed) is ridiculously easy to use. All you do is call a few methods on the window.localStorage object – or even just set the properties directly using the square bracket notation: if('localStorage' in window && window['localStorage'] !== null){ var store = window.localStorage; // valid, API way store.setItem(‘cow’,‘moo’); console.log( store.getItem(‘cow’) ); // => ‘moo’ // shorthand, breaks at keys with spaces store.sheep = ‘baa’ console.log( store.sheep ); // ‘baa’ // shorthand for all store[‘dog’] = ‘bark’ console.log( store[‘dog’] ); // => ‘bark’ } Browser support is actually pretty good: Chrome 4+; Firefox 3.5+; IE8+; Opera 10.5+; Safari 4+; plus iPhone 2.0+; and Android 2.0+. That should cover most of your needs. Of course, you should check for support first (or use a wrapper library like YUI Storage Utility or YUI Storage Lite). The data is stored on a per domain basis and you can store up to five megabytes of data in localStorage for each domain. Strings attached By default, localStorage only supports strings as storage formats. You can’t store results of JavaScript computations that are arrays or objects, and every number is stored as a string. This means that long, floating point numbers eat into the available memory much more quickly than if they were stored as numbers. var cowdesc = "the cow is of the bovine ilk, "+ "one end is for the moo, the "+ "other for the milk"; var cowdef = { ilk“bovine”, legs, udders, purposes front“moo”, end“milk” } }; window.localStorage.setItem(‘describecow’,cowdesc); console.log( window.localStorage.getItem(‘describecow’) ); // => the cow is of the bovine… window.localStorage.setItem(‘definecow’,cowdef); console.log( window.localStorage.getItem(‘definecow’) ); // => [object Object] = bad! This limits what you can store quite heavily, which is why it makes sense to use JSON to encode and decode the data you store: var cowdef = { "ilk":"bovine", "legs":4, "udders":4, "purposes":{ "front":"moo", "end":"milk" } }; window.localStorage.setItem(‘describecow’,JSON.stringify(cowdef)); console.log( JSON.parse( window.localStorage.getItem(‘describecow’) ) ); // => Object { ilk=“bovine”, more…} You can also come up with your own formatting solutions like CSV, or pipe | or tilde ~ separated formats, but JSON is very terse and has native browser support. Some use case examples The simplest use of localStorage is, of course, storing some data: the current state of a game; how far through a multi-form sign-up process a user is; and other things we traditionally stored in cookies. Using JSON, though, we can do cooler things. Speeding up web service use and avoiding exceeding the quota A lot of web services only allow you a certain amount of hits per hour or day, and can be very slow. By using localStorage with a time stamp, you can cache results of web services locally and only access them after a certain time to refresh the data. I used this technique in my An Event Apart 10K entry, World Info, to only load the massive dataset of all the world information once, and allow for much faster subsequent visits to the site. The following screencast shows the difference: For use with YQL (remember last year’s 24 ways entry?), I’ve built a small script called YQL localcache that wraps localStorage around the YQL data call. An example would be the following: yqlcache.get({ yql: 'select * from flickr.photos.search where text="santa"', id: 'myphotos', cacheage: ( 60*60*1000 ), callback: function(data) { console.log(data); } }); This loads photos of Santa from Flickr and stores them for an hour in the key myphotos of localStorage. If you call the function at various times, you receive an object back with the YQL results in a data property and a type property which defines where the data came from – live is live data, cached means it comes from cache, and freshcache indicates that it was called for the first time and a new cache was primed. The cache will work for an hour (60×60×1,000 milliseconds) and then be refreshed. So, instead of hitting the YQL endpoint over and over again, you hit it once per hour. Caching a full interface Another use case I found was to retain the state of a whole interface of an application by caching the innerHTML once it has been rendered. I use this in the Yahoo Firehose search interface, and you can get the full story about local storage and how it is used in this screencast: The stripped down code is incredibly simple (JavaScript with PHP embed): // test for localStorage support if(('localStorage' in window) && window['localStorage'] !== null){ var f = document.getElementById(‘mainform’); // test with PHP if the form was sent (the submit button has the name “sent”) // get the HTML of the form and cache it in the property “state” localStorage.setItem(‘state’,f.innerHTML); // if the form hasn’t been sent… // check if a state property exists and write back the HTML cache if(‘state’ in localStorage){ f.innerHTML = localStorage.getItem(‘state’); } } Other ideas In essence, you can use local storage every time you need to speed up access. For example, you could store image sprites in base-64 encoded datasets instead of loading them from a server. Or you could store CSS and JavaScript libraries on the client. Anything goes – have a play. Issues with local and session storage Of course, not all is rainbows and unicorns with the localStorage API. There are a few niggles that need ironing out. As with anything, this needs people to use the technology and raise issues. Here are some of the problems: Inadequate information about storage quota – if you try to add more content to an already full store, you get a QUOTA_EXCEEDED_ERR and that’s it. There’s a great explanation and test suite for localStorage quota available. Lack of automatically expiring storage – a feature that cookies came with. Pamela Fox has a solution (also available as a demo and source code) Lack of encrypted storage – right now, everything is stored in readable strings in the browser. Bigger, better, faster, more! As cool as the local and session storage APIs are, they are not quite ready for extensive adoption – the storage limits might get in your way, and if you really want to go to town with accessing, filtering and sorting data, real databases are what you’ll need. And, as we live in a world of client-side development, people are moving from heavy server-side databases like MySQL to NoSQL environments. On the web, there is also a lot of work going on, with Ian Hickson of Google proposing the Web SQL database, and Nikunj Mehta, Jonas Sicking (Mozilla), Eliot Graff (Microsoft) and Andrei Popescu (Google) taking the idea beyond simply replicating MySQL and instead offering Indexed DB as an even faster alternative. On the mobile front, a really important feature is to be able to store data to use when you are offline (mobile coverage and roaming data plans anybody?) and you can use the Offline Webapps API for that. As I mentioned at the beginning, we have a very exciting time ahead – let’s make this web work faster and more reliably by using what browsers offer us. For more on local storage, check out the chapter on Dive into HTML5. 2010 Christian Heilmann chrisheilmann 2010-12-06T00:00:00+00:00 https://24ways.org/2010/html5-local-storage/ code
234 An Introduction to CSS 3-D Transforms Ladies and gentlemen, it is the second decade of the third millennium and we are still kicking around the same 2-D interface we got three decades ago. Sure, Apple debuted a few apps for OSX 10.7 that have a couple more 3-D flourishes, and Microsoft has had that Flip 3D for a while. But c’mon – 2011 is right around the corner. That’s Twenty Eleven, folks. Where is our 3-D virtual reality? By now, we should be zipping around the Metaverse on super-sonic motorbikes. Granted, the capability of rendering complex 3-D environments has been present for years. On the web, there are already several solutions: Flash; three.js in <canvas>; and, eventually, WebGL. Finally, we meagre front-end developers have our own three-dimensional jewel: CSS 3-D transforms! Rationale Like a beautiful jewel, 3-D transforms can be dazzling, a true spectacle to behold. But before we start tacking 3-D diamonds and rubies to our compositions like Liberace‘s tailor, we owe it to our users to ask how they can benefit from this awesome feature. An entire application should not take advantage of 3-D transforms. CSS was built to style documents, not generate explorable environments. I fail to find a benefit to completing a web form that can be accessed by swivelling my viewport to the Sign-Up Room (although there have been proposals to make the web just that). Nevertheless, there are plenty of opportunities to use 3-D transforms in between interactions with the interface, via transitions. Take, for instance, the Weather App on the iPhone. The application uses two views: a details view; and an options view. Switching between these two views is done with a 3-D flip transition. This informs the user that the interface has two – and only two – views, as they can exist only on either side of the same plane. Flipping from details view to options view via a 3-D transition Also, consider slide shows. When you’re looking at the last slide, what cues tip you off that advancing will restart the cycle at the first slide? A better paradigm might be achieved with a 3-D transform, placing the slides side-by-side in a circle (carousel) in three-dimensional space; in that arrangement, the last slide obviously comes before the first. 3-D transforms are more than just eye candy. We can also use them to solve dilemmas and make our applications more intuitive. Current support The CSS 3D Transforms module has been out in the wild for over a year now. Currently, only Safari supports the specification – which includes Safari on Mac OS X and Mobile Safari on iOS. The support roadmap for other browsers varies. The Mozilla team has taken some initial steps towards implementing the module. Mike Taylor tells me that the Opera team is keeping a close eye on CSS transforms, and is waiting until the specification is fleshed out. And our best friend Internet Explorer still needs to catch up to 2-D transforms before we can talk about the 3-D variety. To make matters more perplexing, Safari’s WebKit cousin Chrome currently accepts 3-D transform declarations, but renders them in 2-D space. Chrome team member Paul Irish, says that 3-D transforms are on the horizon, perhaps in one of the next 8.0 releases. This all adds up to a bit of a challenge for those of us excited by 3-D transforms. I’ll give it to you straight: missing the dimension of depth can make degradation a bit ungraceful. Unless the transform is relatively simple and holds up in non-3D-supporting browsers, you’ll most likely have to design another solution. But what’s another hurdle in a steeplechase? We web folk have had our mettle tested for years. We’re prepared to devise multiple solutions. Here’s the part of the article where I mention Modernizr, and you brush over it because you’ve read this part of an article hundreds of times before. But seriously, it’s the best way to test for CSS 3-D transform support. Use it. Even with these difficulties mounting up, trying out 3-D transforms today is the right move. The CSS 3-D transforms module was developed by the same team at Apple that produced the CSS 2D Transforms and Animation modules. Both specifications have since been adopted by Mozilla and Opera. Transforming in three-dimensions now will guarantee you’ll be ahead of the game when the other browsers catch up. The choice is yours. You can make excuses and pooh-pooh 3-D transforms because they’re too hard and only snobby Apple fans will see them today. Or, with a tip of the fedora to Mr Andy Clarke, you can get hard-boiled and start designing with the best features out there right this instant. So, I bid you, in the words of the eternal Optimus Prime… Transform and roll out. Let’s get coding. Perspective To activate 3-D space, an element needs perspective. This can be applied in two ways: using the transform property, with the perspective as a functional notation: -webkit-transform: perspective(600); or using the perspective property: -webkit-perspective: 600; See example: Perspective 1. The red element on the left uses transform: perspective() functional notation; the blue element on the right uses the perspective property These two formats both trigger a 3-D space, but there is a difference. The first, functional notation is convenient for directly applying a 3-D transform on a single element (in the previous example, I use it in conjunction with a rotateY transform). But when used on multiple elements, the transformed elements don’t line up as expected. If you use the same transform across elements with different positions, each element will have its own vanishing point. To remedy this, use the perspective property on a parent element, so each child shares the same 3-D space. See Example: Perspective 2. Each red box on the left has its own vanishing point within the parent container; the blue boxes on the right share the vanishing point of the parent container The value of perspective determines the intensity of the 3-D effect. Think of it as a distance from the viewer to the object. The greater the value, the further the distance, so the less intense the visual effect. perspective: 2000; yields a subtle 3-D effect, as if we were viewing an object from far away. perspective: 100; produces a tremendous 3-D effect, like a tiny insect viewing a massive object. By default, the vanishing point for a 3-D space is positioned at its centre. You can change the position of the vanishing point with perspective-origin property. -webkit-perspective-origin: 25% 75%; See Example: Perspective 3. 3-D transform functions As a web designer, you’re probably well acquainted with working in two dimensions, X and Y, positioning items horizontally and vertically. With a 3-D space initialised with perspective, we can now transform elements in all three glorious spatial dimensions, including the third Z dimension, depth. 3-D transforms use the same transform property used for 2-D transforms. If you’re familiar with 2-D transforms, you’ll find the basic 3D transform functions fairly similar. rotateX(angle) rotateY(angle) rotateZ(angle) translateZ(tz) scaleZ(sz) Whereas translateX() positions an element along the horizontal X-axis, translateZ() positions it along the Z-axis, which runs front to back in 3-D space. Positive values position the element closer to the viewer, negative values further away. The rotate functions rotate the element around the corresponding axis. This is somewhat counter-intuitive at first, as you might imagine that rotateX will spin an object left to right. Instead, using rotateX(45deg) rotates an element around the horizontal X-axis, so the top of the element angles back and away, and the bottom gets closer to the viewer. See Example: Transforms 1. 3-D rotate() and translate() functions around each axis There are also several shorthand transform functions that require values for all three dimensions: translate3d(tx,ty,tz) scale3d(sx,sy,sz) rotate3d(rx,ry,rz,angle) Pro-tip: These foo3d() transform functions also have the benefit of triggering hardware acceleration in Safari. Dean Jackson, CSS 3-D transform spec author and main WebKit dude, writes (to Thomas Fuchs): In essence, any transform that has a 3D operation as one of its functions will trigger hardware compositing, even when the actual transform is 2D, or not doing anything at all (such as translate3d(0,0,0)). Note this is just current behaviour, and could change in the future (which is why we don’t document or encourage it). But it is very helpful in some situations and can significantly improve redraw performance. For the sake of simplicity, my demos will use the basic transform functions, but if you’re writing production-ready CSS for iOS or Safari-only, make sure to use the foo3d() functions to get the best rendering performance. Card flip We now have all the tools to start making 3-D objects. Let’s get started with something simple: flipping a card. Here’s the basic markup we’ll need: <section class="container"> <div id="card"> <figure class="front">1</figure> <figure class="back">2</figure> </div> </section> The .container will house the 3-D space. The #card acts as a wrapper for the 3-D object. Each face of the card has a separate element: .front; and .back. Even for such a simple object, I recommend using this same pattern for any 3-D transform. Keeping the 3-D space element and the object element(s) separate establishes a pattern that is simple to understand and easier to style. We’re ready for some 3-D stylin’. First, apply the necessary perspective to the parent 3-D space, along with any size or positioning styles. .container { width: 200px; height: 260px; position: relative; -webkit-perspective: 800; } Now the #card element can be transformed in its parent’s 3-D space. We’re combining absolute and relative positioning so the 3-D object is removed from the flow of the document. We’ll also add width: 100%; and height: 100%;. This ensures the object’s transform-origin will occur in the centre of .container. More on transform-origin later. Let’s add a CSS3 transition so users can see the transform take effect. #card { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; -webkit-transition: -webkit-transform 1s; } The .container’s perspective only applies to direct descendant children, in this case #card. In order for subsequent children to inherit a parent’s perspective, and live in the same 3-D space, the parent can pass along its perspective with transform-style: preserve-3d. Without 3-D transform-style, the faces of the card would be flattened with its parents and the back face’s rotation would be nullified. To position the faces in 3-D space, we’ll need to reset their positions in 2-D with position: absolute. In order to hide the reverse sides of the faces when they are faced away from the viewer, we use backface-visibility: hidden. #card figure { display: block; position: absolute; width: 100%; height: 100%; -webkit-backface-visibility: hidden; } To flip the .back face, we add a basic 3-D transform of rotateY(180deg). #card .front { background: red; } #card .back { background: blue; -webkit-transform: rotateY(180deg); } With the faces in place, the #card requires a corresponding style for when it is flipped. #card.flipped { -webkit-transform: rotateY(180deg); } Now we have a working 3-D object. To flip the card, we can toggle the flipped class. When .flipped, the #card will rotate 180 degrees, thus exposing the .back face. See Example: Card 1. Flipping a card in three dimensions Slide-flip Take another look at the Weather App 3-D transition. You’ll notice that it’s not quite the same effect as our previous demo. If you follow the right edge of the card, you’ll find that its corners stay within the container. Instead of pivoting from the horizontal centre, it pivots on that right edge. But the transition is not just a rotation – the edge moves horizontally from right to left. We can reproduce this transition just by modifying a couple of lines of CSS from our original card flip demo. The pivot point for the rotation occurs at the right side of the card. By default, the transform-origin of an element is at its horizontal and vertical centre (50% 50% or center center). Let’s change it to the right side: #card { -webkit-transform-origin: right center; } That flip now needs some horizontal movement with translateX. We’ll set the rotation to -180deg so it flips right side out. #card.flipped { -webkit-transform: translateX(-100%) rotateY(-180deg); } See Example: Card 2. Creating a slide-flip from the right edge of the card Cube Creating 3-D card objects is a good way to get started with 3-D transforms. But once you’ve mastered them, you’ll be hungry to push it further and create some true 3-D objects: prisms. We’ll start out by making a cube. The markup for the cube is similar to the card. This time, however, we need six child elements for all six faces of the cube: <section class="container"> <div id="cube"> <figure class="front">1</figure> <figure class="back">2</figure> <figure class="right">3</figure> <figure class="left">4</figure> <figure class="top">5</figure> <figure class="bottom">6</figure> </div> </section> Basic position and size styles set the six faces on top of one another in the container. .container { width: 200px; height: 200px; position: relative; -webkit-perspective: 1000; } #cube { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; } #cube figure { width: 196px; height: 196px; display: block; position: absolute; border: 2px solid black; } With the card, we only had to rotate its back face. The cube, however, requires that five of the six faces to be rotated. Faces 1 and 2 will be the front and back. Faces 3 and 4 will be the sides. Faces 5 and 6 will be the top and bottom. #cube .front { -webkit-transform: rotateY(0deg); } #cube .back { -webkit-transform: rotateX(180deg); } #cube .right { -webkit-transform: rotateY(90deg); } #cube .left { -webkit-transform: rotateY(-90deg); } #cube .top { -webkit-transform: rotateX(90deg); } #cube .bottom { -webkit-transform: rotateX(-90deg); } We could remove the first #cube .front style declaration, as this transform has no effect, but let’s leave it in to keep our code consistent. Now each face is rotated, and only the front face is visible. The four side faces are all perpendicular to the viewer, so they appear invisible. To push them out to their appropriate sides, they need to be translated out from the centre of their positions. Each side of the cube is 200 pixels wide. From the cube’s centre they’ll need to be translated out half that distance, 100px. #cube .front { -webkit-transform: rotateY(0deg) translateZ(100px); } #cube .back { -webkit-transform: rotateX(180deg) translateZ(100px); } #cube .right { -webkit-transform: rotateY(90deg) translateZ(100px); } #cube .left { -webkit-transform: rotateY(-90deg) translateZ(100px); } #cube .top { -webkit-transform: rotateX(90deg) translateZ(100px); } #cube .bottom { -webkit-transform: rotateX(-90deg) translateZ(100px); } Note here that the translateZ function comes after the rotate. The order of transform functions is important. Take a moment and soak this up. Each face is first rotated towards its position, then translated outward in a separate vector. We have a working cube, but we’re not done yet. Returning to the Z-axis origin For the sake of our users, our 3-D transforms should not distort the interface when the active panel is at its resting position. But once we start pushing elements off their Z-axis origin, distortion is inevitable. In order to keep 3-D transforms snappy, Safari composites the element, then applies the transform. Consequently, anti-aliasing on text will remain whatever it was before the transform was applied. When transformed forward in 3-D space, significant pixelation can occur. See Example: Transforms 2. Looking back at the Perspective 3 demo, note that no matter how small the perspective value is, or wherever the transform-origin may be, the panel number 1 always returns to its original position, as if all those funky 3-D transforms didn’t even matter. To resolve the distortion and restore pixel perfection to our #cube, we can push the 3-D object back, so that the front face will be positioned back to the Z-axis origin. #cube { -webkit-transform: translateZ(-100px); } See Example: Cube 1. Restoring the front face to the original position on the Z-axis Rotating the cube To expose any face of the cube, we’ll need a style that rotates the cube to expose any face. The transform values are the opposite of those for the corresponding face. We toggle the necessary class on the #box to apply the appropriate transform. #cube.show-front { -webkit-transform: translateZ(-100px) rotateY(0deg); } #cube.show-back { -webkit-transform: translateZ(-100px) rotateX(-180deg); } #cube.show-right { -webkit-transform: translateZ(-100px) rotateY(-90deg); } #cube.show-left { -webkit-transform: translateZ(-100px) rotateY(90deg); } #cube.show-top { -webkit-transform: translateZ(-100px) rotateX(-90deg); } #cube.show-bottom { -webkit-transform: translateZ(-100px) rotateX(90deg); } Notice how the order of the transform functions has reversed. First, we push the object back with translateZ, then we rotate it. Finishing up, we can add a transition to animate the rotation between states. #cube { -webkit-transition: -webkit-transform 1s; } See Example: Cube 2. Rotating the cube with a CSS transition Rectangular prism Cubes are easy enough to generate, as we only have to worry about one measurement. But how would we handle a non-regular rectangular prism? Let’s try to make one that’s 300 pixels wide, 200 pixels high, and 100 pixels deep. The markup remains the same as the #cube, but we’ll switch the cube id for #box. The container styles remain mostly the same: .container { width: 300px; height: 200px; position: relative; -webkit-perspective: 1000; } #box { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; } Now to position the faces. Each set of faces will need their own sizes. The smaller faces (left, right, top and bottom) need to be positioned in the centre of the container, where they can be easily rotated and then shifted outward. The thinner left and right faces get positioned left: 100px ((300 − 100) ÷ 2), The stouter top and bottom faces get positioned top: 50px ((200 − 100) ÷ 2). #box figure { display: block; position: absolute; border: 2px solid black; } #box .front, #box .back { width: 296px; height: 196px; } #box .right, #box .left { width: 96px; height: 196px; left: 100px; } #box .top, #box .bottom { width: 296px; height: 96px; top: 50px; } The rotate values can all remain the same as the cube example, but for this rectangular prism, the translate values do differ. The front and back faces are each shifted out 50 pixels since the #box is 100 pixels deep. The translate value for the left and right faces is 150 pixels for their 300 pixels width. Top and bottom panels take 100 pixels for their 200 pixels height: #box .front { -webkit-transform: rotateY(0deg) translateZ(50px); } #box .back { -webkit-transform: rotateX(180deg) translateZ(50px); } #box .right { -webkit-transform: rotateY(90deg) translateZ(150px); } #box .left { -webkit-transform: rotateY(-90deg) translateZ(150px); } #box .top { -webkit-transform: rotateX(90deg) translateZ(100px); } #box .bottom { -webkit-transform: rotateX(-90deg) translateZ(100px); } See Example: Box 1. Just like the cube example, to expose a face, the #box needs to have a style to reverse that face’s transform. Both the translateZ and rotate values are the opposites of the corresponding face. #box.show-front { -webkit-transform: translateZ(-50px) rotateY(0deg); } #box.show-back { -webkit-transform: translateZ(-50px) rotateX(-180deg); } #box.show-right { -webkit-transform: translateZ(-150px) rotateY(-90deg); } #box.show-left { -webkit-transform: translateZ(-150px) rotateY(90deg); } #box.show-top { -webkit-transform: translateZ(-100px) rotateX(-90deg); } #box.show-bottom { -webkit-transform: translateZ(-100px) rotateX(90deg); } See Example: Box 2. Rotating the rectangular box with a CSS transition Carousel Front-end developers have a myriad of choices when it comes to content carousels. Now that we have 3-D capabilities in our browsers, why not take a shot at creating an actual 3-D carousel? The markup for this demo takes the same form as the box, cube and card. Let’s make it interesting and have a carousel with nine panels. <div class="container"> <div id="carousel"> <figure>1</figure> <figure>2</figure> <figure>3</figure> <figure>4</figure> <figure>5</figure> <figure>6</figure> <figure>7</figure> <figure>8</figure> <figure>9</figure> </div> </div> Now, apply basic layout styles. Let’s give each panel of the #carousel 20 pixel gaps between one another, done here with left: 10px; and top: 10px;. The effective width of each panel is 210 pixels. .container { width: 210px; height: 140px; position: relative; -webkit-perspective: 1000; } #carousel { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; } #carousel figure { display: block; position: absolute; width: 186px; height: 116px; left: 10px; top: 10px; border: 2px solid black; } Next up: rotating the faces. This #carousel has nine panels. If each panel gets an equal distribution on the carousel, each panel would be rotated forty degrees from its neighbour (360 ÷ 9). #carousel figure:nth-child(1) { -webkit-transform: rotateY(0deg); } #carousel figure:nth-child(2) { -webkit-transform: rotateY(40deg); } #carousel figure:nth-child(3) { -webkit-transform: rotateY(80deg); } #carousel figure:nth-child(4) { -webkit-transform: rotateY(120deg); } #carousel figure:nth-child(5) { -webkit-transform: rotateY(160deg); } #carousel figure:nth-child(6) { -webkit-transform: rotateY(200deg); } #carousel figure:nth-child(7) { -webkit-transform: rotateY(240deg); } #carousel figure:nth-child(8) { -webkit-transform: rotateY(280deg); } #carousel figure:nth-child(9) { -webkit-transform: rotateY(320deg); } Now, the outward shift. Back when we were creating the cube and box, the translate value was simple to calculate, as it was equal to one half the width, height or depth of the object. With this carousel, there is no size we can automatically use as a reference. We’ll have to calculate the distance of the shift by other means. Drawing a diagram of the carousel, we can see that we know only two things: the width of each panel is 210 pixels; and the each panel is rotated forty degrees from the next. If we split one of these segments down its centre, we get a right-angled triangle, perfect for some trigonometry. We can determine the length of r in this diagram with a basic tangent equation: There you have it: the panels need to be translated 288 pixels in 3-D space. #carousel figure:nth-child(1) { -webkit-transform: rotateY(0deg) translateZ(288px); } #carousel figure:nth-child(2) { -webkit-transform: rotateY(40deg) translateZ(288px); } #carousel figure:nth-child(3) { -webkit-transform: rotateY(80deg) translateZ(288px); } #carousel figure:nth-child(4) { -webkit-transform: rotateY(120deg) translateZ(288px); } #carousel figure:nth-child(5) { -webkit-transform: rotateY(160deg) translateZ(288px); } #carousel figure:nth-child(6) { -webkit-transform: rotateY(200deg) translateZ(288px); } #carousel figure:nth-child(7) { -webkit-transform: rotateY(240deg) translateZ(288px); } #carousel figure:nth-child(8) { -webkit-transform: rotateY(280deg) translateZ(288px); } #carousel figure:nth-child(9) { -webkit-transform: rotateY(320deg) translateZ(288px); } If we decide to change the width of the panel or the number of panels, we only need to plug in those two variables into our equation to get the appropriate translateZ value. In JavaScript terms, that equation would be: var tz = Math.round( ( panelSize / 2 ) / Math.tan( ( ( Math.PI * 2 ) / numberOfPanels ) / 2 ) ); // or simplified to var tz = Math.round( ( panelSize / 2 ) / Math.tan( Math.PI / numberOfPanels ) ); Just like our previous 3-D objects, to show any one panel we need only apply the reverse transform on the carousel. Here’s the style to show the fifth panel: -webkit-transform: translateZ(-288px) rotateY(-160deg); See Example: Carousel 1. By now, you probably have two thoughts: Rewriting transform styles for each panel looks tedious. Why bother doing high school maths? Aren’t robots supposed to be doing all this work for us? And you’re absolutely right. The repetitive nature of 3-D objects lends itself to scripting. We can offload all the monotonous transform styles to our dynamic script, which, if done correctly, will be more flexible than the hard-coded version. See Example: Carousel 2. Conclusion 3-D transforms change the way we think about the blank canvas of web design. Better yet, they change the canvas itself, trading in the flat surface for voluminous depth. My hope is that you took at least one peak at a demo and were intrigued. We web designers, who have rejoiced for border-radius, box-shadow and background gradients, now have an incredible tool at our disposal in 3-D transforms. They deserve just the same enthusiasm, research and experimentation we have seen on other CSS3 features. Now is the perfect time to take the plunge and start thinking about how to use three dimensions to elevate our craft. I’m breathless waiting for what’s to come. See you on the flip side. 2010 David DeSandro daviddesandro 2010-12-14T00:00:00+00:00 https://24ways.org/2010/intro-to-css-3d-transforms/ code
235 Real Animation Using JavaScript, CSS3, and HTML5 Video When I was in school to be a 3-D animator, I read a book called Timing for Animation. Though only 152 pages long, it’s essentially the bible for anyone looking to be a great animator. In fact, Pixar chief creative officer John Lasseter used the first edition as a reference when he was an animator at Walt Disney Studios in the early 1980s. In the book, authors John Halas and Harold Whitaker advise: Timing is the part of animation which gives meaning to movement. Movement can easily be achieved by drawing the same thing in two different positions and inserting a number of other drawings between the two. The result on the screen will be movement; but it will not be animation. But that’s exactly what we’re doing with CSS3 and JavaScript: we’re moving elements, not animating them. We’re constantly specifying beginning and end states and allowing the technology to interpolate between the two. And yet, it’s the nuances within those middle frames that create the sense of life we’re looking for. As bandwidth increases and browser rendering grows more consistent, we can create interactions in different ways than we’ve been able to before. We’re encountering motion more and more on sites we’d generally label ‘static.’ However, this motion is mostly just movement, not animation. It’s the manipulation of an element’s properties, most commonly width, height, x- and y-coordinates, and opacity. So how do we create real animation? The metaphor In my experience, animation is most believable when it simulates, exaggerates, or defies the real world. A bowling ball falls differently than a racquetball. They each have different weights and sizes, which affect the way they land, bounce, and impact other objects. This is a major reason that JavaScript animation frequently feels mechanical; it doesn’t complete a metaphor. Expanding and collapsing a <div> feels very different than a opening a door or unfolding a piece of paper, but it often shouldn’t. The interaction itself should tie directly to the art direction of a page. Physics Understanding the physics of a situation is key to creating convincing animation, even if your animation seeks to defy conventional physics. Isaac Newton’s first law of motion’s_laws_of_motion states, “Every body remains in a state of rest or uniform motion (constant velocity) unless it is acted upon by an external unbalanced force.” Once a force acts upon an object, the object’s shape can change accordingly, depending on the strength of the force and the mass of the object. Another nugget of wisdom from Halas and Whitaker: All objects in nature have their own weight, construction, and degree of flexibility, and therefore each behaves in its own individual way when a force acts upon it. This behavior, a combination of position and timing, is the basis of animation. The basic question which an animator is continually asking himself is this: “What will happen to this object when a force acts upon it?” And the success of his animation largely depends on how well he answers this question. In animating with CSS3 and JavaScript, keep physics in mind. How ‘heavy’ is the element you’re interacting with? What kind of force created the action? A gentle nudge? A forceful shove? These subtleties will add a sense of realism to your animations and make them much more believable to your users. Misdirection Magicians often use misdirection to get their audience to focus on one thing rather than another. They fool us into thinking something happened that actually didn’t. Animation is the same, especially on a screen. By changing the arrangement of pixels on screen at a fast enough rate, your eyes fool your mind into thinking an object is actually in motion. Another important component of misdirecting in animation is the use of multiple objects. Try to recall a cartoon where a character vanishes. More often, the character makes some sort of exaggerated motion (this is called anticipation) then disappears, and a puff a smoke follows. That smoke is an extra element, but it goes a long way into make you believe that character actually disappeared. Very rarely does a vanishing character’s opacity simply go from one hundred per cent to zero. That’s not believable. So why do we do it with <div>s? Armed with the ammunition of metaphors and misdirection, let’s code an example. Shake, rattle, and roll (These demos require at least a basic understanding of jQuery and CSS3. Run away if your’re afraid, or brush up on CSS animation and resources for learning jQuery. Also, these demos use WebKit-specific features and are best viewed in the latest version of Safari, so performance in other browsers may vary.) We often see the design pattern of clicking a link to reveal content. Our “first demo”:”/examples/2010/real-animation/demo1/ shows us exactly that. It uses jQuery’s “ slideDown()”:http://api.jquery.com/slideDown/ method, as many instances do. But what force acted on the <div> that caused it to open? Did pressing the button unlatch some imaginary hook? Did it activate an unlocking sequence with some gears? Take 2 Our second demo is more explicit about what happens: the button fell on the <div> and shook its content loose. Here’s how it’s done. function clickHandler(){ $('#button').addClass('animate'); return false; } Clicking the link adds a class of animate to our button. That class has the following CSS associated with it: <style> .animate { -webkit-animation-name: ANIMATE; -webkit-animation-duration: 0.25s; -webkit-animation-iteration-count: 1; -webkit-animation-timing-function: ease-in; } @-webkit-keyframes ANIMATE { from { top: 72px; } to { top: 112px; } } </style> In our keyframe definition, we’ve specified from and to states. This is great, because we can be explicit about how an object starts and finishes moving. What’s also extra handy is that these CSS keyframes broadcast events that you can react to with JavaScript. In this example, we’re listening to the webkitAnimationEnd event and opening the <div> only when the sequence is complete. Here’s that code. function attachAnimationEventHandlers(){ var wrap = document.getElementById('wrap'); wrap.addEventListener('webkitAnimationEnd', function($e) { switch($e.animationName){ case "ANIMATE" : openMain(); break; default: } }, false); } function openMain(){ $('#main .inner').slideDown('slow'); } (For more info on handling animation events, check out the documentation at the Safari Reference Library.) Take 3 The problem with the previous demo is that the subtleties of timing aren’t evident. It still feels a bit choppy. For our third demo, we’ll use percentages instead of keywords so that we can insert as many points as we need to communicate more realistic timing. The percentages allow us to add the keys to well-timed animation: anticipation, hold, release, and reaction. <style> @-webkit-keyframes ANIMATE { 0% { top: 72px; } 40% { /* anticipation */ top: 57px; } 70% { /* hold */ top: 56px; } 80% { /* release */ top: 112px; } 100% { /* return */ top: 72px; } } </style> Take 4 The button animation is starting to feel much better, but the reaction of the <div> opening seems a bit slow. This fourth demo uses jQuery’s delay() method to time the opening precisely when we want it. Since we know the button’s animation is one second long and its reaction starts at eighty per cent of that, that puts our delay at 800ms (eighty per cent of one second). However, here’s a little pro tip: let’s start the opening at 750ms instead. The extra fifty milliseconds makes it feel more like the opening is a reaction to the exact hit of the button. Instead of listening for the webkitAnimationEnd event, we can start the opening as soon as the button is clicked, and the movement plays on the specified delay. function clickHandler(){ $('#button').addClass('animate'); openMain(); return false; } function openMain(){ $('#main .inner').delay(750).slideDown('slow'); } Take 5 We can tweak the timing of that previous animation forever, but that’s probably as close as we’re going to get to realistic animation with CSS and JavaScript. However, for some extra sauce, we could relegate the whole animation in our final demo to a video sequence which includes more nuances and extra elements for misdirection. Here’s the basis of video replacement. Add a <video> element to the page and adjust its opacity to zero. Once the button is clicked, fade the button out and start playing the video. Once the video is finished playing, fade it out and bring the button back. function clickHandler(){ if($('#main .inner').is(':hidden')){ $('#button').fadeTo(100, 0); $('#clickVideo').fadeTo(100, 1, function(){ var clickVideo = document.getElementById('clickVideo'); clickVideo.play(); setTimeout(removeVideo, 2400); openMain(); }); } return false; } function removeVideo(){ $('#button').fadeTo(500, 1); $('#clickVideo').fadeOut('slow'); } function openMain(){ $('#main .inner').delay(1100).slideDown('slow'); } Wrapping up I’m no JavaScript expert by any stretch. I’m sure a lot of you scripting wizards out there could write much cleaner and more efficient code, but I hope this gives you an idea of the theory behind more realistic motion with the technology we’re using most. This is just one model of creating more convincing animation, but you can create countless variations of this, including… Exporting <video> animations in 3-D animation tools or 2-D animation tools like Flash or After Effects Using <canvas> or SVG instead of <video> Employing specific JavaScript animation frameworks Making use of all the powerful properties of CSS Transforms and CSS Animation Trying out emerging CSS3 animation tools like Sencha Animator If it wasn’t already apparent, these demos show an exaggerated example and probably aren’t practical in a lot of environments. However, there are a handful of great sites out there that honor animation techniques—metaphor, physics, and misdirection, among others—like Benjamin De Cock’s vCard, 20 Things I Learned About Browsers and the Web by Fantasy Interactive, and the Nike Snowboarding site by Ian Coyle and HEGA. They’re wonderful testaments to what you can do to aid interaction for users. My goal was to show you the ‘why’ and the ‘how.’ Your charge is to discern the ‘where’ and the ‘when.’ Happy animating! 2010 Dan Mall danmall 2010-12-15T00:00:00+00:00 https://24ways.org/2010/real-animation-using-javascript-css3-and-html5-video/ code
238 Everything You Wanted To Know About Gradients (And a Few Things You Didn’t) Hello. I am here to discuss CSS3 gradients. Because, let’s face it, what the web really needed was more gradients. Still, despite their widespread use (or is it overuse?), the smartly applied gradient can be a valuable contributor to a designer’s vocabulary. There’s always been a tension between the inherently two-dimensional nature of our medium, and our desire for more intensity, more depth in our designs. And a gradient can evoke so much: the splay of light across your desk, the slow decrease in volume toward the end of your favorite song, the sunset after a long day. When properly applied, graded colors bring a much needed softness to our work. Of course, that whole ‘proper application’ thing is the tricky bit. But given their place in our toolkit and their prominence online, it really is heartening to see we can create gradients directly with CSS. They’re part of the draft images module, and implemented in two of the major rendering engines. Still, I’ve always found CSS gradients to be one of the more confusing aspects of CSS3. So if you’ll indulge me, let’s take a quick look at how to create CSS gradients—hopefully we can make them seem a bit more accessible, and bring a bit more art into the browser. Gradient theory 101 (I hope that’s not really a thing) Right. So before we dive into the code, let’s cover a few basics. Every gradient, no matter how complex, shares a few common characteristics. Here’s a straightforward one: I spent seconds hours designing this gradient. I hope you like it. At either end of our image, we have a final color value, or color stop: on the left, our stop is white; on the right, black. And more color-rich gradients are no different: (Don’t ever really do this. Please. I beg you.) It’s visually more intricate, sure. But at the heart of it, we have just seven color stops (red, orange, yellow, and so on), making for a fantastic gradient all the way. Now, color stops alone do not a gradient make. Between each is a transition point, the fail-over point between the two stops. Now, the transition point doesn’t need to fall exactly between stops: it can be brought closer to one stop or the other, influencing the overall shape of the gradient. A tale of two syntaxes Armed with our new vocabulary, let’s look at a CSS gradient in the wild. Behold, the simple input button: There’s a simple linear gradient applied vertically across the button, moving from a bright sunflowerish hue (#FAA51A, for you hex nuts in the audience) to a much richer orange (#F47A20). And here’s the CSS that makes it happen: input[type=submit] { background-color: #F47A20; background-image: -moz-linear-gradient( #FAA51A, #F47A20 ); background-image: -webkit-gradient(linear, 0 0, 0 100%, color-stop(0, #FAA51A), color-stop(1, #F47A20) ); } I’ve borrowed David DeSandro’s most excellent formatting suggestions for gradients to make this snippet a bit more legible but, still, the code above might have turned your stomach a bit. And that’s perfectly understandable—heck, it sort of turned mine. But let’s step through the CSS slowly, and see if we can’t make it a little less terrifying. Verbose WebKit is verbose Here’s the syntax for our little gradient on WebKit: background-image: -webkit-gradient(linear, 0 0, 0 100%, color-stop(0, #FAA51A), color-stop(1, #F47A20) ); Woof. Quite a mouthful, no? Well, here’s what we’re looking at: WebKit has a single -webkit-gradient property, which can be used to create either linear or radial gradients. The next two values are the starting and ending positions for our gradient (0 0 and 0 100%, respectively). Linear gradients are simply drawn along the path between those two points, which allows us to change the direction of our gradient simply by altering its start and end points. Afterward, we specify our color stops with the oh-so-aptly named color-stop parameter, which takes the stop’s position on the gradient (0 being the beginning, and 100% or 1 being the end) and the color itself. For a simple two-color gradient like this, -webkit-gradient has a bit of shorthand notation to offer us: background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#FAA51A), to(#FAA51A) ); from(#FAA51A) is equivalent to writing color-stop(0, #FAA51A), and to(#FAA51A) is the same as color-stop(1, #FAA51A) or color-stop(100%, #FAA51A)—in both cases, we’re simply declaring the first and last color stops in our gradient. Terse Gecko is terse WebKit proposed its syntax back in 2008, heavily inspired by the way gradients are drawn in the canvas specification. However, a different, leaner syntax came to the fore, eventually appearing in a draft module specification in CSS3. Naturally, because nothing on the web was meant to be easy, this is the one that Mozilla has implemented. Here’s how we get gradient-y in Gecko: background-image: -moz-linear-gradient( #FAA51A, #F47A20 ); Wait, what? Done already? That’s right. By default, -moz-linear-gradient assumes you’re trying to create a vertical gradient, starting from the top of your element and moving to the bottom. And, if that’s the case, then you simply need to specify your color stops, delimited with a few commas. I know: that was almost… painless. But the W3C/Mozilla syntax also affords us a fair amount of flexibility and control, by introducing features as we need them. We can specify an origin point for our gradient: background-image: -moz-linear-gradient(50% 100%, #FAA51A, #F47A20 ); As well as an angle, to give it a direction: background-image: -moz-linear-gradient(50% 100%, 45deg, #FAA51A, #F47A20 ); And we can specify multiple stops, simply by adding to our comma-delimited list: background-image: -moz-linear-gradient(50% 100%, 45deg, #FAA51A, #FCC, #F47A20 ); By adding a percentage after a given color value, we can determine its position along the gradient path: background-image: -moz-linear-gradient(50% 100%, 45deg, #FAA51A, #FCC 20%, #F47A20 ); So that’s some of the flexibility implicit in the W3C/Mozilla-style syntax. Now, I should note that both syntaxes have their respective fans. I will say that the W3C/Mozilla-style syntax makes much more sense to me, and lines up with how I think about creating gradients. But I can totally understand why some might prefer WebKit’s more verbose approach to the, well, looseness behind the -moz syntax. À chacun son gradient syntax. Still, as the language gets refined by the W3C, I really hope some consensus is reached by the browser vendors. And with Opera signaling that it will support the W3C syntax, I suppose it falls on WebKit to do the same. Reusing color stops for fun and profit But CSS gradients aren’t all simple colors and shapes and whatnot: by getting inventive with individual color stops, you can create some really complex, compelling effects. Tim Van Damme, whose brain, I believe, should be posthumously donated to science, has a particularly clever application of gradients on The Box, a site dedicated to his occasional podcast series. Now, there are a fair number of gradients applied throughout the UI, but it’s the feature image that really catches the eye. You see, there’s nothing that says you can’t reuse color stops. And Tim’s exploited that perfectly. He’s created a linear gradient, angled at forty-five degrees from the top left corner of the photo, starting with a fully transparent white (rgba(255, 255, 255, 0)). At the halfway mark, he’s established another color stop at an only slightly more opaque white (rgba(255, 255, 255, 0.1)), making for that incredibly gradual brightening toward the middle of the photo. But then he has set another color stop immediately on top of it, bringing it back down to rgba(255, 255, 255, 0) again. This creates that fantastically hard edge that diagonally bisects the photo, giving the image that subtle gloss. And his final color stop ends at the same fully transparent white, completing the effect. Hot? I do believe so. Rocking the radials We’ve been looking at linear gradients pretty exclusively. But I’d be remiss if I didn’t at least mention radial gradients as a viable option, including a modest one as a link accent on a navigation bar: And here’s the relevant CSS: background: -moz-radial-gradient(50% 100%, farthest-side, rgb(204, 255, 255) 1%, rgb(85, 85, 85) 15%, rgba(85, 85, 85, 0) ); background: -webkit-gradient(radial, 50% 100%, 0, 50% 100%, 15, from(rgb(204, 255, 255)), to(rgba(85, 85, 85, 0)) ); Now, the syntax builds on what we’ve already learned about linear gradients, so much of it might be familiar to you, picking out color stops and transition points, as well as the two syntaxes’ reliance on either a separate property (-moz-radial-gradient) or parameter (-webkit-gradient(radial, …)) to shift into circular mode. Mozilla introduces another stand-alone property (-moz-radial-gradient), and accepts a starting point (50% 100%) from which the circle radiates. There’s also a size constant defined (farthest-side), which determines the reach and shape of our gradient. WebKit is again the more verbose of the two syntaxes, requiring both starting and ending points (50% 100% in both cases). Each also accepts a radius in pixels, allowing you to control the skew and breadth of the circle. Again, this is a fairly modest little radial gradient. Time and article length (and, let’s be honest, your author’s completely inadequate grasp of geometry) prevent me from covering radial gradients in much more detail, because they are incredibly powerful. For those interested in learning more, I can’t recommend the references at Mozilla and Apple strongly enough. Leave no browser behind But no matter the kind of gradients you’re working with, there is a large swathe of browsers that simply don’t support gradients. Thankfully, it’s fairly easy to declare a sensible fallback—it just depends on the kind of fallback you’d like. Essentially, gradient-blind browsers will disregard any properties containing references to either -moz-linear-gradient, -moz-radial-gradient, or -webkit-gradient, so you simply need to keep your fallback isolated from those properties. For example: if you’d like to fall back to a flat color, simply declare a separate background-color: .nav { background-color: #000; background-image: -moz-linear-gradient(rgba(0, 0, 0, 0), rgba(255, 255, 255, 0.45)); background-image: -webkit-gradient(linear, 0 0, 0 100%, from(rgba(0, 0, 0, 0)), to(rgba(255, 255, 255, 0.45))); } Or perhaps just create three separate background properties. .nav { background: #000; background: #000 -moz-linear-gradient(rgba(0, 0, 0, 0), rgba(255, 255, 255, 0.45)); background: #000 -webkit-gradient(linear, 0 0, 0 100%, from(rgba(0, 0, 0, 0)), to(rgba(255, 255, 255, 0.45))); } We can even build on this to fall back to a non-gradient image: .nav { background: #000 <strong>url("faux-gradient-lol.png") repeat-x</strong>; background: #000 -moz-linear-gradient(rgba(0, 0, 0, 0), rgba(255, 255, 255, 0.45)); background: #000 -webkit-gradient(linear, 0 0, 0 100%, from(rgba(0, 0, 0, 0)), to(rgba(255, 255, 255, 0.45))); } No matter the approach you feel most appropriate to your design, it’s really just a matter of keeping your fallback design quarantined from its CSS3-ified siblings. (If you’re feeling especially masochistic, there’s even a way to get simple linear gradients working in IE via Microsoft’s proprietary filters. Of course, those come with considerable performance penalties that even Microsoft is quick to point out, so I’d recommend avoiding those. And don’t tell Andy Clarke I told you, or he’ll probably unload his Derringer at me. Or something.) Go forth and, um, gradientify! It’s entirely possible your head’s spinning. Heck, mine is, but that might be the effects of the ’nog. But maybe you’re wondering why you should care about CSS gradients. After all, images are here right now, and work just fine. Well, there are some quick benefits that spring to mind: fewer HTTP requests are needed; CSS3 gradients are easily made scalable, making them ideal for variable widths and heights; and finally, they’re easily modifiable by tweaking a few CSS properties. Because, let’s face it, less time spent yelling at Photoshop is a very, very good thing. Of course, CSS-generated gradients are not without their drawbacks. The syntax can be confusing, and it’s still under development at the W3C. As we’ve seen, browser support is still very much in flux. And it’s possible that gradients themselves have some real performance drawbacks—so test thoroughly, and gradient carefully. But still, as syntaxes converge, and support improves, I think generated gradients can make a compelling tool in our collective belts. The tasteful design is, of course, entirely up to you. So have fun, and get gradientin’. 2010 Ethan Marcotte ethanmarcotte 2010-12-22T00:00:00+00:00 https://24ways.org/2010/everything-you-wanted-to-know-about-gradients/ code
239 Using the WebFont Loader to Make Browsers Behave the Same Web fonts give us designers a whole new typographic palette with which to work. However, browsers handle the loading of web fonts in different ways, and this can lead to inconsistent user experiences. Safari, Chrome and Internet Explorer leave a blank space in place of the styled text while the web font is loading. Opera and Firefox show text with the default font which switches over when the web font has loaded, resulting in the so-called Flash of Unstyled Text (aka FOUT). Some people prefer Safari’s approach as it eliminates FOUT, others think the Firefox way is more appropriate as content can be read whilst fonts download. Whatever your preference, the WebFont Loader can make all browsers behave the same way. The WebFont Loader is a JavaScript library that gives you extra control over font loading. It was co-developed by Google and Typekit, and released as open source. The WebFont Loader works with most web font services as well as with self-hosted fonts. The WebFont Loader tells you when the following events happen as a browser downloads web fonts (or loads them from cache): when fonts start to download (‘loading’) when fonts finish loading (‘active’) if fonts fail to load (‘inactive’) If your web page requires more than one font, the WebFont Loader will trigger events for individual fonts, and for all the fonts as a whole. This means you can find out when any single font has loaded, and when all the fonts have loaded (or failed to do so). The WebFont Loader notifies you of these events in two ways: by applying special CSS classes when each event happens; and by firing JavaScript events. For our purposes, we’ll be using just the CSS classes. Implementing the WebFont Loader As stated above, the WebFont Loader works with most web font services as well as with self-hosted fonts. Self-hosted fonts To use the WebFont Loader when you are hosting the font files on your own server, paste the following code into your web page: <script type="text/javascript"> WebFontConfig = { custom: { families: ['Font Family Name', 'Another Font Family'], urls: [ 'http://yourwebsite.com/styles.css' ] } }; (function() { var wf = document.createElement('script'); wf.src = ('https:' == document.location.protocol ? 'https' : 'http') + '://ajax.googleapis.com/ajax/libs/webfont/1/webfont.js'; wf.type = 'text/javascript'; wf.async = 'true'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(wf, s); })(); </script> Replace Font Family Name and Another Font Family with a comma-separated list of the font families you want to check against, and replace http://yourwebsite.com/styles.css with the URL of the style sheet where your @font-face rules reside. Fontdeck Assuming you have added some fonts to a website project in Fontdeck, use the afore-mentioned code for self-hosted solutions and replace http://yourwebsite.com/styles.css with the URL of the <link> tag in your Fontdeck website settings page. It will look something like http://f.fontdeck.com/s/css/xxxx/domain/nnnn.css. Typekit Typekit’s JavaScript-based implementation incorporates the WebFont Loader events by default, so you won’t need to include any WebFont Loader code. Making all browsers behave like Safari To make Firefox and Opera work in the same way as WebKit browsers (Safari, Chrome, etc.) and Internet Explorer, and thus minimise FOUT, you need to hide the text while the fonts are loading. While fonts are loading, the WebFont Loader adds a class of wf-loading to the <html> element. Once the fonts have loaded, the wf-loading class is removed and replaced with a class of wf-active (or wf-inactive if all of the fonts failed to load). This means you can style elements on the page while the fonts are loading and then style them differently when the fonts have finished loading. So, let’s say the text you need to hide while fonts are loading is contained in all paragraphs and top-level headings. By writing the following style rule into your CSS, you can hide the text while the fonts are loading: .wf-loading h1, .wf-loading p { visibility:hidden; } Because the wf-loading class is removed once the the fonts have loaded, the visibility:hidden rule will stop being applied, and the text revealed. You can see this in action on this simple example page. That works nicely across the board, but the situation is slightly more complicated. WebKit doesn’t wait for all fonts to load before displaying text: it displays text elements as soon as the relevant font is loaded. To emulate WebKit more accurately, we need to know when individual fonts have loaded, and apply styles accordingly. Fortunately, as mentioned earlier, the WebFont Loader has events for individual fonts too. When a specific font is loading, a class of the form wf-fontfamilyname-n4-loading is applied. Assuming headings and paragraphs are styled in different fonts, we can make our CSS more specific as follows: .wf-fontfamilyname-n4-loading h1, .wf-anotherfontfamily-n4-loading p { visibility:hidden; } Note that the font family name is transformed to lower case, with all spaces removed. The n4 is a shorthand for the weight and style of the font family. In most circumstances you’ll use n4 but refer to the WebFont Loader documentation for exceptions. You can see it in action on this Safari example page (you’ll probably need to disable your cache to see any change occur). Making all browsers behave like Firefox To make WebKit browsers and Internet Explorer work like Firefox and Opera, you need to explicitly show text while the fonts are loading. In order to make this happen, you need to specify a font family which is not a web font while the fonts load, like this: .wf-fontfamilyname-n4-loading h1 { font-family: 'arial narrow', sans-serif; } .wf-anotherfontfamily-n4-loading p { font-family: arial, sans-serif; } You can see this in action on the Firefox example page (again you’ll probably need to disable your cache to see any change occur). And there’s more That’s just the start of what can be done with the WebFont Loader. More areas to explore would be tweaking font sizes to reduce the impact of reflowing text and to better cater for very narrow fonts. By using the JavaScript events much more can be achieved too, such as fading in text as the fonts load. 2010 Richard Rutter richardrutter 2010-12-02T00:00:00+00:00 https://24ways.org/2010/using-the-webfont-loader-to-make-browsers-behave-the-same/ code
240 My CSS Wish List I love Christmas. I love walking around the streets of London, looking at the beautifully decorated windows, seeing the shiny lights that hang above Oxford Street and listening to Christmas songs. I’m not going to lie though. Not only do I like buying presents, I love receiving them too. I remember making long lists that I would send to Father Christmas with all of the Lego sets I wanted to get. I knew I could only get one a year, but I would spend days writing the perfect list. The years have gone by, but I still enjoy making wish lists. And I’ll tell you a little secret: my mum still asks me to send her my Christmas list every year. This time I’ve made my CSS wish list. As before, I’d be happy with just one present. Before I begin… … this list includes: things that don’t exist in the CSS specification (if they do, please let me know in the comments – I may have missed them); others that are in the spec, but it’s incomplete or lacks use cases and examples (which usually means that properties haven’t been implemented by even the most recent browsers). Like with any other wish list, the further down I go, the more unrealistic my expectations – but that doesn’t mean I can’t wish. Some of the things we wouldn’t have thought possible a few years ago have been implemented and our wishes fulfilled (think multiple backgrounds, gradients and transformations, for example). The list Cross-browser implementation of font-size-adjust When one of the fall-back fonts from your font stack is used, rather than the preferred (first) one, you can retain the aspect ratio by using this very useful property. It is incredibly helpful when the fall-back fonts are smaller or larger than the initial one, which can make layouts look less polished. What font-size-adjust does is divide the original font-size of the fall-back fonts by the font-size-adjust value. This preserves the x-height of the preferred font in the fall-back fonts. Here’s a simple example: p { font-family: Calibri, "Lucida Sans", Verdana, sans-serif; font-size-adjust: 0.47; } In this case, if the user doesn’t have Calibri installed, both Lucida Sans and Verdana will keep Calibri’s aspect ratio, based on the font’s x-height. This property is a personal favourite and one I keep pointing to. Firefox supported this property from version three. So far, it’s the only browser that does. Fontdeck provides the font-size-adjust value along with its fonts, and has a handy tool for calculating it. More control over overflowing text The text-overflow property lets you control text that overflows its container. The most common use for it is to show an ellipsis to indicate that there is more text than what is shown. To be able to use it, the container should have overflow set to something other than visible, and white-space: nowrap: div { white-space: nowrap; width: 100%; overflow: hidden; text-overflow: ellipsis; } This, however, only works for blocks of text on a single line. In the wish list of many CSS authors (and in mine) is a way of defining text-overflow: ellipsis on a block of multiple text lines. Opera has taken the first step and added support for the -o-ellipsis-lastline property, which can be used instead of ellipsis. This property is not part of the CSS3 spec, but we could certainly make good use of it if it were… WebKit has -webkit-line-clamp to specify how many lines to show before cutting with an ellipsis, but support is patchy at best and there is no control over where the ellipsis shows in the text. Many people have spent time wrangling JavaScript to do this for us, but the methods used are very processor intensive, and introduce a JavaScript dependency. Indentation and hanging punctuation properties You might notice a trend here: almost half of the items in this list relate to typography. The lack of fine-grained control over typographical detail is a general concern among designers and CSS authors. Indentation and hanging punctuation fall into this category. The CSS3 specification introduces two new possible values for the text-indent property: each-line; and hanging. each-line would indent the first line of the block container and each line after a forced line break; hanging would invert which lines are affected by the indentation. The proposed hanging-punctuation property would allow us to specify whether opening and closing brackets and quotes should hang outside the edge of the first and last lines. The specification is still incomplete, though, and asks for more examples and use cases. Text alignment and hyphenation properties Following the typographic trend of this list, I’d like to add better control over text alignment and hyphenation properties. The CSS3 module on Generated Content for Paged Media already specifies five new hyphenation-related properties (namely: hyphenate-dictionary; hyphenate-before and hyphenate-after; hyphenate-lines; and hyphenate-character), but it is still being developed and lacks examples. In the text alignment realm, the new text-align-last property allows you to define how the last line of a block (or a line just before a forced break) is aligned, if your text is set to justify. Its value can be: start; end; left; right; center; and justify. The text-justify property should also allow you to have more control over text set to text-align: justify but, for now, only Internet Explorer supports this. calc() This is probably my favourite item in the list: the calc() function. This function is part of the CSS3 Values and Units module, but it has only been implemented by Firefox (4.0). To take advantage of it now you need to use the Mozilla vendor code, -moz-calc(). Imagine you have a fluid two-column layout where the sidebar column has a fixed width of 240 pixels, and the main content area fills the rest of the width available. This is how you could create that using -moz-calc(): #main { width: -moz-calc(100% - 240px); } Can you imagine how many hacks and headaches we could avoid were this function available in more browsers? Transitions and animations are really nice and lovely but, for me, it’s the ability to do the things that calc() allows you to that deserves the spotlight and to be pushed for implementation. Selector grouping with -moz-any() The -moz-any() selector grouping has been introduced by Mozilla but it’s not part of any CSS specification (yet?); it’s currently only available on Firefox 4. This would be especially useful with the way HTML5 outlines documents, where we can have any number of variations of several levels of headings within numerous types of containers (think sections within articles within sections…). Here is a quick example (copied from the Mozilla blog post about the article) of how -moz-any() works. Instead of writing: section section h1, section article h1, section aside h1, section nav h1, article section h1, article article h1, article aside h1, article nav h1, aside section h1, aside article h1, aside aside h1, aside nav h1, nav section h1, nav article h1, nav aside h1, nav nav h1, { font-size: 24px; } You could simply write: -moz-any(section, article, aside, nav) -moz-any(section, article, aside, nav) h1 { font-size: 24px; } Nice, huh? More control over styling form elements Some are of the opinion that form elements shouldn’t be styled at all, since a user might not recognise them as such if they don’t match the operating system’s controls. I partially agree: I’d rather put the choice in the hands of designers and expect them to be capable of deciding whether their particular design hampers or improves usability. I would say the same idea applies to font-face: while some fear designers might go crazy and litter their web pages with dozens of different fonts, most welcome the freedom to use something other than Arial or Verdana. There will always be someone who will take this freedom too far, but it would be useful if we could, for example, style the default Opera date picker: <input type="date" /> or Safari’s slider control (think star movie ratings, for example): <input type="range" min="0" max="5" step="1" value="3" /> Parent selector I don’t think there is one CSS author out there who has never come across a case where he or she wished there was a parent selector. There have been many suggestions as to how this could work, but a variation of the child selector is usually the most popular: article < h1 { … } One can dream… Flexible box layout The Flexible Box Layout Module sounds a bit like magic: it introduces a new box model to CSS, allowing you to distribute and order boxes inside other boxes, and determine how the available space is shared. Two of my favourite features of this new box model are: the ability to redistribute boxes in a different order from the markup the ability to create flexible layouts, where boxes shrink (or expand) to fill the available space Let’s take a quick look at the second case. Imagine you have a three-column layout, where the first column takes up twice as much horizontal space as the other two: <body> <section id="main"> </section> <section id="links"> </section> <aside> </aside> </body> With the flexible box model, you could specify it like this: body { display: box; box-orient: horizontal; } #main { box-flex: 2; } #links { box-flex: 1; } aside { box-flex: 1; } If you decide to add a fourth column to this layout, there is no need to recalculate units or percentages, it’s as easy as that. Browser support for this property is still in its early stages (Firefox and WebKit need their vendor prefixes), but we should start to see it being gradually introduced as more attention is drawn to it (I’m looking at you…). You can read a more comprehensive write-up about this property on the Mozilla developer blog. It’s easy to understand why it’s harder to start playing with this module than with things like animations or other more decorative properties, which don’t really break your layouts when users don’t see them. But it’s important that we do, even if only in very experimental projects. Nested selectors Anyone who has never wished they could do something like the following in CSS, cast the first stone: article { h1 { font-size: 1.2em; } ul { margin-bottom: 1.2em; } } Even though it can easily turn into a specificity nightmare and promote redundancy in your style sheets (if you abuse it), it’s easy to see how nested selectors could be useful. CSS compilers such as Less or Sass let you do this already, but not everyone wants or can use these compilers in their projects. Every wish list has an item that could easily be dropped. In my case, I would say this is one that I would ditch first – it’s the least useful, and also the one that could cause more maintenance problems. But it could be nice. Implementation of the ::marker pseudo-element The CSS Lists module introduces the ::marker pseudo-element, that allows you to create custom list item markers. When an element’s display property is set to list-item, this pseudo-element is created. Using the ::marker pseudo-element you could create something like the following: Footnote 1: Both John Locke and his father, Anthony Cooper, are named after 17th- and 18th-century English philosophers; the real Anthony Cooper was educated as a boy by the real John Locke. Footnote 2: Parts of the plane were used as percussion instruments and can be heard in the soundtrack. where the footnote marker is generated by the following CSS: li::marker { content: "Footnote " counter(notes) ":"; text-align: left; width: 12em; } li { counter-increment: notes; } You can read more about how to use counters in CSS in my article from last year. Bear in mind that the CSS Lists module is still a Working Draft and is listed as “Low priority”. I did say this wish list would start to grow more unrealistic closer to the end… Variables The sight of the word ‘variables’ may make some web designers shy away, but when you think of them applied to things such as repeated colours in your stylesheets, it’s easy to see how having variables available in CSS could be useful. Think of a website where the main brand colour is applied to elements like the main text, headings, section backgrounds, borders, and so on. In a particularly large website, where the colour is repeated countless times in the CSS and where it’s important to keep the colour consistent, using variables would be ideal (some big websites are already doing this by using server-side technology). Again, Less and Sass allow you to use variables in your CSS but, again, not everyone can (or wants to) use these. If you are using Less, you could, for instance, set the font-family value in one variable, and simply call that variable later in the code, instead of repeating the complete font stack, like so: @fontFamily: Calibri, "Lucida Grande", "Lucida Sans Unicode", Helvetica, Arial, sans-serif; body { font-family: @fontFamily; } Other features of these CSS compilers might also be useful, like the ability to ‘call’ a property value from another selector (accessors): header { background: #000000; } footer { background: header['background']; } or the ability to define functions (with arguments), saving you from writing large blocks of code when you need to write something like, for example, a CSS gradient: .gradient (@start:"", @end:"") { background: -webkit-gradient(linear, left top, left bottom, from(@start), to(@end)); background: -moz-linear-gradient(-90deg,@start,@end); } button { .gradient(#D0D0D0,#9F9F9F); } Standardised comments Each CSS author has his or her own style for commenting their style sheets. While this isn’t a massive problem on smaller projects, where maybe only one person will edit the CSS, in larger scale projects, where dozens of hands touch the code, it would be nice to start seeing a more standardised way of commenting. One attempt at creating a standard for CSS comments is CSSDOC, an adaptation of Javadoc (a documentation generator that extracts comments from Java source code into HTML). CSSDOC uses ‘DocBlocks’, a term borrowed from the phpDocumentor Project. A DocBlock is a human- and machine-readable block of data which has the following structure: /** * Short description * * Long description (this can have multiple lines and contain <p> tags * * @tags (optional) */ CSSDOC includes a standard for documenting bug fixes and hacks, colours, versioning and copyright information, amongst other important bits of data. I know this isn’t a CSS feature request per se; rather, it’s just me pointing you at something that is usually overlooked but that could contribute towards keeping style sheets easier to maintain and to hand over to new developers. Final notes I understand that if even some of these were implemented in browsers now, it would be a long time until all vendors were up to speed. But if we don’t talk about them and experiment with what’s available, then it will definitely never happen. Why haven’t I mentioned better browser support for existing CSS3 properties? Because that would be the same as adding chocolate to your Christmas wish list – you don’t need to ask, everyone knows you want it. The list could go on. There are dozens of other things I would love to see integrated in CSS or further developed. These are my personal favourites: some might be less useful than others, but I’ve wished for all of them at some point. Part of the research I did while writing this article was asking some friends what they would add to their lists; other than a couple of items I already had in mine, everything else was different. I’m sure your list would be different too. So tell me, what’s on your CSS wish list? 2010 Inayaili de León Persson inayailideleon 2010-12-03T00:00:00+00:00 https://24ways.org/2010/my-css-wish-list/ code
241 Jank-Free Image Loads There are a few fundamental problems with embedding images in pages of hypertext; perhaps chief among them is this: text is very light and loads rather fast; images are much heavier and arrive much later. Consequently, millions (billions?) of times a day, a hapless Web surfer will start reading some text on a page, and then — Your browser doesn’t support HTML5 video. Here is a link to the video instead. — oops! — an image pops in above it, pushing said text down the page, and our poor reader loses their place. By default, partially-loaded pages have the user experience of a slippery fish, or spilled jar of jumping beans. For the rest of this article, I shall call that jarring, no-good jumpiness by its name: jank. And I’ll chart a path into a jank-free future – one in which it’s easy and natural to author <img> elements that load like this: Your browser doesn’t support HTML5 video. Here is a link to the video instead. Jank is a very old problem, and there is a very old solution to it: the width and height attributes on <img>. The idea is: if we stick an image’s dimensions right into the HTML, browsers can know those dimensions before the image loads, and reserve some space on the layout for it so that nothing gets bumped down the page when the image finally arrives. width Specifies the intended width of the image in pixels. When given together with the height, this allows user agents to reserve screen space for the image before the image data has arrived over the network. —The HTML 3.2 Specification, published on January 14 1997 Unfortunately for us, when width and height were first spec’d and implemented, layouts were largely fixed and images were usually only intended to render at their fixed, actual dimensions. When image sizing gets fluid, width and height get weird: See the Pen fluid width + fixed height = distortion by Eric Portis (@eeeps) on CodePen. width and height are too rigid for the responsive world. What we need, and have needed for a very long time, is a way to specify fixed aspect ratios, to pair with our fluid widths. I have good news, bad news, and great news. The good news is, there are ways to do this, now, that work in every browser. Responsible sites, and responsible developers, go through the effort to do them. The bad news is that these techniques are all terrible, cumbersome hacks. They’re difficult to remember, difficult to understand, and they can interact with other pieces of CSS in unexpected ways. So, the great news: there are two on-the-horizon web platform features that are trying to make no-jank, fixed-aspect-ratio, fluid-width images a natural part of the web platform. aspect-ratio in CSS The first proposed feature? An aspect-ratio property in CSS! This would allow us to write CSS like this: img { width: 100%; } .thumb { aspect-ratio: 1/1; } .hero { aspect-ratio: 16/9; } This’ll work wonders when we need to set aspect ratios for whole classes of images, which are all sized to fit within pre-defined layout slots, like the .thumb and .hero images, above. Alas, the harder problem, in my experience, is not images with known-ahead-of-time aspect ratios. It’s images – possibly user generated images – that can have any aspect ratio. The really tricky problem is unknown-when-you’re-writing-your-CSS aspect ratios that can vary per-image. Using aspect-ratio to reserve space for images like this requires inline styles: <img src="image.jpg" style="aspect-ratio: 5/4" /> And inline styles give me the heebie-jeebies! As a web developer of a certain age, I have a tiny man in a blue beanie permanently embedded deep within my hindbrain, who cries out in agony whenever I author a style="" attribute. And you know what? The old man has a point! By sticking super-high-specificity inline styles in my content, I’m cutting off my, (or anyone else’s) ability to change those aspect ratios, for whatever reason, later. How might we specify aspect ratios at a lower level? How might we give browsers information about an image’s dimensions, without giving them explicit instructions about how to style it? I’ll tell you: we could give browsers the intrinsic aspect ratio of the image in our HTML, rather than specifying an extrinsic aspect ratio! A brief note on intrinsic and extrinsic sizing What do I mean by “intrinsic” and “extrinsic?” The intrinsic size of an image is, put simply, how big it’d be if you plopped it onto a page and applied no CSS to it whatsoever. An 800×600 image has an intrinsic width of 800px. The extrinsic size of an image, then, is how large it ends up after CSS has been applied. Stick a width: 300px rule on that same 800×600 image, and its intrinsic size (accessible via the Image.naturalWidth property, in JavaScript) doesn’t change: its intrinsic size is still 800px. But this image now has an extrinsic size (accessible via Image.clientWidth) of 300px. It surprised me to learn this year that height and width are interpreted as presentational hints and that they end up setting extrinsic dimensions (albeit ones that, unlike inline styles, have absolutely no specificity). CSS aspect-ratio lets us avoid setting extrinsic heights and widths – and instead lets us give images (or anything else) an extrinsic aspect ratio, so that as soon as we set one dimension (possibly to a fluid width, like 100%!), the other dimension is set automatically in relation to it. The last tool I’m going to talk about gets us out of the extrinsic sizing game all together — which, I think, is only appropriate for a feature that we’re going to be using in HTML. intrinsicsize in HTML The proposed intrinsicsize attribute will let you do this: <img src="image.jpg" intrinsicsize="800x600" /> That tells the browser, “hey, this image.jpg that I’m using here – I know you haven’t loaded it yet but I’m just going to let you know right away that it’s going to have an intrinsic size of 800×600.” This gives the browser enough information to reserve space on the layout for the image, and ensures that any and all extrinsic sizing instructions, specified in our CSS, will layer cleanly on top of this, the image’s intrinsic size. You may ask (I did!): wait, what if my <img> references multiple resources, which all have different intrinsic sizes? Well, if you’re using srcset, intrinsicsize is a bit of a misnomer – what the attribute will do then, is specify an intrinsic aspect ratio: <img srcset="300x200.jpg 300w, 600x400.jpg 600w, 900x600.jpg 900w, 1200x800.jpg 1200w" sizes="75vw" intrinsicsize="3x2" /> In the future (and behind the “Experimental Web Platform Features” flag right now, in Chrome 71+), asking this image for its .naturalWidth would not return 3 – it will return whatever 75vw is, given the current viewport width. And Image.naturalHeight will return that width, divided by the intrinsic aspect ratio: 3/2. Can’t wait I seem to have gotten myself into the weeds a bit. Sizing on the web is complicated! Don’t let all of these details bury the big takeaway here: sometime soon (🤞 2019‽ 🤞), we’ll be able to toss our terrible aspect-ratio hacks into the dustbin of history, get in the habit of setting aspect-ratios in CSS and/or intrinsicsizes in HTML, and surf a less-frustrating, more-performant, less-janky web. I can’t wait! 2018 Eric Portis ericportis 2018-12-21T00:00:00+00:00 https://24ways.org/2018/jank-free-image-loads/ code
242 Creating My First Chrome Extension Writing a Chrome Extension isn’t as scary at it seems! Not too long ago, I used a Chrome extension called 20 Cubed. I’m far-sighted, and being a software engineer makes it difficult to maintain distance vision. So I used 20 Cubed to remind myself to look away from my screen and rest my eyes. I loved its simple interface and design. I loved it so much, I often forgot to turn it off in the middle of presentations, where it would take over my entire screen. Oops. Unfortunately, the developer stopped updating the extension and removed it from Chrome’s extension library. I was so sad. None of the other eye rest extensions out there matched my design aesthetic, so I decided to create my own! Want to do the same? Fortunately, Google has some respectable documentation on how to create an extension. And remember, Chrome extensions are just HTML, CSS, and JavaScript. You can add libraries and frameworks, or you can just code the “old-fashioned” way. Sky’s the limit! Setup But first, some things you’ll need to know about before getting started: Callbacks Timeouts Chrome Dev Tools Developing with Chrome extension methods requires a lot of callbacks. If you’ve never experienced the joy of callback hell, creating a Chrome extension will introduce you to this concept. However, things can get confusing pretty quickly. I’d highly recommend brushing up on that subject before getting started. Hyperbole and a Half Timeouts and Intervals are another thing you might want to brush up on. While creating this extension, I didn’t consider the fact that I’d be juggling three timers. And I probably would’ve saved time organizing those and reading up on the Chrome extension Alarms documentation beforehand. But more on that in a bit. On the note of organization, abstraction is important! You might have any combination of the following: The Chrome extension options page The popup from the Chrome Menu The windows or tabs you create The background scripts And that can get unwieldy. You might also edit the existing tabs or windows in the browser, which you’ll probably want as a separate script too. Note that this tutorial only covers creating your own customized window rather than editing existing windows or tabs. Alright, now that you know all that up front, let’s get going! Documentation TL;DR READ THE DOCS. A few things to get started: Read Google’s primer on browser extensions Have a look at their Getting started tutorial Check out their overview on Chrome Extensions This overview discusses the Chrome extension files, architecture, APIs, and communication between pages. Funnily enough, I only discovered the Overview page after creating my extension. The manifest.json file gives the browser information about the extension, including general information, where to find your extension files and icons, and API permissions required. Here’s what my manifest.json looked like, for example: https://github.com/jennz0r/eye-rest/blob/master/manifest.json Because I’m a visual learner, I found the images that describe the extension’s architecture most helpful. To clarify this diagram, the background.js file is the extension’s event handler. It’s constantly listening for browser events, which you’ll feed to it using the Chrome Extension API. Google says that an effective background script is only loaded when it is needed and unloaded when it goes idle. The Popup is the little window that appears when you click on an extension’s icon in the Chrome Menu. It consists of markup and scripts, and you can tell the browser where to find it in the manifest.json under page_action: { "default_popup": FILE_NAME_HERE }. The Options page is exactly as it says. This displays customizable options only visible to the user when they either right-click on the Chrome menu and choose “Options” under an extension. This also consists of markup and scripts, and you can tell the browser where to find it in the manifest.json under options_page: FILE_NAME_HERE. Content scripts are any scripts that will interact with any web windows or tabs that the user has open. These scripts will also interact with any tabs or windows opened by your extension. Debugging A quick note: don’t forget the debugging tutorial! Just like any other Chrome window, every piece of an extension has an inspector and dev tools. If (read: when) you run into errors (as I did), you’re likely to have several inspector windows open – one for the background script, one for the popup, one for the options, and one for the window or tab the extension is interacting with. For example, I kept seeing the error “This request exceeds the MAX_WRITE_OPERATIONS_PER_HOUR quota.” Well, it turns out there are limitations on how often you can sync stored information. Another error I kept seeing was “Alarm delay is less than minimum of 1 minutes. In released .crx, alarm “ALARM_NAME_HERE” will fire in approximately 1 minutes”. Well, it turns out there are minimum interval times for alarms. Chrome Extension creation definitely benefits from debugging skills. Especially with callbacks and listeners, good old fashioned console.log can really help! Me adding a ton of `console.log`s while trying to debug my alarms. Eye Rest Functionality Ok, so what is the extension I created? Again, it’s a way to rest your eyes every twenty minutes for twenty seconds. So, the basic functionality should look like the following: If the extension is running AND If the user has not clicked Pause in the Popup HTML AND If the counter in the Popup HTML is down to 00:00 THEN Open a new window with Timer HTML AND Start a 20 sec countdown in Timer HTML AND Reset the Popup HTML counter to 20:00 If the Timer HTML is down to 0 sec THEN Close that window. Rinse. Repeat. Sounds simple enough, but wow, these timers became convoluted! Of all the Chrome extensions I decided to create, I decided to make one that’s heavily dependent on time, intervals, and having those in sync with each other. In other words, I made this unnecessarily complicated and didn’t realize until I started coding. For visual reference of my confusion, check out the GitHub repository for Eye Rest. (And yes, it’s a pun.) API Now let’s discuss the APIs that I used to build this extension. Alarms What even are alarms? I didn’t know either. Alarms are basically Chrome’s setTimeout and setInterval. They exist because, as Google says… DOM-based timers, such as window.setTimeout() or window.setInterval(), are not honored in non-persistent background scripts if they trigger when the event page is dormant. For more information, check out this background migration doc. One interesting note about alarms in Chrome extensions is that they are persistent. Garbage collection with Chrome extension alarms seems unreliable at best. I didn’t have much luck using the clearAll method to remove alarms I created on previous extension loads or installs. A workaround (read: hack) is to specify a unique alarm name every time your extension is loaded and clearing any other alarms without that unique name. Background Scripts For Eye Rest, I have two background scripts. One is my actual initializer and event listener, and the other is a helpers file. I wanted to share a couple of functions between my Background and Popup scripts. Specifically, the clearAndCreateAlarm function. I wanted my background script to clear any existing alarms, create a new alarm, and add remaining time until the next alarm to local storage immediately upon extension load. To make the function available to the Background script, I added helpers.js as the first item under background > scripts in my manifest.json. I also wanted my Popup script to do the same things when the user has unpaused the extension’s functionality. To make the function available to the Popup script, I just include the helpers script in the Popup HTML file. Other APIs Windows I use the Windows API to create the Timer window when the time of my alarm is up. The window creation is initiated by my Background script. One day, while coding late into the evening, I found it very confusing that the window.create method included url as an option. I assumed it was meant to be an external web address. A friend pondered that there must be an option to specify the window’s HTML. Until then, it hadn’t dawned on me that the url could be relative. Duh. I was tired! I pass the timer.html as the url option, as well as type, size, position, and other visual options. Storage Maybe you want to pass information back and forth between the Background script and your Popup script? You can do that using Chrome or local storage. One benefit of using local storage over Chrome’s storage is avoiding quotas and write operation maximums. I wanted to pass the time at which the latest alarm was set, the time to the next alarm, and whether or not the timer is paused between the Background and Popup scripts. Because the countdown should change every second, it’s quite complicated and requires lots of writes. That’s why I went with the user’s local storage. You can see me getting and setting those variables in my Background, Helper, and Popup scripts. Just search for date, nextAlarmTime, and isPaused. Declarative Content The Declarative Content API allows you to show your extension’s page action based on several type of matches, without needing to take a host permission or inject a content script. So you’ll need this to get your extension to work in the browser! You can see me set this in my Background script. Because I want my extension’s popup to appear on every page one is browsing, I leave the page matchers empty. There are many more APIs for Chrome apps and extensions, so make sure to surf around and see what features are available! The Extension Here’s what my original Popup looked like before I added styles. And here’s what it looks like with new styles. I guess I’m going for a Nickelodeon feel. And here’s the Timer window and Popup together! Publishing Publishing is a cinch. You just zip up your files, create a new or use an existing Google Developer account, upload the files, add some details, and pay a one time $5 fee. That’s all! Then your extension will be available on the Chrome extension store! Neato :D My extension is now available for you to install. Conclusion I thought creating a time based Chrome Extension would be quick and easy. I was wrong. It was more complicated than I thought! But it’s definitely achievable with some time, persistence, and good ole Google searches. Eventually, I’d like to add more interactive elements to Eye Rest. For example, hitting the YouTube API to grab a silly or cute video as a reward for looking away during the 20 sec countdown and not closing the timer window. This harkens back to one of my first web projects, Toothtimer, from 2012. Or maybe a way to change the background colors of the Timer and Popup! Either way, with Eye Rest’s framework built out, I’m feeling fearless about future feature adds! Building this Chrome extension took some broken nails, achy shoulders, and tired eyes, but now Eye Rest can tell me to give my eyes a break every 20 minutes. 2018 Jennifer Wong jenniferwong 2018-12-05T00:00:00+00:00 https://24ways.org/2018/my-first-chrome-extension/ code
243 Researching a Property in the CSS Specifications I frequently joke that I’m “reading the specs so you don’t have to”, as I unpack some detail of a CSS spec in a post on my blog, some documentation for MDN, or an article on Smashing Magazine. However waiting for someone like me to write an article about something is a pretty slow way to get the information you need. Sometimes people like me get things wrong, or specifications change after we write a tutorial. What if you could just look it up yourself? That’s what you get when you learn to read the CSS specifications, and in this article my aim is to give you the basic details you need to grab quick information about any CSS property detailed in the CSS specs. Where are the CSS Specifications? The easiest way to see all of the CSS specs is to take a look at the Current Work page in the CSS section of the W3C Website. Here you can see all of the specifications listed, the level they are at and their status. There is also a link to the specification from this page. I explained CSS Levels in my article Why there is no CSS 4. Who are the specifications for? CSS specifications are for everyone who uses CSS. You might be a browser engineer - referred to as an implementor - needing to know how to implement a feature, or a web developer - referred to as an author - wanting to know how to use the feature. The fact that both parties are looking at the same document hopefully means that what the browser displays is what the web developer expected. Which version of a spec should I look at? There are a couple of places you might want to look. Each published spec will have the latest published version, which will have TR in the URL and can be accessed without a date (which is always the newest version) or at a date, which will be the date of that publication. If I’m referring to a particular Working Draft in an article I’ll typically link to the dated version. That way if the information changes it is possible for someone to see where I got the information from at the time of writing. If you want the very latest additions and changes to the spec, then the Editor’s Draft is the place to look. This is the version of the spec that the editors are committing changes to. If I make a change to the Multicol spec and push it to GitHub, within a few minutes that will be live in the Editor’s Draft. So it is possible there are errors, bits of text that we are still working out and so on. The Editor’s Draft however is definitely the place to look if you are wanting to raise an issue on a spec, as it may be that the issue you are about to raise is already fixed. If you are especially keen on seeing updates to specifications keep an eye on https://drafts.csswg.org/ as this is a list of drafts, along with the date they were last updated. How to approach a spec The first thing to understand is that most CSS Specifications start with the most straightforward information, and get progressively further into the weeds. For an author the initial examples and explanations are likely to be of interest, and then the property definitions and examples. Therefore, if you are looking at a vast spec, know that you probably won’t need to read all the way to the bottom, or read every section in detail. The second thing that is useful to know about modern CSS specifications is how modularized they are. It really never is a case of finding everything you need in a single document. If we tried to do that, there would be a lot of repetition and likely inconsistency between specs. There are some key specifications that many other specifications draw on, such as: Values and Units Intrinsic and Extrinsic Sizing Box Alignment When something is defined in another specification the spec you are reading will link to it, so it is worth opening that other spec in a new tab in order that you can refer back to it as you explore. Researching your property As an example we will take a look at the property grid-auto-rows, this property defines row tracks in the implicit grid when using CSS Grid Layout. The first thing you will need to do is find out which specification defines this property. You might already know which spec the property is part of, and therefore you could go directly to the spec and search using your browser or look in the navigation for the spec to find it. Alternatively, you could take a look at the CSS Property Index, which is an automatically generated list of CSS Properties. Clicking on a property will take you to the TR version of the spec, the latest published draft, and the definition of that property in it. This definition begins with a panel detailing the syntax of this property. For grid-auto-rows, you can see that it is listed along with grid-auto-columns as these two properties are essentially identical. They take the same values and work in the same way, one for rows and the other for columns. Value For value we can see that the property accepts a value <track-size>. The next thing to do is to find out what that actually means, clicking will take you to where it is defined in the Grid spec. The <track-size> value is defined as accepting various values: <track-breadth> minmax( <inflexible-breadth> , <track-breadth> ) fit-content( <length-percentage> We need to head down the rabbit hole to find out what each of these mean. From here we essentially go down line by line until we have unpacked the value of track-size. <track-breadth> is defined just below <track-size> as: <length-percentage> <flex> min-content max-content auto So these are all things that would be valid to use as a value for grid-auto-rows. The first value of <length-percentage> is something you will see in many specifications as a value. It means that you can use a length unit - for example px or em - or a percentage. Some properties only accept a <length> in which case you know that you cannot use a percentage as the value. This means that you could have grid-auto-rows with any of the following values. grid-auto-rows: 100px; grid-auto-rows: 1em; grid-auto-rows: 30%; When using percentages, it is important to know what it is a percentage of. As a percentage has to resolve from something. There is text in the spec which explains how column and row percentages work. “<percentage> values are relative to the inline size of the grid container in column grid tracks, and the block size of the grid container in row grid tracks.” This means that in a horizontal writing mode such as when using English, a percentage when used as a track-size in grid-auto-columns would be a percentage of the width of the grid, and a percentage in grid-auto-rows a percentage of the height of the grid. The second value of <flex> is also defined here, as “A non-negative dimension with the unit fr specifying the track’s flex factor.” This is the fr unit, and the spec links to a fuller definition of fr as this unit is only used in Grid Layout so it is therefore defined in the grid spec. We now know that a valid value would be: grid-auto-rows: 1fr; There is some useful information about the fr unit in this part of the spec. It is noted that the fr unit has an automatic minimum. This means that 1fr is really minmax(auto, 1fr). This is why having a number of tracks all at 1fr does not mean that all are equal sized, as a larger item in any of the tracks would have a large auto size and therefore would be larger after spare space had been distributed. We then have min-content and max-content. These keywords can be used for track sizing and the specification defines what they mean in the context of sizing a track, representing the min and max-sizing contributions of the grid tracks. You will see that there are various terms linked in the definition, so if you do not know what these mean you can follow them to find out. For example the spec links max-content contribution to the CSS Intrinsic and Extrinsic Sizing specification. This is one of those specs which is drawn on by many other specifications. If we follow that link we can read the definition there and follow further links to understand what each term means. The more that you read specifications the more these terms will become familiar to you. Just like learning a foreign language, at first you feel like you have to look up every little thing. After a while you remember the vocabulary. We can now add min-content and max-content to our available values. grid-auto-rows: min-content; grid-auto-rows: max-content; The final item in our list is auto. If you are familiar with using Grid Layout, then you are probably aware that an auto sized track for will grow to fit the content used. There is an interesting note here in the spec detailing that auto sized rows will stretch to fill the grid container if there is extra space and align-content or justify-content have a value of stretch. As stretch is the default value, that means these tracks stretch by default. Tracks using other types of length will not behave like this. grid-auto-rows: auto; So, this was the list for <track-breadth>, the next possible value is minmax( <inflexible-breadth> , <track-breadth> ). So this is telling us that we can use minmax() as a value, the final (max) value will be <track-breadth> and we have already unpacked all of the allowable values there. The first value (min) is detailed as an <inflexible-breadth>. If we look at the values for this, we discover that they are the same as <track-breadth>, minus the <flex> value: <length-percentage> min-content max-content auto We already know what all of these do, so we can add possible minmax() values to our list of values for <track-size>. grid-auto-rows: minmax(100px, 200px); grid-auto-rows: minmax(20%, 1fr); grid-auto-rows: minmax(1em, auto); grid-auto-rows: minmax(min-content, max-content); Finally we can use fit-content( <length-percentage>. We can see that fit-content takes a value of <length-percentage> which we already know to be either a length unit, or a percentage. The spec details how fit-content is worked out, and it essentially allows a track which acts as if you had used the max-content keyword, however the track stops growing when it hits the length passed to it. grid-auto-rows: fit-content(200px); grid-auto-rows: fit-content(20%); Those are all of our possible values, and to round things off, check again at the initial <track-size> value, you can see it has a little + sign next to it, click that and you will be taken to the CSS Values and Units module to find that, “A plus (+) indicates that the preceding type, word, or group occurs one or more times.” This means that we can pass a single track size to grid-auto-rows or multiple track sizes as a space separated list. Below the box is an explanation of what happens if you pass in more than one track size: “If multiple track sizes are given, the pattern is repeated as necessary to find the size of the implicit tracks. The first implicit grid track after the explicit grid receives the first specified size, and so on forwards; and the last implicit grid track before the explicit grid receives the last specified size, and so on backwards.” Therefore with the following CSS, if five implicit rows were needed they would be as follows: 100px 1fr auto 100px 1fr .grid { display: grid; grid-auto-rows: 100px 1fr auto; } Initial We can now move to the next line in the box, and you’ll be glad to know that it isn’t going to require as much unpacking! This simply defines the initial value for grid-auto-rows. If you do not specify anything, created rows will be auto sized. All CSS properties have an initial value that they will use if they are invoked as part of the usage of the specification they are in, but you do not set a value for them. In the case of grid-auto-rows it is used whenever rows are created in the implicit grid, so it needs to have a value to be used even if you do not set one. Applies to This line tells us what this property is used for. Some properties are used in multiple places. For example if you look at the definition for justify-content in the Box Alignment specification you can see it is used in multicol containers, flex containers, and grid containers. In our case the property only applies for grid containers. Inherited This tells us if the property can be inherited from a parent element if it is not set. In the case of grid-auto-rows it is not inherited. A property such as color is inherited, so you do not need to set it on each element. Percentages Are percentages allowed for this property, and if so how are they calculated. In this case we are referred to the definition for grid-template-columns and grid-template-rows where we discover that the percentage is from the corresponding dimension of the content area. Media This defines the media group that the property belongs to. In this case visual. Computed Value This details how the value is resolved. The grid-auto-rows property again refers to track sizing as defined for grid-template-columns and grid-template-rows, which tells us the computed value is as specified with lengths made absolute. Canonical Order If you have a property–generally a shorthand property–which takes multiple values in a set order, then those values need to be serialized in the order detailed in the grammar for that property. In general you don’t need to worry about this value in the table. Animation Type This details whether the property can be animated, and if so what type of animation. This is useful if you are trying to animate something and not getting the result that you expect. Note that just because something is listed in the spec as animatable does not mean that browsers will have implemented animation for that property yet! That’s (mostly) it! Sometimes the property will have additional examples - there is one underneath the table for grid-auto-rows. These are worth looking at as they will highlight usage of the property that the spec editor has felt could use an example. There may also be some additional text explaining anythign specific to this property. In selecting grid-auto-rows I chose a fairly complex property in terms of the work we needed to do to unpack the value. Many properties are far simpler than this. However ultimately, even when you come across a complex value, it really is just a case of stepping through the definitions until you come to the bottom of the rabbit hole. Being able to work out what is valid for each property is incredibly useful. It means you don’t waste time trying to use a value that doesn’t work for that property. You also may find that there are values you weren’t aware of, that solve problems for you. Further reading Specifications are not designed to be user manuals, and while they often contain examples, these are pretty terse as they need to be clear to demonstrate their particular point. The manual for the Web Platform is MDN Web Docs. Pairing reading a specification with the examples and information on an MDN property page such as the one for grid-auto-rows is a really great way to ensure that you have all the information and practical usage examples you might need. You may also find useful: Value Definition Syntax on MDN. The MDN Glossary defines many common terms. Understanding the CSS Property Value Syntax goes into more detail in terms of reading the syntax. How to read W3C Specs - from 2001 but still relevant. I hope this article has gone some way to demystify CSS specifications for you. Even if the specifications are not your preferred first stop to learn about new CSS, being able to go directly to the source and avoid having your understanding filtered by someone else, can be very useful indeed. 2018 Rachel Andrew rachelandrew 2018-12-14T00:00:00+00:00 https://24ways.org/2018/researching-a-property-in-the-css-specifications/ code
244 It’s Beginning to Look a Lot Like XSSmas I dread the office Secret Santa. I have a knack for choosing well-meaning but inappropriate presents, like a bottle of port for a teetotaller, a cheese-tasting experience for a vegan, or heaven forbid, Spurs socks for an Arsenal supporter. Ok, the last one was intentional. It’s the same with gifting code. Once, I made a pattern library for A List Apart which I open sourced, and a few weeks later, a glaring security vulnerability was found in it. My gift was so generous that it enabled unrestricted access to any file on any public-facing server that hosted it. With platforms like GitHub and npm, giving the gift of code is so easy it’s practically a no-brainer. This giant, open source yankee swap helps us do our jobs without starting from scratch with every project. But like any gift-giving, it’s also risky. Vulnerabilities and Open Source Open source code is not inherently more or less vulnerable than closed-source code. What makes it higher risk is that the same piece of code gets reused in lots of places, meaning a hacker can use the same exploit mechanism on the same vulnerable code in different apps. Graph showing the number of open source vulnerabilities published per year, from the State of Open Source Security 2017 In the first 24 ways article this year, Katie referenced a few different types of vulnerability: Cross-site Request Forgery (also known as CSRF) SQL Injection Cross-site Scripting (also known as XSS) There are many more types of vulnerability, and those that live under the same category share similarities. For example, my favourite – is it weird to have a favourite vulnerability? – is Cross Site Scripting (XSS), which allows for the injection of scripts into web pages. This is a really common vulnerability often unwittingly added by developers. OWASP (the Open Web Application Security Project) wrote a great article about how to prevent opening the door to XSS attacks – share it generously with your colleagues. Most vulnerabilities like this are not added intentionally – they’re doors left ajar due to the way something has been scripted, like the over-generous code in my pattern library. Others, though, are added intentionally. A few months ago, a hacker, disguised as a helpful elf, offered to take over the maintenance of a popular npm package that had been unmaintained for a couple of years. The owner had moved onto other projects, and was keen to see it continue to be maintained by someone else, so transferred ownership. Fast-forward 3 months, it was discovered that the individual had quietly added a malicious package to the codebase, and the obfuscated code in it had been unwittingly installed onto thousands of apps. The code added was designed to harvest Bitcoin if it was run alongside another application. It was only spotted due to a developer’s curiosity. Another tactic to get developers to unwittingly install malicious packages into their codebase is “typosquatting” – back in August last year, npm reported that a user had been publishing packages with very similar names to popular packages (for example, crossenv instead of cross-env). This is a big wakeup call for open source maintainers. Techniques like this are likely to be used more as the maintenance of open source libraries becomes an increasing burden to their owners. After all, starting a new project often has a greater reward than maintaining an existing one, but remember, an open source library is for life, not just for Christmas. Santa’s on his sleigh If you use open source libraries, chances are that these libraries also use open source libraries. Your app may only have a handful of dependencies, but tucked in the back of that sleigh may be a whole extra sack of dependencies known as deep dependencies (ones that you didn’t directly install, but are dependencies of that dependency), and these can contain vulnerabilities too. Let’s look at the npm package santa as an example. santa has 8 direct dependencies listed on npm. That seems pretty manageable. But that’s just the tip of the iceberg – have a look at the full dependency tree which contains 109 dependencies – more dependencies than there are Christmas puns in this article. Only one of these direct dependencies has a vulnerability (at the time of writing), but there are actually 13 other known vulnerabilities in santa, which have been introduced through its deeper dependencies. Fixing vulnerabilities – the ultimate christmas gift If you’re a maintainer of open source libraries, taking good care of them is the ultimate gift you can give. Keep your dependencies up to date, use a security tool to monitor and alert you when new vulnerabilities are found in your code, and fix or patch them promptly. This will help keep the whole open source ecosystem healthy. When you find out about a new vulnerability, you have some options: Fix the vulnerability via an upgrade You can often fix a vulnerability by upgrading the library to the latest version. Make sure you’re using software that monitors your dependencies for new security issues and lets you know when a fix is ready, otherwise you may be unwittingly using a vulnerable version. Patch the vulnerable code Sometimes, a fix for a vulnerable library isn’t possible. This is often the case when a library is no longer being maintained, or the version of the library being used might be so out of date that upgrading it would cause a breaking change. Patches are bits of code that will fix that particular issue, but won’t change anything else. Switch to a different library If the library you’re using has no fix or patch, you may be better of switching it out for another one, particularly if it looks like it’s being unmaintained. Responsibly disclosing vulnerabilities Knowing how to responsibly disclose vulnerabilities is something I’m ashamed to admit that I didn’t know about before I joined a security company. But it’s so important! On discovering a new vulnerability, a developer has a few options: A malicious developer will exploit that vulnerability for their own gain. A reckless (or inexperienced) developer will disclose that vulnerability to the world without following a responsible disclosure process. This opens the door to an unethical developer exploiting the vulnerability. At Snyk, we monitor social media for mentions of newly found vulnerabilities so we can add them to our database and share fixes before they get exploited. An ethical and aware developer will follow what’s known as a “responsible disclosure process”. They will contact the maintainer of the code privately, allowing reasonable time for them to release a fix for the issue and to give others who use that vulnerable code a chance to fix it too. It’s important to understand this process if you’re a maintainer or contributor of code. It can be daunting when a report comes in, but understanding and following the right steps will help reduce the risk to the people who use that code. So what does responsible disclosure look like? I’ll take Node.js’s security disclosure policy as an example. They ask that all security issues that are found in Node.js are reported there. (There’s a separate process for bug found in third-party npm packages). Once you’ve reported a vulnerability, they promise to acknowledge it within 24 hours, and to give a more detailed response within 48 hours. If they find that the issue is indeed a security bug, they’ll give you regular updates about the progress they’re making towards fixing it. As part of this, they’ll figure out which versions are affected, and prepare fixes for them. They’ll assign the vulnerability a CVE (Common Vulnerabilities and Exposures) ID and decide on an embargo date for public disclosure. On the date of the embargo, they announce the vulnerability in their Node.js security mailing list and deploy fixes to nodejs.org. Tim Kadlec published an in-depth article about responsible disclosures if you’re interested in knowing more. It has some interesting horror stories of what happened when the disclosure process was not followed. Encourage responsible disclosure Add a SECURITY.md file to your project so someone who wants to message you about a vulnerability can do so without having to hunt around for contact details. Last year, Snyk published a State of Open Source Security report that found 79.5% of maintainers do not have a public disclosure policy. Those that did were considerably more likely to get notified privately about a vulnerability – 73% of maintainers who had one had been notified, vs 21% of maintainers who hadn’t published one one. Stats from the State of Open Source Security 2017 Bug bounties Some companies run bug bounties to encourage the responsible disclosure of vulnerabilities. By offering a reward for finding and safely disclosing a vulnerability, it also reduces the enticement of exploiting a vulnerability over reporting it and getting a quick cash reward. Hackerone is a community of ethical hackers who pentest apps that have signed up for the scheme and get paid when they find a new vulnerability. Wordpress is one such participant, and you can see the long list of vulnerabilities that have been disclosed as part of that program. If you don’t have such a bounty, be prepared to get the odd vulnerability extortion email. Scott Helme, who founded securityheaders.com and report-uri.com, wrote a post about some of the requests he gets for a report about a critical vulnerability in exchange for money. On one hand, I want to be as responsible as possible and if my users are at risk then I need to know and patch this issue to protect them. On the other hand this is such irresponsible and unethical behaviour that interacting with this person seems out of the question. A gift worth giving It’s time to brush the dust off those old gifts that we shared and forgot about. Practice good hygiene and run them through your favourite security tool – I’m just a little biased towards Snyk, but as Katie mentioned, there’s also npm audit if you use Node.js, and most source code managers like GitHub and GitLab have basic vulnerability alert capabilities. Stats from the State of Open Source Security 2017 Most importantly, patch or upgrade away those vulnerabilities away, and if you want to share that Christmas spirit, open fixes for your favourite open source projects, too. 2018 Anna Debenham annadebenham 2018-12-17T00:00:00+00:00 https://24ways.org/2018/its-beginning-to-look-a-lot-like-xssmas/ code
246 Designing Your Site Like It’s 1998 It’s 20 years to the day since my wife and I started Stuff & Nonsense, our little studio and my outlet for creative ideas on the web. To celebrate this anniversary—and my fourteenth contribution to 24 ways— I’d like to explain how I would’ve developed a design for Planes, Trains and Automobiles, one of my favourite Christmas films. My design for Planes, Trains and Automobiles is fixed at 800px wide. Developing a <frameset> framework I’ll start by using frames to set up the framework for this new website. Frames are individual pages—one for navigation, the other for my content—pulled together to form a frameset. Space is limited on lower-resolution screens, so by using frames I can ensure my navigation always remains visible. I can include any number of frames inside a <frameset> element. I add two rows to my <frameset>; the first is for my navigation and is 50px tall, the second is for my content and will resize to fill any available space. As I don’t want frame borders or any space between my frames, I set frameborder and framespacing attributes to 0: <frameset frameborder="0" framespacing="0" rows="50,*"> […] </frameset> Next I add the source of my two frame documents. I don’t want people to be able to resize or scroll my navigation, so I add the noresize attribute to that frame: <frameset frameborder="0" framespacing="0" rows="50,*"> <frame noresize scrolling="no" src="nav.html"> <frame src="content.html"> </frameset> I do want links from my navigation to open in the content frame, so I give each <frame> a name so I can specify where I want links to open: <frameset frameborder="0" framespacing="0" rows="50,*"> <frame name="navigation" noresize scrolling="no" src="nav.html"> <frame name="content" src="content.html"> </frameset> The framework for this website is simple as it contains only two horizontal rows. Should I need a more complex layout, I can nest as many framesets—and as many individual documents—as I need: <frameset rows="50,*"> <frame name="navigation"> <frameset cols="25%,*"> <frame name="sidebar"> <frame name="content"> </frameset> </frameset> Letterbox framesets were common way to deal with multiple screen sizes. In a letterbox, the central frameset had a fixed height and width, while the frames on the top, right, bottom, and left expanded to fill any remaining space. Handling older browsers Sadly not every browser supports frames, so I should send a helpful message to people who use older browsers asking them to upgrade. Happily, I can do that using noframes content: <noframes> <body> <p>This page uses frames, but your browser doesn’t support them. Please upgrade your browser.</p> </body> </noframes> Forcing someone back into a frame Sometimes, someone may follow a link to a page from a portal or search engine, or they might attempt to open it in a new window or tab. If that page properly belongs inside a <frameset>, people could easily miss out on other parts of a design. This short script will prevent this happening and because it’s vanilla Javascript, it doesn’t require a library such as jQuery: <script type="text/javascript"> if (top == self) { location = 'frameset.html'; } </script> Laying out my page Before starting my layout, I add a few basic background and colour styles. I must include these attributes in every page on my website: <body background="img/container.jpg" bgcolor="#fef7fb" link="#245eab" alink="#245eab" vlink="#3c146e" text="#000000"> I want absolute control over how people experience my design and don’t want to allow it to stretch, so I first need a <table> which limits the width of my layout to 800px. The align attribute will keep this <table> in the centre of someone’s screen: <table width="800" align="center"> <tr> <td>[…]</td> </tr> </table> Although they were developed for displaying tabular information, the cells and rows which make up the <table> element make it ideal for the precise implementation of a design. I need several tables—often nested inside each other—to implement my design. These include tables for a banner and three rows of content: <table width="800" align="center"> <table>[…]</table> <table> <table> <table>[…]</table> </table> </table> <table>[…]</table> <table>[…]</table> </table> The width of the first table—used for my banner—is fixed to match the logo it contains. As I don’t need borders, padding, or spacing between these cells, I use attributes to remove them: <table border="0" cellpadding="0" cellspacing="0" width="587" align="center"> <tr> <td><img src="logo.gif" border="0" width="587" alt="Logo"></td> </tr> </table> The next table—which contains the largest image, introduction, and a call-to-action—is one of the most complex parts of my design, so I need to ensure its layout is pixel perfect. To do that I add an extra row at the top of this table and fill each of its cells with tiny transparent images: <tr> <td><img src="spacer.gif" width="593" height="1"></td> <td><img src="spacer.gif" width="207" height="1"></td> </tr> The height and width of these “shims” or “spacers” is only 1px but they will stretch to any size without increasing their weight on the page. This makes them perfect for performant website development. For the hero of this design, I splice up the large image into three separate files and apply each slice as a background to the table cells. I also match the height of those cells to the background images: <tr> <td background="slice-1.jpg" height="473"> </td> <td background="slice-2.jpg" height="473">[…]</td> </tr> <tr> <td background="slice-3.jpg" height="388"> </td> </tr> I use tables and spacer images throughout the rest of this design to lay out the various types of content with perfect precision. For example, to add a single-pixel border around my two columns of content, I first apply a blue background to an outer table along with 1px of cellspacing, then simply nest an inner table—this time with a white background—inside it: <table border="0" cellpadding="1" cellspacing="0"> <tr> <td> <table bgcolor="#ffffff" border="0" cellpadding="0" cellspacing="0"> […] </table> </td> </tr> </table> Adding details Tables are fabulous tools for laying out a page, but they’re also useful for implementing details on those pages. I can use a table to add a gradient background, rounded corners, and a shadow to the button which forms my “Buy the DVD” call-to-action. First, I splice my button graphic into three slices; two fixed-width rounded ends, plus a narrow gradient which stretches and makes this button responsive. Then, I add those images as backgrounds and use spacers to perfectly size my button: <table border="0" cellpadding="0" cellspacing="0"> <tr> <td background="btn-1.jpg" border="0" height="48" width="30"><img src="spacer.gif" width="30" height="1"></td> <td background="btn-2.jpg" border="0" height="48"> <center> <a href="" target="_blank"><b>Buy the DVD</b></a> </center> </td> <td background="btn-3.jpg" border="0" height="48" width="30"><img src="spacer.gif" width="30" height="1"></td> </tr> </table> I use those same elements to add details to headlines and lists too. Adding a “bullet” to each item in a list needs only two additional table cells, a circular graphic, and a spacer: <table border="0" cellpadding="0" cellspacing="0"> <tr> <td width="10"><img src="li.gif" border="0" width="8" height="8"> </td> <td><img src="spacer.gif" width="10" height="1"> </td> <td>Directed by John Hughes</td> </tr> </table> Implementing a typographic hierarchy So far I’ve explained how to use frames, tables, and spacers to develop a layout for my content, but what about styling that content? I use <font> elements to change the typeface from the browser’s default to any font installed on someone’s device: <font face="Arial">Planes, Trains and Automobiles is a comedy film […]</font> To adjust the size of those fonts, I use the size attribute and a value between the smallest (1) and the largest (7) where 3 is the browser’s default. I use a size of 4 for this headline and 2 for the text which follows: <font face="Arial" size="4"><b>Steve Martin</b></font> <font face="Arial" size="2">An American actor, comedian, writer, producer, and musician.</font> When I need to change the typeface, perhaps from a sans-serif like Arial to a serif like Times New Roman, I must change the value of the face attribute on every element on all pages on my website. NB: I use as many <br> elements as needed to create space between headlines and paragraphs. View the final result (and especially the source.) My modern day design for Planes, Trains and Automobiles. I can imagine many people reading this and thinking “This is terrible advice because we don’t develop websites like this in 2018.” That’s true. We have the ability to embed any number of web fonts into our products and websites and have far more control over type features, leading, ligatures, and sizes: font-variant-caps: titling-caps; font-variant-ligatures: common-ligatures; font-variant-numeric: oldstyle-nums; Grid has simplified the implementation of even the most complex compound grid down to just a few lines of CSS: body { display: grid; grid-template-columns: 3fr 1fr 2fr 2fr 1fr 3fr; grid-template-rows: auto; grid-column-gap: 2vw; grid-row-gap: 1vh; } Flexbox has made it easy to develop flexible components such as navigation links: nav ul { display: flex; } nav li { flex: 1; } Just one line of CSS can create multiple columns of fluid type: main { column-width: 12em; } CSS Shapes enable text to flow around irregular shapes including polygons: [src*="main-img"] { float: left; shape-outside: polygon(…); } Today, we wouldn’t dream of using images and a table to add a gradient, rounded corners, and a shadow to a button or link, preferring instead: .btn { background: linear-gradient(#8B1212, #DD3A3C); border-radius: 1em; box-shadow: 0 2px 4px 0 rgba(0,0,0,0.50), inset 0 -1px 1px 0 rgba(0,0,0,0.50); } CSS Custom Properties, feature and media queries, filters, pseudo-elements, and SVG; the list of advances in HTML, CSS, and other technologies goes on. So does our understanding of how best to use them by separating content, structure, presentation, and behaviour. As 2018 draws to a close, we’re certain we know how to design and develop products and websites better than we did at the end of 1998. Strange as it might seem looking back, in 1998 we were also certain our techniques and technologies were the best for the job. That’s why it’s dangerous to believe with absolute certainty that the frameworks and tools we increasingly rely on today—tools like Bootstrap, Bower, and Brunch, Grunt, Gulp, Node, Require, React, and Sass—will be any more relevant in the future than <font> elements, frames, layout tables, and spacer images are today. I have no prediction for what the web will be like twenty years from now. However, I want to believe we’ll build on what we’ve learned during these past two decades about the importance of accessibility, flexibility, and usability, and that the mistakes we made while infatuated by technologies won’t be repeated. Head over to my website if you’d like to read about how I’d implement my design for ‘Planes, Trains and Automobiles’ today. 2018 Andy Clarke andyclarke 2018-12-23T00:00:00+00:00 https://24ways.org/2018/designing-your-site-like-its-1998/ code
247 Managing Flow and Rhythm with CSS Custom Properties An important part of designing user interfaces is creating consistent vertical rhythm between elements. Creating consistent, predictable space doesn’t just make your web pages and views look better, but it can also improve the scan-ability. Browsers ship with default CSS and these styles often create consistent rhythm for flow elements out of the box. The problem is though that we often reset these styles with a reset. Elements such as <div> and <section> also have no default margin or padding associated with them. I’ve tried all sorts of weird and wonderful techniques to find a balance between using inherited CSS while also levelling the playing field for component driven front-ends with very little success. This experimentation is how I landed on the flow utility, though and I’m going to show you how it works. Let’s dive in! The Flow utility With the ever-growing number of folks working with component libraries and design systems, we could benefit from a utility that creates space for us, only when it’s appropriate to do so. The problem with my previous attempts at fixing this is that the spacing values were very rigid. That’s fine for 90% of contexts, but sometimes, it’s handy to be able to tweak the values based on the exact context of your component. This is where CSS Custom Properties come in handy. The code .flow { --flow-space: 1em; } .flow > * + * { margin-top: var(--flow-space); } What this code does is enable you to add a class of flow to an element which will then add margin-top to sibling elements within that element. We use the lobotomised owl selector to select these siblings. This approach enables an almost anonymous and automatic system which is ideal for component library based front-ends where components probably don’t have any idea what surrounds them. The other important part of this utility is the usage of the --flow-space custom property. We define it in the .flow component and each element within it will be spaced by --flow-space, by default. The beauty about setting this as a custom property is that custom properties also participate in the cascade, so we can utilise specificity to change it if we need it. Pretty cool, right? Let’s look at some examples. A basic example See the Pen CSS Flow Utility: Basic implementation by Andy Bell (@hankchizljaw) on CodePen. https://codepen.io/hankchizljaw/pen/LXqerj What we’ve got in this example is some basic HTML content that has a class of flow on the parent article element. Because there’s a very heavy-handed reset added as a dependency, all of the content would have been squished together without the flow utility. Because our --flow-space custom property is set to 1em, the space between elements is 1X the font size of the element in question. This means that a <h2> in this context has a calculated margin-top value of 28.8px, because it has an assigned font size of 1.8rem. If we were to globally change the --flow-space value to 1.1em for example, we’d affect everything because margin values would be calculated as 1.1X the font size. This example looks great because using font size as the basis of rhythm works really well. What if we wanted to to tweak certain elements within this article, though? See the Pen CSS Flow Utility: Tweaked Basic implementation by Andy Bell (@hankchizljaw) on CodePen. https://codepen.io/hankchizljaw/pen/qQgxaY I like lots of whitespace with my article layouts, so the 1em space isn’t going to cut it for all elements. I like to provide plenty of space between headed sections, so I increase the --flow-space in these instances: h2 { --flow-space: 3rem; } Notice also how I also switch over to using rem units? I want to make sure that these overrides are always based on the root font size. This is a personal preference of mine and you can use whatever units you want. Just be aware that it’s better for accessibility to use flexible units like em, rem and %, so that a user’s font size preferences are honoured. A more advanced example Although the flow utility is super useful for a plethora of contexts, it really shines when working with a few unrelated components. Instead of having to write specific layout CSS just for your particular context, you can use flow and --flow-space to create predictable and contextual space. See the Pen CSS Flow Utility: Unrelated components by Andy Bell (@hankchizljaw) on CodePen. https://codepen.io/hankchizljaw/pen/ZmPGyL In this example, we’ve got ourselves a little prototype layout that features a media element, followed by a grid of features. By using flow, it was really quick and easy to generate space between those two main elements. It was also easy to create space within the components. For example, I added it to the .media__content element, so that the article’s content would space itself: <article class="media__content flow"> ... </article> Something to remember though: the custom properties cascade in the same way that other CSS values do, so you’ve got to keep that in mind. We’ve got a great example of that in this example where because we’ve got the flow utility on our .features component, which has a --flow-space override: the child elements of .features will inherit that value, so we’ve had to set another value on the .features__list element. “But what about old browsers?”, I hear you cry We’re using CSS Custom Properties that at the time of writing, have about 88% support. One thing we can do to remedy the other 12% of browsers is to set a default, traditional margin-top value of 1em, so it calculates itself based on the element’s font-size: .flow { --flow-space: 1em; } .flow > * + * { margin-top: 1em; margin-top: var(--flow-space); } Thanks to the cascading and declarative nature of CSS, we can set that default margin-top value and then immediately set it to use the custom property instead. Browsers that understand Custom Properties will automatically apply them—those that don’t will ignore them. Yay for the cascade and progressive enhancement! Wrapping up This tiny little utility can bring great power for when you want to consistently space elements, vertically. It also—thanks to the power of the modern web—allows us to create contextual overrides without creating modifier classes or shame CSS. If you’ve got other methods of doing this sort of work, please let me know on Twitter. I’d love to see what you’re working on! 2018 Andy Bell andybell 2018-12-07T00:00:00+00:00 https://24ways.org/2018/managing-flow-and-rhythm-with-css-custom-properties/ code
249 Fast Autocomplete Search for Your Website Every website deserves a great search engine - but building a search engine can be a lot of work, and hosting it can quickly get expensive. I’m going to build a search engine for 24 ways that’s fast enough to support autocomplete (a.k.a. typeahead) search queries and can be hosted for free. I’ll be using wget, Python, SQLite, Jupyter, sqlite-utils and my open source Datasette tool to build the API backend, and a few dozen lines of modern vanilla JavaScript to build the interface. Try it out here, then read on to see how I built it. First step: crawling the data The first step in building a search engine is to grab a copy of the data that you plan to make searchable. There are plenty of potential ways to do this: you might be able to pull it directly from a database, or extract it using an API. If you don’t have access to the raw data, you can imitate Google and write a crawler to extract the data that you need. I’m going to do exactly that against 24 ways: I’ll build a simple crawler using wget, a command-line tool that features a powerful “recursive” mode that’s ideal for scraping websites. We’ll start at the https://24ways.org/archives/ page, which links to an archived index for every year that 24 ways has been running. Then we’ll tell wget to recursively crawl the website, using the --recursive flag. We don’t want to fetch every single page on the site - we’re only interested in the actual articles. Luckily, 24 ways has nicely designed URLs, so we can tell wget that we only care about pages that start with one of the years it has been running, using the -I argument like this: -I /2005,/2006,/2007,/2008,/2009,/2010,/2011,/2012,/2013,/2014,/2015,/2016,/2017 We want to be polite, so let’s wait for 2 seconds between each request rather than hammering the site as fast as we can: --wait 2 The first time I ran this, I accidentally downloaded the comments pages as well. We don’t want those, so let’s exclude them from the crawl using -X "/*/*/comments". Finally, it’s useful to be able to run the command multiple times without downloading pages that we have already fetched. We can use the --no-clobber option for this. Tie all of those options together and we get this command: wget --recursive --wait 2 --no-clobber -I /2005,/2006,/2007,/2008,/2009,/2010,/2011,/2012,/2013,/2014,/2015,/2016,/2017 -X "/*/*/comments" https://24ways.org/archives/ If you leave this running for a few minutes, you’ll end up with a folder structure something like this: $ find 24ways.org 24ways.org 24ways.org/2013 24ways.org/2013/why-bother-with-accessibility 24ways.org/2013/why-bother-with-accessibility/index.html 24ways.org/2013/levelling-up 24ways.org/2013/levelling-up/index.html 24ways.org/2013/project-hubs 24ways.org/2013/project-hubs/index.html 24ways.org/2013/credits-and-recognition 24ways.org/2013/credits-and-recognition/index.html ... As a quick sanity check, let’s count the number of HTML pages we have retrieved: $ find 24ways.org | grep index.html | wc -l 328 There’s one last step! We got everything up to 2017, but we need to fetch the articles for 2018 (so far) as well. They aren’t linked in the /archives/ yet so we need to point our crawler at the site’s front page instead: wget --recursive --wait 2 --no-clobber -I /2018 -X "/*/*/comments" https://24ways.org/ Thanks to --no-clobber, this is safe to run every day in December to pick up any new content. We now have a folder on our computer containing an HTML file for every article that has ever been published on the site! Let’s use them to build ourselves a search index. Building a search index using SQLite There are many tools out there that can be used to build a search engine. You can use an open-source search server like Elasticsearch or Solr, a hosted option like Algolia or Amazon CloudSearch or you can tap into the built-in search features of relational databases like MySQL or PostgreSQL. I’m going to use something that’s less commonly used for web applications but makes for a powerful and extremely inexpensive alternative: SQLite. SQLite is the world’s most widely deployed database, even though many people have never even heard of it. That’s because it’s designed to be used as an embedded database: it’s commonly used by native mobile applications and even runs as part of the default set of apps on the Apple Watch! SQLite has one major limitation: unlike databases like MySQL and PostgreSQL, it isn’t really designed to handle large numbers of concurrent writes. For this reason, most people avoid it for building web applications. This doesn’t matter nearly so much if you are building a search engine for infrequently updated content - say one for a site that only publishes new content on 24 days every year. It turns out SQLite has very powerful full-text search functionality built into the core database - the FTS5 extension. I’ve been doing a lot of work with SQLite recently, and as part of that, I’ve been building a Python utility library to make building new SQLite databases as easy as possible, called sqlite-utils. It’s designed to be used within a Jupyter notebook - an enormously productive way of interacting with Python code that’s similar to the Observable notebooks Natalie described on 24 ways yesterday. If you haven’t used Jupyter before, here’s the fastest way to get up and running with it - assuming you have Python 3 installed on your machine. We can use a Python virtual environment to ensure the software we are installing doesn’t clash with any other installed packages: $ python3 -m venv ./jupyter-venv $ ./jupyter-venv/bin/pip install jupyter # ... lots of installer output # Now lets install some extra packages we will need later $ ./jupyter-venv/bin/pip install beautifulsoup4 sqlite-utils html5lib # And start the notebook web application $ ./jupyter-venv/bin/jupyter-notebook # This will open your browser to Jupyter at http://localhost:8888/ You should now be in the Jupyter web application. Click New -> Python 3 to start a new notebook. A neat thing about Jupyter notebooks is that if you publish them to GitHub (either in a regular repository or as a Gist), it will render them as HTML. This makes them a very powerful way to share annotated code. I’ve published the notebook I used to build the search index on my GitHub account. ​ Here’s the Python code I used to scrape the relevant data from the downloaded HTML files. Check out the notebook for a line-by-line explanation of what’s going on. from pathlib import Path from bs4 import BeautifulSoup as Soup base = Path("/Users/simonw/Dropbox/Development/24ways-search") articles = list(base.glob("*/*/*/*.html")) # articles is now a list of paths that look like this: # PosixPath('...24ways-search/24ways.org/2013/why-bother-with-accessibility/index.html') docs = [] for path in articles: year = str(path.relative_to(base)).split("/")[1] url = 'https://' + str(path.relative_to(base).parent) + '/' soup = Soup(path.open().read(), "html5lib") author = soup.select_one(".c-continue")["title"].split( "More information about" )[1].strip() author_slug = soup.select_one(".c-continue")["href"].split( "/authors/" )[1].split("/")[0] published = soup.select_one(".c-meta time")["datetime"] contents = soup.select_one(".e-content").text.strip() title = soup.find("title").text.split(" ◆")[0] try: topic = soup.select_one( '.c-meta a[href^="/topics/"]' )["href"].split("/topics/")[1].split("/")[0] except TypeError: topic = None docs.append({ "title": title, "contents": contents, "year": year, "author": author, "author_slug": author_slug, "published": published, "url": url, "topic": topic, }) After running this code, I have a list of Python dictionaries representing each of the documents that I want to add to the index. The list looks something like this: [ { "title": "Why Bother with Accessibility?", "contents": "Web accessibility (known in other fields as inclus...", "year": "2013", "author": "Laura Kalbag", "author_slug": "laurakalbag", "published": "2013-12-10T00:00:00+00:00", "url": "https://24ways.org/2013/why-bother-with-accessibility/", "topic": "design" }, { "title": "Levelling Up", "contents": "Hello, 24 ways. Iu2019m Ashley and I sell property ins...", "year": "2013", "author": "Ashley Baxter", "author_slug": "ashleybaxter", "published": "2013-12-06T00:00:00+00:00", "url": "https://24ways.org/2013/levelling-up/", "topic": "business" }, ... My sqlite-utils library has the ability to take a list of objects like this and automatically create a SQLite database table with the right schema to store the data. Here’s how to do that using this list of dictionaries. import sqlite_utils db = sqlite_utils.Database("/tmp/24ways.db") db["articles"].insert_all(docs) That’s all there is to it! The library will create a new database and add a table to it called articles with the necessary columns, then insert all of the documents into that table. (I put the database in /tmp/ for the moment - you can move it to a more sensible location later on.) You can inspect the table using the sqlite3 command-line utility (which comes with OS X) like this: $ sqlite3 /tmp/24ways.db sqlite> .headers on sqlite> .mode column sqlite> select title, author, year from articles; title author year ------------------------------ ------------ ---------- Why Bother with Accessibility? Laura Kalbag 2013 Levelling Up Ashley Baxte 2013 Project Hubs: A Home Base for Brad Frost 2013 Credits and Recognition Geri Coady 2013 Managing a Mind Christopher 2013 Run Ragged Mark Boulton 2013 Get Started With GitHub Pages Anna Debenha 2013 Coding Towards Accessibility Charlie Perr 2013 ... <Ctrl+D to quit> There’s one last step to take in our notebook. We know we want to use SQLite’s full-text search feature, and sqlite-utils has a simple convenience method for enabling it for a specified set of columns in a table. We want to be able to search by the title, author and contents fields, so we call the enable_fts() method like this: db["articles"].enable_fts(["title", "author", "contents"]) Introducing Datasette Datasette is the open-source tool I’ve been building that makes it easy to both explore SQLite databases and publish them to the internet. We’ve been exploring our new SQLite database using the sqlite3 command-line tool. Wouldn’t it be nice if we could use a more human-friendly interface for that? If you don’t want to install Datasette right now, you can visit https://search-24ways.herokuapp.com/ to try it out against the 24 ways search index data. I’ll show you how to deploy Datasette to Heroku like this later in the article. If you want to install Datasette locally, you can reuse the virtual environment we created to play with Jupyter: ./jupyter-venv/bin/pip install datasette This will install Datasette in the ./jupyter-venv/bin/ folder. You can also install it system-wide using regular pip install datasette. Now you can run Datasette against the 24ways.db file we created earlier like so: ./jupyter-venv/bin/datasette /tmp/24ways.db This will start a local webserver running. Visit http://localhost:8001/ to start interacting with the Datasette web application. If you want to try out Datasette without creating your own 24ways.db file you can download the one I created directly from https://search-24ways.herokuapp.com/24ways-ae60295.db Publishing the database to the internet One of the goals of the Datasette project is to make deploying data-backed APIs to the internet as easy as possible. Datasette has a built-in command for this, datasette publish. If you have an account with Heroku or Zeit Now, you can deploy a database to the internet with a single command. Here’s how I deployed https://search-24ways.herokuapp.com/ (running on Heroku’s free tier) using datasette publish: $ ./jupyter-venv/bin/datasette publish heroku /tmp/24ways.db --name search-24ways -----> Python app detected -----> Installing requirements with pip -----> Running post-compile hook -----> Discovering process types Procfile declares types -> web -----> Compressing... Done: 47.1M -----> Launching... Released v8 https://search-24ways.herokuapp.com/ deployed to Heroku If you try this out, you’ll need to pick a different --name, since I’ve already taken search-24ways. You can run this command as many times as you like to deploy updated versions of the underlying database. Searching and faceting Datasette can detect tables with SQLite full-text search configured, and will add a search box directly to the page. Take a look at http://search-24ways.herokuapp.com/24ways-b607e21/articles to see this in action. ​ SQLite search supports wildcards, so if you want autocomplete-style search where you don’t need to enter full words to start getting results you can add a * to the end of your search term. Here’s a search for access* which returns articles on accessibility: http://search-24ways.herokuapp.com/24ways-ae60295/articles?_search=acces%2A A neat feature of Datasette is the ability to calculate facets against your data. Here’s a page showing search results for svg with facet counts calculated against both the year and the topic columns: http://search-24ways.herokuapp.com/24ways-ae60295/articles?_search=svg&_facet=year&_facet=topic Every page visible via Datasette has a corresponding JSON API, which can be accessed using the JSON link on the page - or by adding a .json extension to the URL: http://search-24ways.herokuapp.com/24ways-ae60295/articles.json?_search=acces%2A Better search using custom SQL The search results we get back from ../articles?_search=svg are OK, but the order they are returned in is not ideal - they’re actually being returned in the order they were inserted into the database! You can see why this is happening by clicking the View and edit SQL link on that search results page. This exposes the underlying SQL query, which looks like this: select rowid, * from articles where rowid in ( select rowid from articles_fts where articles_fts match :search ) order by rowid limit 101 We can do better than this by constructing a custom SQL query. Here’s the query we will use instead: select snippet(articles_fts, -1, 'b4de2a49c8', '8c94a2ed4b', '...', 100) as snippet, articles_fts.rank, articles.title, articles.url, articles.author, articles.year from articles join articles_fts on articles.rowid = articles_fts.rowid where articles_fts match :search || "*" order by rank limit 10; You can try this query out directly - since Datasette opens the underling SQLite database in read-only mode and enforces a one second time limit on queries, it’s safe to allow users to provide arbitrary SQL select queries for Datasette to execute. There’s a lot going on here! Let’s break the SQL down line-by-line: select snippet(articles_fts, -1, 'b4de2a49c8', '8c94a2ed4b', '...', 100) as snippet, We’re using snippet(), a built-in SQLite function, to generate a snippet highlighting the words that matched the query. We use two unique strings that I made up to mark the beginning and end of each match - you’ll see why in the JavaScript later on. articles_fts.rank, articles.title, articles.url, articles.author, articles.year These are the other fields we need back - most of them are from the articles table but we retrieve the rank (representing the strength of the search match) from the magical articles_fts table. from articles join articles_fts on articles.rowid = articles_fts.rowid articles is the table containing our data. articles_fts is a magic SQLite virtual table which implements full-text search - we need to join against it to be able to query it. where articles_fts match :search || "*" order by rank limit 10; :search || "*" takes the ?search= argument from the page querystring and adds a * to the end of it, giving us the wildcard search that we want for autocomplete. We then match that against the articles_fts table using the match operator. Finally, we order by rank so that the best matching results are returned at the top - and limit to the first 10 results. How do we turn this into an API? As before, the secret is to add the .json extension. Datasette actually supports multiple shapes of JSON - we’re going to use ?_shape=array to get back a plain array of objects: JSON API call to search for articles matching SVG The HTML version of that page shows the time taken to execute the SQL in the footer. Hitting refresh a few times, I get response times between 2 and 5ms - easily fast enough to power a responsive autocomplete feature. A simple JavaScript autocomplete search interface I considered building this using React or Svelte or another of the myriad of JavaScript framework options available today, but then I remembered that vanilla JavaScript in 2018 is a very productive environment all on its own. We need a few small utility functions: first, a classic debounce function adapted from this one by David Walsh: function debounce(func, wait, immediate) { let timeout; return function() { let context = this, args = arguments; let later = () => { timeout = null; if (!immediate) func.apply(context, args); }; let callNow = immediate && !timeout; clearTimeout(timeout); timeout = setTimeout(later, wait); if (callNow) func.apply(context, args); }; }; We’ll use this to only send fetch() requests a maximum of once every 100ms while the user is typing. Since we’re rendering data that might include HTML tags (24 ways is a site about web development after all), we need an HTML escaping function. I’m amazed that browsers still don’t bundle a default one of these: const htmlEscape = (s) => s.replace( />/g, '&gt;' ).replace( /</g, '&lt;' ).replace( /&/g, '&' ).replace( /"/g, '&quot;' ).replace( /'/g, '&#039;' ); We need some HTML for the search form, and a div in which to render the results: <h1>Autocomplete search</h1> <form> <p><input id="searchbox" type="search" placeholder="Search 24ways" style="width: 60%"></p> </form> <div id="results"></div> And now the autocomplete implementation itself, as a glorious, messy stream-of-consciousness of JavaScript: // Embed the SQL query in a multi-line backtick string: const sql = `select snippet(articles_fts, -1, 'b4de2a49c8', '8c94a2ed4b', '...', 100) as snippet, articles_fts.rank, articles.title, articles.url, articles.author, articles.year from articles join articles_fts on articles.rowid = articles_fts.rowid where articles_fts match :search || "*" order by rank limit 10`; // Grab a reference to the <input type="search"> const searchbox = document.getElementById("searchbox"); // Used to avoid race-conditions: let requestInFlight = null; searchbox.onkeyup = debounce(() => { const q = searchbox.value; // Construct the API URL, using encodeURIComponent() for the parameters const url = ( "https://search-24ways.herokuapp.com/24ways-866073b.json?sql=" + encodeURIComponent(sql) + `&search=${encodeURIComponent(q)}&_shape=array` ); // Unique object used just for race-condition comparison let currentRequest = {}; requestInFlight = currentRequest; fetch(url).then(r => r.json()).then(d => { if (requestInFlight !== currentRequest) { // Avoid race conditions where a slow request returns // after a faster one. return; } let results = d.map(r => ` <div class="result"> <h3><a href="${r.url}">${htmlEscape(r.title)}</a></h3> <p><small>${htmlEscape(r.author)} - ${r.year}</small></p> <p>${highlight(r.snippet)}</p> </div> `).join(""); document.getElementById("results").innerHTML = results; }); }, 100); // debounce every 100ms There’s just one more utility function, used to help construct the HTML results: const highlight = (s) => htmlEscape(s).replace( /b4de2a49c8/g, '<b>' ).replace( /8c94a2ed4b/g, '</b>' ); This is what those unique strings passed to the snippet() function were for. Avoiding race conditions in autocomplete One trick in this code that you may not have seen before is the way race-conditions are handled. Any time you build an autocomplete feature, you have to consider the following case: User types acces Browser sends request A - querying documents matching acces* User continues to type accessibility Browser sends request B - querying documents matching accessibility* Request B returns. It was fast, because there are fewer documents matching the full term The results interface updates with the documents from request B, matching accessibility* Request A returns results (this was the slower of the two requests) The results interface updates with the documents from request A - results matching access* This is a terrible user experience: the user saw their desired results for a brief second, and then had them snatched away and replaced with those results from earlier on. Thankfully there’s an easy way to avoid this. I set up a variable in the outer scope called requestInFlight, initially set to null. Any time I start a new fetch() request, I create a new currentRequest = {} object and assign it to the outer requestInFlight as well. When the fetch() completes, I use requestInFlight !== currentRequest to sanity check that the currentRequest object is strictly identical to the one that was in flight. If a new request has been triggered since we started the current request we can detect that and avoid updating the results. It’s not a lot of code, really And that’s the whole thing! The code is pretty ugly, but when the entire implementation clocks in at fewer than 70 lines of JavaScript, I honestly don’t think it matters. You’re welcome to refactor it as much you like. How good is this search implementation? I’ve been building search engines for a long time using a wide variety of technologies and I’m happy to report that using SQLite in this way is genuinely a really solid option. It scales happily up to hundreds of MBs (or even GBs) of data, and the fact that it’s based on SQL makes it easy and flexible to work with. A surprisingly large number of desktop and mobile applications you use every day implement their search feature on top of SQLite. More importantly though, I hope that this demonstrates that using Datasette for an API means you can build relatively sophisticated API-backed applications with very little backend programming effort. If you’re working with a small-to-medium amount of data that changes infrequently, you may not need a more expensive database. Datasette-powered applications easily fit within the free tier of both Heroku and Zeit Now. For more of my writing on Datasette, check out the datasette tag on my blog. And if you do build something fun with it, please let me know on Twitter. 2018 Simon Willison simonwillison 2018-12-19T00:00:00+00:00 https://24ways.org/2018/fast-autocomplete-search-for-your-website/ code
253 Clip Paths Know No Bounds CSS Shapes are getting a lot of attention as browser support has increased for properties like shape-outside and clip-path. There are a few ways that we can use CSS Shapes, in particular with the clip-path property, that are not necessarily evident at first glance. The basics of a clip path Before we dig into specific techniques to expand on clip paths, we should first take a look at a basic shape and clip-path. Clip paths can apply a CSS Shape such as a circle(), ellipse(), inset(), or the flexible polygon() to any element. Everywhere in the element that is not within the bounds of our shape will be visually removed. Using the polygon shape function, for example, we can create triangles, stars, or other straight-edged shapes as on Bennett Feely’s Clippy. While fixed units like pixels can be used when defining vertices/points (where the sides meet), percentages will give more flexibility to adapt to the element’s dimensions. See the Pen Clip Path Box by Dan Wilson (@danwilson) on CodePen. So for an octagon, we can set eight x, y pairs of percentages to define those points. In this case we start 30% into the width of the box for the first x and at the top of the box for the y and go clockwise. The visible area becomes the interior of the shape made by connecting these points with straight lines. clip-path: polygon( 30% 0%, 70% 0%, 100% 30%, 100% 70%, 70% 100%, 30% 100%, 0% 70%, 0% 30% ); A shape with less vertices than the eye can see It’s reasonable to look at the polygon() function and assume that we need to have one pair of x, y coordinates for every point in our shape. However, we gain some flexibility by thinking outside the box — or more specifically when we think outside the range of 0% - 100%. Our element’s box model will be the ultimate boundary for a clip-path, but we can still define points that exist beyond that natural box for an element. See the Pen CSS Shapes Know No Bounds by Dan Wilson (@danwilson) on CodePen. By going beyond the 0% - 100% range we can turn a polygon with three points into a quadrilateral, a pentagon, or a hexagon. In this example the shapes used are all similar triangles defining three points, but due to exceeding the bounds for our element box we visually see one triangle and two pentagons. Our earlier octagon can similarly be made with only four points. See the Pen Octagon with four points by Dan Wilson (@danwilson) on CodePen. Multiple shapes, one clip path We can lean on this power of going beyond the bounds of our element to also create more than one visual shape with a single polygon(). See the Pen Multiple shapes from one clip-path by Dan Wilson (@danwilson) on CodePen. Depending on how we lay it out we can make each shape directly, but since we know we can move around in the space beyond the element’s box, we can draw extra lines to help us get where we need to go next as needed. It can also help us in slicing an element. Combined with CSS Variables, we can work with overlapping elements and clip each one into alternating strips. This example is two elements, each divided into a few rectangles. See the Pen 24w: Sliced Icon by Dan Wilson (@danwilson) on CodePen. Different shapes with fill rules A polygon() is not just a collection of points. There is one more key piece to its puzzle according to the specification — the Fill Rule. The default value we have been using so far is nonzero, and the second option is evenodd. These two values help determine what is considered inside and outside the shape. See the Pen A Star Multiways by Dan Wilson (@danwilson) on CodePen. As lines intersect we can get into situations where pieces seemingly on the inside can be considered outside the shape boundary. When using the evenodd fill rule, we can determine if a given point is inside or outside the boundary by drawing a ray from the point in any direction. If the ray crosses an even number of the clip path’s lines, the point is considered outside, and if it crosses an odd number the point is inside. Order of operations It is important to note that there are many CSS properties that affect the final composited appearance of an element via CSS Filters, Blend Modes, and more. These compositing effects are applied in the order: CSS Filters (e.g. filter: blur(2px)) Clipping (e.g. what this article is about) Masking (Clipping’s cousin) Blend Modes (e.g. mix-blend-mode: multiply) Opacity This means if we want to have a star shape and blur it, the blur will happen before the clip. And since blurs are most noticeable around the edge of an element box, the effect might be completely lost since we have clipped away the element’s box edges. See the Pen Order of Filter + Clip by Dan Wilson (@danwilson) on CodePen. If we want the edges of the star to be blurred, we do have the option to wrap our clipped element in a blurred parent element. The inner element will be rendered first (with its star clip) and then the parent will blur its contents normally. Revealing content with animation CSS Shapes can be transitioned and animated, allowing us to animate the visual area of our element without affecting the content within. For example, we can start with visually hidden content (fully clipped) and grow the clip path to reveal the content within. The important caveat for polygon() is that the number of points need to be the same for each keyframe, as well as the fill rule. Otherwise the browser will not have enough information to interpolate the intermediate values. See the Pen Clip Path Shape Reveal by Dan Wilson (@danwilson) on CodePen. Don’t keep CSS Shapes in a box Clip paths give us some interesting new possibilities, especially when we think of them as more than just basic shapes. We may be heavily modifying the visual representation of our elements with clip-path, but the underlying content remains unchanged and accessible which makes this property fairly powerful. 2018 Dan Wilson danwilson 2018-12-20T00:00:00+00:00 https://24ways.org/2018/clip-paths-know-no-bounds/ code
255 Inclusive Considerations When Restyling Form Controls I would like to begin by saying 2018 was the year that we, as developers, visual designers, browser implementers, and inclusive design and experience specialists rallied together and achieved a long-sought goal: We now have the ability to fully style form controls, across all modern browsers, while retaining their ease of declaration, native functionality and accessibility. I would like to begin by saying all these things. However, they’re not true. I think we spent the year debating about what file extension CSS should be written in, or something. Or was that last year? Maybe I’m thinking of next year. Returning to reality, styling form controls is more tricky and time consuming these days rather than flat out “hard”. In fact, depending on the length of the styling-leash a particular browser provides, there are controls you can style quite a bit. As for browsers with shorter leashes, there are other options to force their controls closer to the visual design you’re tasked to match. However, when striving for custom styled controls, one must be careful not to forget about the inherent functionality and accessibility that many provide. People expect and deserve the products and services they use and pay for to work for them. If these services are visually pleasing, but only function for those who fit the handful of personas they’ve been designed for, then we’ve potentially deprived many people the experiences they deserve. Quick level setting Getting down to brass tacks, when creating custom styled form controls that should retain their expected semantics and functionality, we have to consider the following: Many form elements can be styled directly through standard and browser specific selectors, as well as through some clever styling of markup patterns. We should leverage these native options before reinventing any wheels. It is important to preserve the underlying semantics of interactive controls. We must not unintentionally exclude people who use assistive technologies (ATs) that rely on these semantics. Make sure you test what you create. There is a lot of underlying complexity to form controls which may not be immediately apparent if they’re judged solely by their visual presentation in a single browser, or with limited AT testing. Visually resetting and restyling form controls Over the course of 2018, I worked on a project where I tested and reported on the accessibility impact of styling various form controls. In conducting my research, I reviewed many of the form controls available in HTML, testing to see how malleable they were to direct styling from standardized CSS selectors. As I expected, controls such as the various text fields could be restyled rather easily. However, other controls like radio buttons and checkboxes, or sub-elements of special text fields like date, search, and number spinners were resistant to standard-based styling. These particular controls and their sub-elements required specific pseudo-elements to reset and allow for restyling of some of their default presentation. See the Pen form control styling comparisons by Scott (@scottohara) on CodePen. https://codepen.io/scottohara/pen/gZOrZm/ Over the years, the ability to directly style form controls has been something many people have clamored for. However, one should realize the benefits of being able to restyle some of these controls may involve more effort than originally anticipated. If you want to restyle a control from the ground up, then you must also recreate any :active, :focus, and :hover states for the control—all those things that were previously taken care of by browsers. Not only that, but anything you restyle should also work with Windows High Contrast mode, styling for dark mode, and other OS-level settings that browser respect without you even realizing. You ever try playing with the accessibility settings of your display on macOS, or similar Windows setting? It is also worth mentioning that any browser prefixed pseudo-elements are not standardized CSS selectors. As MDN mentions at the top of their pages documenting these pseudo-elements: Non-standard This feature is non-standard and is not on a standards track. Do not use it on production sites facing the Web: it will not work for every user. There may also be large incompatibilities between implementations and the behavior may change in the future. While this may be a deterrent for some, it’s my opinion the risks are often only skin-deep. By which I mean if a non-standard selector does change, the control may look a bit quirky, but likely won’t cease to function. A bug report which requires a CSS selector change can be an easy JIRA ticket to close, after all. Can’t make it? Fake it. Internet Explorer 11 (IE11) is still neck-and-neck with other browsers in vying for the number 2 spot in desktop browser share. Due to IE not recognizing vendor-prefixed appearance properties, some essential controls like checkboxes won’t render as intended. Additionally, some controls like select boxes, file uploads, and sub-elements of date fields (calendar popups) cannot be modified by just relying on styling their HTML selectors alone. This means that unless your company designs and develops with a progressive enhancement, or graceful degradation mindset, you’ll need to take a different approach in styling. Getting clever with markup and CSS The following CodePen demonstrates how we can create a custom checkbox markup pattern. By mindfully utilizing CSS sibling selectors and positioning of the native control, we can create custom visual styling while also retaining the functionality and accessibility expectations of a native checkbox. See the Pen Accessible Styled Native Checkbox by Scott (@scottohara) on CodePen. https://codepen.io/scottohara/pen/RqEayN/ Customizing checkboxes by visually hiding the input and styling well-placed markup with sibling selectors may seem old hat to some. However, many variations of these patterns do not take into account how their method of visually hiding the checkboxes can create discovery issues for certain screen reader navigation methods. For instance, if someone is using a mobile device and exploring by touch, how will they be able to drag their finger over an input that has been reduced to a single pixel, or positioned off screen? As we move away from the simplicity of declaring a single HTML element and using clever CSS and markup patterns to create restyled form controls, we increase the need for additional testing to ensure no expected behaviors are lost. In other words, what should work in theory may not work in practice when you introduce the various different ways people may engage with a form control. It’s worth remembering: what might be typical interactions for ourselves may be problematic if not impossible for others. Limitations to cleverness Creative coding will allow us to apply more consistent custom styles to some of the more problematic form controls. There will be a varied amount of custom markup, CSS, and sometimes JavaScript that will be needed to preserve the control’s inherent usability and accessibility for each control we take this approach to. However, this method of restyling still doesn’t solve for the lack of feature parity across different browsers. Nor is it a means to account for controls which don’t have a native HTML element equivalent, such as a switch or multi-thumb range slider? Maybe there’s a control that calls for a visual design or proposed user experience that would require too much fighting with a native control’s behavior to be worth the level of effort to implement. Here’s where we need to take another approach. Using ARIA when appropriate Sometimes we have no other option than to roll up our sleeves and start building custom form controls from scratch. Fair warning though: just because we’re not leveraging a native HTML control as our foundation, it doesn’t mean we have carte blanche to throw semantics out the window. Enter Accessible Rich Internet Applications (ARIA). ARIA is a set of attributes that can modify existing elements, or extend HTML to include roles, properties and states that aren’t native to the language. While divs and spans have no meaningful semantic information for us to leverage, with help from the ARIA specification and ARIA Authoring Practices we can incorporate these elements to help create the UI that we need while still following the first rule of Using ARIA: If you can use a native HTML element or attribute with the semantics and behavior you require already built in, instead of re-purposing an element and adding an ARIA role, state or property to make it accessible, then do so. By using these documents as guidelines, and testing our custom controls with people of various abilities, we can do our best to make sure a custom control performs as expected for as many people as possible. Exceptions to the rule One example of a control that allows for an exception to the first rule of Using ARIA would be a switch control. Switches and checkboxes are similar components, in that they have both on/checked and off/unchecked states. However, checkboxes are often expected within the context of forms, or used to filter search queries on e-commerce sites. Switches are typically used to instantly enable or deactivate a particular setting at a component or app-based level, as this is their behavior in the native mobile apps in which they were popularized. While a switch control could be created by visually restyling a checkbox, this does not automatically mean that the underlying semantics and functionality will match the visual representation of the control. For example, the following CodePen restyles checkboxes to look like a switch control, but the semantics of the checkboxes remain which communicate a different way of interacting with the control than what you might expect from a native switch control. See the Pen Switch Boxes - custom styled checkboxes posing as switches by Scott (@scottohara) on CodePen. https://codepen.io/scottohara/pen/XyvoeE/ By adding a role="switch" to these checkboxes, we can repurpose the inherent checked/unchecked states of the native control, it’s inherent ability to be focused by Tab key, and Space key to toggle state. But while this is a valid approach to take in building a switch, how does this actually match up to reality? Does it pass the test(s)? Whether deconstructing form controls to fully restyle them, or leveraging them and other HTML elements as a base to expand on, or create, a non-native form control, building it is just the start. We must test that what we’ve restyled or rebuilt works the way people expect it to, if not better. What we must do here is run a gamut of comparative tests to document the functionality and usability of native form controls. For example: Is the control implemented in all supported browsers? If not: where are the gaps? Will it be necessary to implement a custom solution for the situations that degrade to a standard text field? If so: is each browser’s implementation a good user experience? Is there room for improvement that can be tested against the native baseline? Test with multiple input devices. Where the control is implemented, what is the quality of the user experience when using different input devices, such as mouse, touchscreen, keyboard, speech recognition or switch device, to name a few. You’ll find some HTML5 controls (like date pickers and number spinners) have additional UI elements that may not be announced to AT, or even allow keyboard accessibility. Often these controls can be adjusted by other means, such as text entry, or using arrow keys to increase or decrease values. If restyling or recreating a custom version of a control like these, it may make sense to maintain these native experiences as well. How well does the control take to custom styles? If a control can be styled enough to not need to be rebuilt from scratch, that’s great! But make sure that there are no adverse affects on the accessibility of it. For instance, range sliders can be restyled and maintain their functionality and accessibility. However, elements like progress bars can be negatively affected by direct styling. Always test with different browser and AT pairings to ensure nothing is lost when controls are restyled. Do specifications match reality? If recreating controls to get around native limitations, such as the inability to style the options of a select element, or requiring a Switch control which is not native to HTML, do your solutions match user expectations? For instance, selects have unique picker interfaces on touch devices. And switches have varied levels of support for different browser and screen reader pairings. Test with real people, and check your analytics. If these experiences don’t match people’s expectations, then maybe another solution is in order? Wrapping up While styling form controls is definitely easier than it’s ever been, that doesn’t mean that it’s at all simple, nor will it likely ever be. The level of difficulty you’re going to face is going to depend entirely on what it is you’re hoping to style, add-on to, or recreate. And even if you build your custom control exactly to specification, you’ll still be reliant on browsers and assistive technologies being able to fully understand the component they’ve been presented. Forms and their controls are an incredibly important part of what we need the Internet for. Paying bills, scheduling appointments, ordering groceries, renewing your license or even ordering gifts for the holidays. These are all important tasks that people should be able to complete with as little effort as possible. Especially since for some, completing these tasks online might be their only option. 2018 didn’t end up being the year we got full customization of form controls sorted out. But that’s OK. If we can continue to mindfully work with what we have, and instead challenge ourselves to follow inclusive design principles, well thought out Form Design Patterns, and solve problems with an accessibility first approach, we may come to realize that we can get along just fine without fully branded drop downs. And hey. There’s always next year, right? 2018 Scott O'Hara scottohara 2018-12-13T00:00:00+00:00 https://24ways.org/2018/inclusive-considerations-when-restyling-form-controls/ code
256 Develop Your Naturalist Superpowers with Observable Notebooks and iNaturalist We’re going to level up your knowledge of what animals you might see in an area at a particular time of year - a skill every naturalist* strives for - using technology! Using iNaturalist and Observable Notebooks we’re going to prototype seasonality graphs for particular species in an area, and automatically create a guide to what animals you might see in each month. *(a Naturalist is someone who likes learning about nature, not someone who’s a fan of being naked, that’s a ‘Naturist’… different thing!) Looking for critters in rocky intertidal habitats One of my favourite things to do is going rockpooling, or as we call it over here in California, ‘tidepooling’. Amounting to the same thing, it’s going to a beach that has rocks where the tide covers then uncovers little pools of water at different times of the day. All sorts of fun creatures and life can be found in this ‘rocky intertidal habitat’ A particularly exciting creature that lives here is the Nudibranch, a type of super colourful ‘sea slug’. There are over 3000 species of Nudibranch worldwide. (The word “nudibranch” comes from the Latin nudus, naked, and the Greek βρανχια / brankhia, gills.) ​ They are however quite tricky to find! Even though they are often brightly coloured and interestingly shaped, some of them are very small, and in our part of the world in the Bay Area in California their appearance in our rockpools is seasonal. We see them more often in Summer months, despite the not-as-low tides as in our Winter and Spring seasons. My favourite place to go tidepooling here is Pillar Point in Half Moon bay (at other times of the year more famously known for the surf competition ‘Mavericks’). The rockpools there are rich in species diversity, of varied types and water-coverage habitat zones as well as being relatively accessible. ​ I was rockpooling at Pillar Point recently with my parents and we talked to a lady who remarked that she hadn’t seen any Nudibranchs on her visit this time. I realised that having an idea of what species to find where, and at what time of year is one of the many superpower goals of every budding Naturalist. Using technology and the croudsourced species observations of the iNaturalist community we can shortcut our way to this superpower! Finding nearby animals with iNaturalist We’re going to be getting our information about what animals you can see in Pillar Point using iNaturalist. iNaturalist is a really fun platform that helps connect people to nature and report their findings of life in the outdoors. It is also a community of nature-loving people who help each other identify and confirm those observations. iNaturalist is a project run as a joint initiative by the California Academy of Sciences and the National Geographic Society. I’ve been using iNaturalist for over two years to record and identify plants and animals that I’ve found in the outdoors. I use their iPhone app to upload my pictures, which then uses machine learning algorithms to make an initial guess at what it is I’ve seen. The community is really active, and I often find someone else has verified or updated my species guess pretty soon after posting. This process is great because once an observation has been identified by at least two people it becomes ‘verified’ and is considered research grade. Research grade observations get exported and used by scientists, as well as being indexed by the Global Biodiversity Information Facility, GBIF. ​ iNaturalist has a great API and API explorer, which makes interacting and prototyping using iNaturalist data really fun. For example, if you go to the API explorer and expand the Observations : Search and fetch section and then the GET /observations API, you get a selection of input boxes that allow you to play with options that you can then pass to the API when you click the ‘Try it out’ button. ​ You’ll then get a URL that looks a bit like https://api.inaturalist.org/v1/observations?captive=false &geo=true&verifiable=true&taxon_id=47113&lat=37.495461&lng=-122.499584 &radius=5&order=desc&order_by=created_at which you can call and interrrogate using a programming language of your choice. If you would like to see an all-JavaScript application that uses the iNaturalist API, take a look at OwlsNearMe.com which Simon and I built one weekend earlier this year. It gets your location and shows you all iNaturalist observations of owls near you and lists which species you are likely to see (not adjusted for season). Rapid development using Observable Notebooks We’re going to be using Observable Notebooks to prototype our examples, pulling data down from iNaturalist. I really like using visual notebooks like Observable, they are great for learning and building things quickly. You may be familiar with Jupyter notebooks for Python which is similar but takes a bit of setup to get going - I often use these for prototyping too. Observable is amazing for querying and visualising data with JavaScript and since it is a hosted product it doesn’t require any setup at all. You can follow along and play with this example on my Observable notebook. If you create an account there you can fork my notebook and create your own version of this example. Each ‘notebook’ consists of a page with a column of ‘cells’, similar to what you get in a spreadsheet. A cell can contain Markdown text or JavaScript code and the output of evaluating the cell appears above the code that generated it. There are lots of tutorials out there on Observable Notebooks, I like this code introduction one from Observable (and D3) creator Mike Bostock. Developing your Naturalist superpowers If you have an idea of what plants and critters you might see in a place at the time you visit, you can hone in on what you want to study and train your Naturalist eye to better identify the life around you. For our example, we care about wildlife we can see at Pillar Point, so we need a way of letting the iNaturalist API know which area we are interested in. We could use a latitide, longitude and radius for this, but a rectangular bounding box is a better shape for the reef. We can use this tool to draw the area we want to search within: boundingbox.klokantech.com ​ The tool lets you export the bounding box in several forms using the dropdown at the bottom left under the map givese We are going to use the ‘DublinCore’ format as it’s closest to the format needed by the iNaturalist API. westlimit=-122.50542; southlimit=37.492805; eastlimit=-122.492738; northlimit=37.499811 A quick map primer: The higher the latitude the more north it is The lower the latitude the more south it is Latitude 0 = the equator The higher the longitude the more east it is of Greenwich The lower the longitude the more west it is of Greenwich Longitude 0 = Greenwich In the iNaturalst API we want to use the parameters nelat, nelng, swlat, swlng to create a query that looks inside a bounding box of Pillar Point near Half Moon Bay in California: nelat = highest latitude = north limit = 37.499811 nelng = highest longitude = east limit = -122.492738 swlat = smallest latitude = south limit = 37.492805 swlng = smallest longitude = west limit = 122.50542 As API parameters these look like this: ?nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=122.50542 These parameters in this format can be used for most of the iNaturalist API methods. Nudibranch seasonality in Pillar Point We can use the iNaturalist observation_histogram API to get a count of Nudibranch observations per week-of-year across all time and within our Pillar Point bounding box. In addition to the geographic parameters that we just worked out, we are also sending the taxon_id of 47113, which is iNaturalists internal number associated with the Nudibranch taxon. By using this we can get all species which are under the parent ‘Order Nudibranchia’. Another useful piece of naturalist knowledge is understanding the biological classification scheme of Taxanomic Rank - roughly, when a species has a Latin name of two words eg ‘Glaucus Atlanticus’ the first Latin word is the ‘Genus’ like a family name ‘Glaucus’, and the second word identifies that particular species, like a given name ‘Atlanticus’. The two Latin words together indicate a specific species, the term we use colloquially to refer to a type of animal often differs wildly region to region, and sometimes the same common name in two countries can refer to two different species. The common names for the Glaucus Atlanticus (which incidentally is my favourite sea slug) include: sea swallow, blue angel, blue glaucus, blue dragon, blue sea slug and blue ocean slug! Because this gets super confusing, Scientists like using this Latin name format instead. The following piece of code asks the iNaturalist Histogram API to return per-week counts for verified observations of Nudibranchs within our Pillar Point bounding box: pillar_point_counts_per_week = fetch( "https://api.inaturalist.org/v1/observations/histogram?taxon_id=47113&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&date_field=observed&interval=week_of_year&verifiable=true" ).then(response => { return response.json(); }) Our next step is to take this data and draw a graph! We’ll be using Vega-Lite for this, which is a fab JavaScript graphing libary that is also easy and fun to use with Observable Notebooks. (Here is a great tutorial on exploring data and drawing graphs with Observable and Vega-Lite) The iNaturalist API returns data that looks like this: { "total_results": 53, "page": 1, "per_page": 53, "results": { "week_of_year": { "1": 136, "2": 20, "3": 150, "4": 65, "5": 186, "6": 74, "7": 47, "8": 87, "9": 64, "10": 56, But for our Vega-Lite graph we need data that looks like this: [{ "week": "01", "value": 136 }, { "week": "02", "value": 20 }, ...] We can convert what we get back from the API to the second format using a loop that iterates over the object keys: objects_to_plot = { let objects = []; Object.keys(pillar_point_counts_per_week.results.week_of_year).map(function(week_index) { objects.push({ week: `Wk ${week_index.toString()}`, observations: pillar_point_counts_per_week.results.week_of_year[week_index] }); }) return objects; } We can then plug this into Vega-Lite to draw us a graph: vegalite({ data: {values: objects_to_plot}, mark: "bar", encoding: { x: {field: "week", type: "nominal", sort: null}, y: {field: "observations", type: "quantitative"} }, width: width * 0.9 }) It’s worth noting that we have a lot of observations of Nudibranchs particularly at Pillar Point due in no small part to the intertidal monitoring research that Alison Young and Rebecca Johnson facilitate for the California Achademy of Sciences. So, what if we want to look for the seasonality of observations of a particular species of adorable sea slug? We want our interface to have a select box with a list of all the species you might find at any time of year. We can do this using the species_counts API to create us an object with the iNaturalist species ID and common & Latin names. pillar_point_nudibranches = { let api_results = await fetch( "https://api.inaturalist.org/v1/observations/species_counts?taxon_id=47113&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&date_field=observed&verifiable=true" ).then(r => r.json()) let species_list = api_results.results.map(i => ({ value: i.taxon.id, label: `${i.taxon.preferred_common_name} (${i.taxon.name})` })); return species_list } We can create an interactive select box by importing code from Jeremy Ashkanas’ Observable Notebook: add import {select} from "@jashkenas/inputs" to a cell anywhere in our notebook. Observable is magic: like a spreadsheet, the order of the cells doesn’t matter - if one cell is referenced by any other cell then when that cell updates all the other cells refresh themselves. You can also import and reference one notebook from another! viewof select_species = select({ title: "Which Nudibranch do you want to see seasonality for?", options: [{value: "", label: "All the Nudibranchs!"}, ...pillar_point_nudibranches], value: "" }) Then we go back to our old favourite, the histogram API just like before, only this time we are calling it with the value created by our select box ${select_species} as taxon_id instead of the number 47113. pillar_point_counts_per_month_per_species = fetch( `https://api.inaturalist.org/v1/observations/histogram?taxon_id=${select_species}&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&date_field=observed&interval=month_of_year&verifiable=true` ).then(r => r.json()) Now for the fun graph bit! As we did before, we re-format the result of the API into a format compatible with Vega-Lite: objects_to_plot_species_month = { let objects = []; Object.keys(pillar_point_counts_per_month_per_species.results.month_of_year).map(function(month_index) { objects.push({ month: (new Date(2018, (month_index - 1), 1)).toLocaleString("en", {month: "long"}), observations: pillar_point_counts_per_month_per_species.results.month_of_year[month_index] }); }) return objects; } (Note that in the above code we are creating a date object with our specific month in, and using toLocalString() to get the longer English name for the month. Because the JavaScript Date object counts January as 0, we use month_index -1 to get the correct month) And we draw the graph as we did before, only now if you interact with the select box in Observable the graph will dynamically update! vegalite({ data: {values: objects_to_plot_species_month}, mark: "bar", encoding: { x: {field: "month", type: "nominal", sort:null}, y: {field: "observations", type: "quantitative"} }, width: width * 0.9 }) Now we can see when is the best time of year to plan to go tidepooling in Pillar Point if we want to find a specific species of Nudibranch. ​ This tool is great for planning when we to go rockpooling at Pillar Point, but what about if you are going this month and want to pre-train your eye with what to look for in order to impress your friends with your knowledge of Nudibranchs? Well… we can create ourselves a dynamic guide that you can with a list of the species, their photo, name and how many times they have been observed in that month of the year! Our select box this time looks as follows, simpler than before but assigning the month value to the variable selected_month. viewof selected_month = select({ title: "When do you want to see Nudibranchs?", options: [ { label: "Whenever", value: "" }, { label: "January", value: "1" }, { label: "February", value: "2" }, { label: "March", value: "3" }, { label: "April", value: "4" }, { label: "May", value: "5" }, { label: "June", value: "6" }, { label: "July", value: "7" }, { label: "August", value: "8" }, { label: "September", value: "9" }, { label: "October", value: "10" }, { label: "November", value: "11" }, { label: "December", value: "12" }, ], value: "" }) We then can use the species_counts API to get all the relevant information about which species we can see in month=${selected_month}. We’ll be able to reference this response object and its values later with the variable we just created, eg: all_species_data.results[0].taxon.name. all_species_data = fetch( `https://api.inaturalist.org/v1/observations/species_counts?taxon_id=47113&month=${selected_month}&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&verifiable=true` ).then(r => r.json()) You can render HTML directly in a notebook cell using Observable’s html tagged template literal: <style> .collection { margin-top: 2em } .collection .species { display: inline-block; width: 9em; margin-bottom: 2em; } .collection .species-name { font-size: 1em; margin: 0; padding: 0 } .collection .species-count { margin: 0 0 0.3em 0; padding: 0; font-size: 0.75em; color: #999; font-style: italic; } .collection img { display: block; width: 100% } .collection select { font-size: 1.5em; } </style> <h2>If you go to Pillar Point ${ {"": "", "1":"in January", "2":"in Febrary", "3":"in March", "4":"in April", "5":"in May", "6":"in June", "7":"in July", "8":"in August", "9":"in September", "10":"in October", "11":"in November", "12":"in December", }[selected_month] } you might see…</h2> <div class="collection"> ${all_species_data.results.map(s => `<div class="species"><h3 class="species-name">${s.taxon.name}</h3> <p class="species-count">Seen ${s.count} times</p> <img src="${s.taxon.default_photo.medium_url}"></div> `)} </div> These few lines of HTML are all you need to get this exciting dynamic guide to what Nudibranchs you will see in each month! ​ Play with it yourself in this Observable Notebook. Conclusion I hope by playing with these examples you have an idea of how powerful it can be to prototype using Observable Notebooks and how you can use the incredible crowdsourced community data and APIs from iNaturalist to augment your naturalist skills and impress your friends with your new ‘knowledge of nature’ superpower. Lastly I strongly encourage you to get outside on a low tide to explore your local rocky intertidal habitat, and all the amazing critters that live there. Here is a great introduction video to tidepooling / rockpooling, by Rebecca Johnson and Alison Young from the California Academy of Sciences. 2018 Natalie Downe nataliedowne 2018-12-18T00:00:00+00:00 https://24ways.org/2018/observable-notebooks-and-inaturalist/ code
257 The (Switch)-Case for State Machines in User Interfaces You’re tasked with creating a login form. Email, password, submit button, done. “This will be easy,” you think to yourself. Login form by Selecto You’ve made similar forms many times in the past; it’s essentially muscle memory at this point. You’re working closely with a designer, who gives you a beautiful, detailed mockup of a login form. Sure, you’ll have to translate the pixels to meaningful, responsive CSS values, but that’s the least of your problems. As you’re writing up the HTML structure and CSS layout and styles for this form, you realize that you don’t know what the successful “logged in” page looks like. You remind the designer, who readily gives it to you. But then you start thinking more and more about how the login form is supposed to work. What if login fails? Where do those errors show up? Should we show errors differently if the user forgot to enter their email, or password, or both? Or should the submit button be disabled? Should we validate the email field? When should we show validation errors – as they’re typing their email, or when they move to the password field, or when they click submit? (Note: many, many login forms are guilty of this.) When should the errors disappear? What do we show during the login process? Some loading spinner? What if loading takes too long, or a server error occurs? Many more questions come up, and you (and your designer) are understandably frustrated. The lack of upfront specification opens the door to scope creep, which readily finds itself at home in all the unexplored edge cases. Modeling Behavior Describing all the possible user flows and business logic of an application can become tricky. Ironically, user stories might not tell the whole story – they often leave out potential edge-cases or small yet important bits of information. However, one important (and very old) mathematical model of computation can be used for describing the behavior and all possible states of a user interface: the finite state machine. The general idea, as it applies to user interfaces, is that all of our applications can be described (at some level of abstraction) as being in one, and only one, of a finite number of states at any given time. For example, we can describe our login form above in these states: start - not submitted yet loading - submitted and logging in success - successfully logged in error - login failed Additionally, we can describe an application as accepting a finite number of events – that is, all the possible events that can be “sent” to the application, either from the user or some other external entity: SUBMIT - pressing the submit button RESOLVE - the server responds, indicating that login is successful REJECT - the server responds, indicating that login failed Then, we can combine these states and events to describe the transitions between them. That is, when the application is in one state, an an event occurs, we can specify what the next state should be: From the start state, when the SUBMIT event occurs, the app should be in the loading state. From the loading state, when the RESOLVE event occurs, login succeeded and the app should be in the success state. If login fails from the loading state (i.e., when the REJECT event occurs), the app should be in the error state. From the error state, the user should be able to retry login: when the SUBMIT event occurs here, the app should go to the loading state. Otherwise, if any other event occurs, don’t do anything and stay in the same state. That’s a pretty thorough description, similar to a user story! It’s also a bit more symbolic than a user story (e.g., “when the SUBMIT event occurs” instead of “when the user presses the submit button”), and that’s for a reason. By representing states, events, and transitions symbolically, we can visualize what this state machine looks like: Every state is represented by a box, and every event is connected to a transition arrow that connects two states. This makes it intuitive to follow the flow and understand what the next state should be given the current state and an event. From Visuals to Code Drawing a state machine doesn’t require any special software; in fact, using paper and pencil (in case anything changes!) does the job quite nicely. However, one common problem is handoff: it doesn’t matter how detailed a user story or how well-designed a visualization is, it eventually has to be coded in order for it to become part of a real application. With the state machine model described above, the same visual description can be mapped directly to code. Traditionally, and as the title suggests, this is done using switch/case statements: function loginMachine(state, event) { switch (state) { case 'start': if (event === 'SUBMIT') { return 'loading'; } break; case 'loading': if (event === 'RESOLVE') { return 'success'; } else if (event === 'REJECT') { return 'error'; } break; case 'success': // Accept no further events break; case 'error': if (event === 'SUBMIT') { return 'loading'; } break; default: // This should never occur return undefined; } } console.log(loginMachine('start', 'SUBMIT')); // => 'loading' This is fine (I suppose) but personally, I find it much easier to use objects: const loginMachine = { initial: "start", states: { start: { on: { SUBMIT: 'loading' } }, loading: { on: { REJECT: 'error', RESOLVE: 'success' } }, error: { on: { SUBMIT: 'loading' } }, success: {} } }; function transition(state, event) { return machine .states[state] // Look up the state .on[event] // Look up the next state based on the event || state; // If not found, return the current state } console.log(transition('start', 'SUBMIT')); As you might have noticed, the loginMachine is a plain JS object, and can be written in JSON. This is important because it allows the machine to be visualized by a 3rd-party tool, as demonstrated here: A Common Language Between Designers and Developers Although finite state machines are a fundamental part of computer science, they have an amazing potential to bridge the application specification gap between designers and developers, as well as project managers, stakeholders, and more. By designing a state machine visually and with code, designers and developers alike can: identify all possible states, and potentially missing states describe exactly what should happen when an event occurs on a given state, and prevent that event from having unintended side-effects in other states (ever click a submit button more than once?) eliminate impossible states and identify states that are “unreachable” (have no entry transition) or “sunken” (have no exit transition) add features with full confidence of knowing what other states it might affect simplify redundant states or complex user flows create test paths for almost every possible user flow, and easily identify edge cases collaborate better by understanding the entire application model equally. Not a New Idea I’m not the first to suggest that state machines can help bridge the gap between design and development. Vince MingPu Shao wrote an article about designing UI states and communicating with developers effectively with finite state machines User flow diagrams, which visually describe the paths that a user can take through an app to achieve certain goals, are essentially state machines. Numerous tools, from Sketch plugins to standalone apps, exist for creating them. In 1999, Ian Horrocks wrote a book titled “Constructing the User Interface with Statecharts”, which takes state machines to the next level and describes the inherent difficulties (and solutions) with creating complex UIs. The ideas in the book are still relevant today. More than a decade earlier, David Harel published “Statecharts: A Visual Formalism for Complex Systems”, in which the statechart - an extended hierarchical state machine model - is born. State machines and statecharts have been used for complex systems and user interfaces, both physical and digital, for decades, and are especially prevalent in other industries, such as game development and embedded electronic systems. Even NASA uses statecharts for the Curiosity Rover and more, citing many benefits: Visualized modeling Precise diagrams Automatic code generation Comprehensive test coverage Accommodation of late-breaking requirements changes Moving Forward It’s time that we improve how we communicate between designers and developers, much less improve the way we develop UIs to deliver the best, bug-free, optimal user experience. There is so much more to state machines and statecharts than just being a different way of designing and coding. For more resources: The World of Statecharts is a comprehensive guide by Erik Mogensen in using statecharts in your applications The Statechart Community on Spectrum is always full of interesting ideas and questions related to state machines, statecharts, and software modeling I gave a talk at React Rally over a year ago about how state machines (finite automata) can improve the way we develop applications. The latest one is from Reactive Conf, where I demonstrate how statecharts can be used to automatically generate test cases. I have also been working on XState, which is a library for “state machines and statecharts for the modern web”. You can create and visualize statecharts in JavaScript, and use them in any framework (and soon enough, multiple different languages). I’m excited about the future of developing web and mobile applications with statecharts, especially with regard to faster design/development cycles, auto-generated testing, better error prevention, comprehensive analytics, and even the use of model-based reinforcement learning and artificial intelligence to greatly improve the user experience. 2018 David Khourshid davidkhourshid 2018-12-12T00:00:00+00:00 https://24ways.org/2018/state-machines-in-user-interfaces/ code
258 Mistletoe Offline It’s that time of year, when we gather together as families to celebrate the life of the greatest person in history. This man walked the Earth long before us, but he left behind words of wisdom. Those words can guide us every single day, but they are at the forefront of our minds during this special season. I am, of course, talking about Murphy, and the golden rule he gave unto us: Anything that can go wrong will go wrong. So true! I mean, that’s why we make sure we’ve got nice 404 pages. It’s not that we want people to ever get served a File Not Found message, but we acknowledge that, despite our best efforts, it’s bound to happen sometime. Murphy’s Law, innit? But there are some Murphyesque situations where even your lovingly crafted 404 page won’t help. What if your web server is down? What if someone is trying to reach your site but they lose their internet connection? These are all things than can—and will—go wrong. I guess there’s nothing we can do about those particular situations, right? Wrong! A service worker is a Murphy-battling technology that you can inject into a visitor’s device from your website. Once it’s installed, it can intercept any requests made to your domain. If anything goes wrong with a request—as is inevitable—you can provide instructions for the browser. That’s your opportunity to turn those server outage frowns upside down. Take those network connection lemons and make network connection lemonade. If you’ve got a custom 404 page, why not make a custom offline page too? Get your server in order Step one is to make …actually, wait. There’s a step before that. Step zero. Get your site running on HTTPS, if it isn’t already. You won’t be able to use a service worker unless everything’s being served over HTTPS, which makes sense when you consider the awesome power that a service worker wields. If you’re developing locally, service workers will work fine for localhost, even without HTTPS. But for a live site, HTTPS is a must. Make an offline page Alright, assuming your site is being served over HTTPS, then step one is to create an offline page. Make it as serious or as quirky as is appropriate for your particular brand. If the website is for a restaurant, maybe you could put the telephone number and address of the restaurant on the custom offline page (unsolicited advice: you could also put this on the home page, you know). Here’s an example of the custom offline page for this year’s Ampersand conference. When you’re done, publish the offline page at suitably imaginative URL, like, say /offline.html. Pre-cache your offline page Now create a JavaScript file called serviceworker.js. This is the script that the browser will look to when certain events are triggered. The first event to handle is what to do when the service worker is installed on the user’s device. When that happens, an event called install is fired. You can listen out for this event using addEventListener: addEventListener('install', installEvent => { // put your instructions here. }); // end addEventListener In this case, you want to make sure that your lovingly crafted custom offline page is put into a nice safe cache. You can use the Cache API to do this. You get to create as many caches as you like, and you can call them whatever you want. Here, I’m going to call the cache Johnny just so I can refer to it as JohnnyCache in the code: addEventListener('install', installEvent => { installEvent.waitUntil( caches.open('Johnny') .then( JohnnyCache => { JohnnyCache.addAll([ '/offline.html' ]); // end addAll }) // end open.then ); // end waitUntil }); // end addEventListener I’m betting that your lovely offline page is linking to a CSS file, maybe an image or two, and perhaps some JavaScript. You can cache all of those at this point: addEventListener('install', installEvent => { installEvent.waitUntil( caches.open('Johnny') .then( JohnnyCache => { JohnnyCache.addAll([ '/offline.html', '/path/to/stylesheet.css', '/path/to/javascript.js', '/path/to/image.jpg' ]); // end addAll }) // end open.then ); // end waitUntil }); // end addEventListener Make sure that the URLs are correct. If just one of the URLs in the list fails to resolve, none of the items in the list will be cached. Intercept requests The next event you want to listen for is the fetch event. This is probably the most powerful—and, let’s be honest, the creepiest—feature of a service worker. Once it has been installed, the service worker lurks on the user’s device, waiting for any requests made to your site. Every time the user requests a web page from your site, a fetch event will fire. Every time that page requests a style sheet or an image, a fetch event will fire. You can provide instructions for what should happen each time: addEventListener('fetch', fetchEvent => { // What happens next is up to you! }); // end addEventListener Let’s write a fairly conservative script with the following logic: Whenever a file is requested, First, try to fetch it from the network, But if that doesn’t work, try to find it in the cache, But if that doesn’t work, and it’s a request for a web page, show the custom offline page instead. Here’s how that translates into JavaScript: // Whenever a file is requested addEventListener('fetch', fetchEvent => { const request = fetchEvent.request; fetchEvent.respondWith( // First, try to fetch it from the network fetch(request) .then( responseFromFetch => { return responseFromFetch; }) // end fetch.then // But if that doesn't work .catch( fetchError => { // try to find it in the cache caches.match(request) .then( responseFromCache => { if (responseFromCache) { return responseFromCache; // But if that doesn't work } else { // and it's a request for a web page if (request.headers.get('Accept').includes('text/html')) { // show the custom offline page instead return caches.match('/offline.html'); } // end if } // end if/else }) // end match.then }) // end fetch.catch ); // end respondWith }); // end addEventListener I am fully aware that I may have done some owl-drawing there. If you need a more detailed breakdown of what’s happening at each point in the code, I’ve written a whole book for you. It’s the perfect present for Murphymas. Hook up your service worker script You can publish your service worker script at /serviceworker.js but you still need to tell the browser where to look for it. You can do that using JavaScript. Put this in an existing JavaScript file that you’re calling in to every page on your site, or add this in a script element at the end of every page’s HTML: if (navigator.serviceWorker) { navigator.serviceWorker.register('/serviceworker.js'); } That tells the browser to start installing the service worker, but not without first checking that the browser understands what a service worker is. When it comes to JavaScript, feature detection is your friend. You might already have some JavaScript files in a folder like /assets/js/ and you might be tempted to put your service worker script in there too. Don’t do that. If you do, the service worker will only be able to handle requests made to for files within /assets/js/. By putting the service worker script in the root directory, you’re making sure that every request can be intercepted. Go further! Nicely done! You’ve made sure that if—no, when—a visitor can’t reach your website, they’ll get your hand-tailored offline page. You have temporarily defeated the forces of chaos! You have briefly fought the tide of entropy! You have made a small but ultimately futile gesture against the inevitable heat-death of the universe! This is just the beginning. You can do more with service workers. What if, every time you fetched a page from the network, you stored a copy of that page in a cache? Then if that person tries to reach that page later, but they’re offline, you could show them the cached version. Or, what if instead of reaching out the network first, you checked to see if a file is in the cache first? You could serve up that cached version—which would be blazingly fast—and still fetch a fresh version from the network in the background to pop in the cache for next time. That might be a good strategy for images. So many options! The hard part isn’t writing the code, it’s figuring out the steps you want to take. Once you’ve got those steps written out, then it’s a matter of translating them into JavaScript. Inevitably there will be some obstacles along the way—usually it’s a misplaced curly brace or a missing parenthesis. Don’t be too hard on yourself if your code doesn’t work at first. That’s just Murphy’s Law in action. 2018 Jeremy Keith jeremykeith 2018-12-04T00:00:00+00:00 https://24ways.org/2018/mistletoe-offline/ code
260 The Art of Mathematics: A Mandala Maker Tutorial In front-end development, there’s often a great deal of focus on tools that aim to make our work more efficient. But what if you’re new to web development? When you’re just starting out, the amount of new material can be overwhelming, particularly if you don’t have a solid background in Computer Science. But the truth is, once you’ve learned a little bit of JavaScript, you can already make some pretty impressive things. A couple of years back, when I was learning to code, I started working on a side project. I wanted to make something colorful and fun to share with my friends. This is what my app looks like these days: Mandala Maker user interface The coolest part about it is the fact that it’s a tool: anyone can use it to create something original and brand new. In this tutorial, we’ll build a smaller version of this app – a symmetrical drawing tool in ES5, JavaScript and HTML5. The tutorial app will have eight reflections, a color picker and a Clear button. Once we’re done, you’re on your own and can tweak it as you please. Be creative! Preparations: a blank canvas The first thing you’ll need for this project is a designated drawing space. We’ll use the HTML5 canvas element and give it a width and a height of 600px (you can set the dimensions to anything else if you like). Files Create 3 files: index.html, styles.css, main.js. Don’t forget to include your JS and CSS files in your HTML. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <link rel="stylesheet" type="text/css" href="style.css"> <script src="main.js"></script> </head> <body onload="init()"> <canvas width="600" height="600"> <p>Your browser doesn't support canvas.</p> </canvas> </body> </html> I’ll ask you to update your HTML file at a later point, but the CSS file we’ll start with will stay the same throughout the project. This is the full CSS we are going to use: body { background-color: #ccc; text-align: center; } canvas { touch-action: none; background-color: #fff; } button { font-size: 110%; } Next steps We are done with our preparations and ready to move on to the actual tutorial, which is made up of 4 parts: Building a simple drawing app with one line and one color Adding a Clear button and a color picker Adding more functionality: 2 line drawing (add the first reflection) Adding more functionality: 8 line drawing (add 6 more reflections!) Interactive demos This tutorial will be accompanied by four CodePens, one at the end of each section. In my own app I originally used mouse events, and only added touch events when I realized mobile device support was (A) possible, and (B) going to make my app way more accessible. For the sake of code simplicity, I decided that in this tutorial app I will only use one event type, so I picked a third option: pointer events. These are supported by some desktop browsers and some mobile browsers. An up-to-date version of Chrome is probably your best bet. Part 1: A simple drawing app Let’s get started with our main.js file. Our basic drawing app will be made up of 6 functions: init, drawLine, stopDrawing, recordPointerLocation, handlePointerMove, handlePointerDown. It also has nine variables: var canvas, context, w, h, prevX = 0, currX = 0, prevY = 0, currY = 0, draw = false; The variables canvas and context let us manipulate the canvas. w is the canvas width and h is the canvas height. The four coordinates are used for tracking the current and previous location of the pointer. A short line is drawn between (prevX, prevY) and (currX, currY) repeatedly many times while we move the pointer upon the canvas. For your drawing to appear, three conditions must be met: the pointer (be it a finger, a trackpad or a mouse) must be down, it must be moving and the movement has to be on the canvas. If these three conditions are met, the boolean draw is set to true. 1. init Responsible for canvas set up, this listens to pointer events and the location of their coordinates and sets everything in motion by calling other functions, which in turn handle touch and movement events. function init() { canvas = document.querySelector("canvas"); context = canvas.getContext("2d"); w = canvas.width; h = canvas.height; canvas.onpointermove = handlePointerMove; canvas.onpointerdown = handlePointerDown; canvas.onpointerup = stopDrawing; canvas.onpointerout = stopDrawing; } 2. drawLine This is called to action by handlePointerMove() and draws the pointer path. It only runs if draw = true. It uses canvas methods you can read about in the canvas API documentation. You can also learn to use the canvas element in this tutorial. lineWidth and linecap set the properties of our paint brush, or digital pen, but pay attention to beginPath and closePath. Between those two is where the magic happens: moveTo and lineTo take canvas coordinates as arguments and draw from (a,b) to (c,d), which is to say from (prevX,prevY) to (currX,currY). function drawLine() { var a = prevX, b = prevY, c = currX, d = currY; context.lineWidth = 4; context.lineCap = "round"; context.beginPath(); context.moveTo(a, b); context.lineTo(c, d); context.stroke(); context.closePath(); } 3. stopDrawing This is used by init when the pointer is not down (onpointerup) or is out of bounds (onpointerout). function stopDrawing() { draw = false; } 4. recordPointerLocation This tracks the pointer’s location and stores its coordinates. Also, you need to know that in computer graphics the origin of the coordinate space (0,0) is at the top left corner, and all elements are positioned relative to it. When we use canvas we are dealing with two coordinate spaces: the browser window and the canvas itself. This function converts between the two: it subtracts the canvas offsetLeft and offsetTop so we can later treat the canvas as the only coordinate space. If you are confused, read more about it. function recordPointerLocation(e) { prevX = currX; prevY = currY; currX = e.clientX - canvas.offsetLeft; currY = e.clientY - canvas.offsetTop; } 5. handlePointerMove This is set by init to run when the pointer moves. It checks if draw = true. If so, it calls recordPointerLocation to get the path and drawLine to draw it. function handlePointerMove(e) { if (draw) { recordPointerLocation(e); drawLine(); } } 6. handlePointerDown This is set by init to run when the pointer is down (finger is on touchscreen or mouse it clicked). If it is, calls recordPointerLocation to get the path and sets draw to true. That’s because we only want movement events from handlePointerMove to cause drawing if the pointer is down. function handlePointerDown(e) { recordPointerLocation(e); draw = true; } Finally, we have a working drawing app. But that’s just the beginning! See the Pen Mandala Maker Tutorial: Part 1 by Hagar Shilo (@hagarsh) on CodePen. Part 2: Add a Clear button and a color picker Now we’ll update our HTML file, adding a menu div with an input of the type and class color and a button of the class clear. <body onload="init()"> <canvas width="600" height="600"> <p>Your browser doesn't support canvas.</p> </canvas> <div class="menu"> <input type="color" class="color" /> <button type="button" class="clear">Clear</button> </div> </body> Color picker This is our new color picker function. It targets the input element by its class and gets its value. function getColor() { return document.querySelector(".color").value; } Up until now, the app used a default color (black) for the paint brush/digital pen. If we want to change the color we need to use the canvas property strokeStyle. We’ll update drawLine by adding strokeStyle to it and setting it to the input value by calling getColor. function drawLine() { //...code... context.strokeStyle = getColor(); context.lineWidth = 4; context.lineCap = "round"; //...code... } Clear button This is our new Clear function. It responds to a button click and displays a dialog asking the user if she really wants to delete the drawing. function clearCanvas() { if (confirm("Want to clear?")) { context.clearRect(0, 0, w, h); } } The method clearRect takes four arguments. The first two (0,0) mark the origin, which is actually the top left corner of the canvas. The other two (w,h) mark the full width and height of the canvas. This means the entire canvas will be erased, from the top left corner to the bottom right corner. If we were to give clearRect a slightly different set of arguments, say (0,0,w/2,h), the result would be different. In this case, only the left side of the canvas would clear up. Let’s add this event handler to init: function init() { //...code... canvas.onpointermove = handleMouseMove; canvas.onpointerdown = handleMouseDown; canvas.onpointerup = stopDrawing; canvas.onpointerout = stopDrawing; document.querySelector(".clear").onclick = clearCanvas; } See the Pen Mandala Maker Tutorial: Part 2 by Hagar Shilo (@hagarsh) on CodePen. Part 3: Draw with 2 lines It’s time to make a line appear where no pointer has gone before. A ghost line! For that we are going to need four new coordinates: a', b', c' and d' (marked in the code as a_, b_, c_ and d_). In order for us to be able to add the first reflection, first we must decide if it’s going to go over the y-axis or the x-axis. Since this is an arbitrary decision, it doesn’t matter which one we choose. Let’s go with the x-axis. Here is a sketch to help you grasp the mathematics of reflecting a point across the x-axis. The coordinate space in my sketch is different from my explanation earlier about the way the coordinate space works in computer graphics (more about that in a bit!). Now, look at A. It shows a point drawn where the pointer hits, and B shows the additional point we want to appear: a reflection of the point across the x-axis. This is our goal. A sketch illustrating the mathematics of reflecting a point. What happens to the x coordinates? The variables a/a' and c/c' correspond to prevX and currX respectively, so we can call them “the x coordinates”. We are reflecting across x, so their values remain the same, and therefore a' = a and c' = c. What happens to the y coordinates? What about b' and d'? Those are the ones that have to change, but in what way? Thanks to the slightly misleading sketch I showed you just now (of A and B), you probably think that the y coordinates b' and d' should get the negative values of b and d respectively, but nope. This is computer graphics, remember? The origin is at the top left corner and not at the canvas center, and therefore we get the following values: b = h - b, d' = h - d, where h is the canvas height. This is the new code for the app’s variables and the two lines: the one that fills the pointer’s path and the one mirroring it across the x-axis. function drawLine() { var a = prevX, a_ = a, b = prevY, b_ = h-b, c = currX, c_ = c, d = currY, d_ = h-d; //... code ... // Draw line #1, at the pointer's location context.moveTo(a, b); context.lineTo(c, d); // Draw line #2, mirroring the line #1 context.moveTo(a_, b_); context.lineTo(c_, d_); //... code ... } In case this was too abstract for you, let’s look at some actual numbers to see how this works. Let’s say we have a tiny canvas of w = h = 10. Now let a = 3, b = 2, c = 4 and d = 3. So b' = 10 - 2 = 8 and d' = 10 - 3 = 7. We use the top and the left as references. For the y coordinates this means we count from the top, and 8 from the top is also 2 from the bottom. Similarly, 7 from the top is 3 from the bottom of the canvas. That’s it, really. This is how the single point, and a line (not necessarily a straight one, by the way) is made up of many, many small segments that are similar to point in behavior. If you are still confused, I don’t blame you. Here is the result. Draw something and see what happens. See the Pen Mandala Maker Tutorial: Part 3 by Hagar Shilo (@hagarsh) on CodePen. Part 4: Draw with 8 lines I have made yet another confusing sketch, with points C and D, so you understand what we’re trying to do. Later on we’ll look at points E, F, G and H as well. The circled point is the one we’re adding at each particular step. The circled point at C has the coordinates (-3,2) and the circled point at D has the coordinates (-3,-2). Once again, keep in mind that the origin in the sketches is not the same as the origin of the canvas. A sketch illustrating points C and D. This is the part where the math gets a bit mathier, as our drawLine function evolves further. We’ll keep using the four new coordinates: a', b', c' and d', and reassign their values for each new location/line. Let’s add two more lines in two new locations on the canvas. Their locations relative to the first two lines are exactly what you see in the sketch above, though the calculation required is different (because of the origin points being different). function drawLine() { //... code ... // Reassign values a_ = w-a; b_ = b; c_ = w-c; d_ = d; // Draw the 3rd line context.moveTo(a_, b_); context.lineTo(c_, d_); // Reassign values a_ = w-a; b_ = h-b; c_ = w-c; d_ = h-d; // Draw the 4th line context.moveTo(a_, b_); context.lineTo(c_, d_); //... code ... What is happening? You might be wondering why we use w and h as separate variables, even though we know they have the same value. Why complicate the code this way for no apparent reason? That’s because we want the symmetry to hold for a rectangular canvas as well, and this way it will. Also, you may have noticed that the values of a' and c' are not reassigned when the fourth line is created. Why write their value assignments twice? It’s for readability, documentation and communication. Maintaining the quadruple structure in the code is meant to help you remember that all the while we are dealing with two y coordinates (current and previous) and two x coordinates (current and previous). What happens to the x coordinates? As you recall, our x coordinates are a (prevX) and c (currX). For the third line we are adding, a' = w - a and c' = w - c, which means… For the fourth line, the same thing happens to our x coordinates a and c. What happens to the y coordinates? As you recall, our y coordinates are b (prevY) and d (currY). For the third line we are adding, b' = b and d' = d, which means the y coordinates are the ones not changing this time, making this is a reflection across the y-axis. For the fourth line, b' = h - b and d' = h - d, which we’ve seen before: that’s a reflection across the x-axis. We have four more lines, or locations, to define. Note: the part of the code that’s responsible for drawing a micro-line between the newly calculated coordinates is always the same: context.moveTo(a_, b_); context.lineTo(c_, d_); We can leave it out of the next code snippets and just focus on the calculations, i.e, the reassignments. Once again, we need some concrete examples to see where we’re going, so here’s another sketch! The circled point E has the coordinates (2,3) and the circled point F has the coordinates (2,-3). The ability to draw at A but also make the drawing appear at E and F (in addition to B, C and D that we already dealt with) is the functionality we are about to add to out code. A sketch illustrating points E and F. This is the code for E and F: // Reassign for 5 a_ = w/2+h/2-b; b_ = w/2+h/2-a; c_ = w/2+h/2-d; d_ = w/2+h/2-c; // Reassign for 6 a_ = w/2+h/2-b; b_ = h/2-w/2+a; c_ = w/2+h/2-d; d_ = h/2-w/2+c; Their x coordinates are identical and their y coordinates are reversed to one another. This one will be out final sketch. The circled point G has the coordinates (-2,3) and the circled point H has the coordinates (-2,-3). A sketch illustrating points G and H. This is the code: // Reassign for 7 a_ = w/2-h/2+b; b_ = w/2+h/2-a; c_ = w/2-h/2+d; d_ = w/2+h/2-c; // Reassign for 8 a_ = w/2-h/2+b; b_ = h/2-w/2+a; c_ = w/2-h/2+d; d_ = h/2-w/2+c; //...code... } Once again, the x coordinates of these two points are the same, while the y coordinates are different. And once again I won’t go into the full details, since this has been a long enough journey as it is, and I think we’ve covered all the important principles. But feel free to play around with the code and change it. I really recommend commenting out the code for some of the points to see what your drawing looks like without them. I hope you had fun learning! This is our final app: See the Pen Mandala Maker Tutorial: Part 4 by Hagar Shilo (@hagarsh) on CodePen. 2018 Hagar Shilo hagarshilo 2018-12-02T00:00:00+00:00 https://24ways.org/2018/the-art-of-mathematics/ code
263 Securing Your Site like It’s 1999 Running a website in the early years of the web was a scary business. The web was an evolving medium, and people were finding new uses for it almost every day. From book stores to online auctions, the web was an expanding universe of new possibilities. As the web evolved, so too did the knowledge of its inherent security vulnerabilities. Clever tricks that were played on one site could be copied on literally hundreds of other sites. It was a normal sight to log in to a website to find nothing working because someone had breached its defences and deleted its database. Lessons in web security in those days were hard-earned. What follows are examples of critical mistakes that brought down several early websites, and how you can help protect yourself and your team from the same fate. Bad input validation: Trusting anything the user sends you Our story begins in the most unlikely place: Animal Crossing. Animal Crossing was a 2001 video game set in a quaint town, filled with happy-go-lucky inhabitants that co-exist peacefully. Like most video games, Animal Crossing was the subject of many fan communities on the early web. One such unofficial web forum was dedicated to players discussing their adventures in Animal Crossing. Players could trade secrets, ask for help, and share pictures of their virtual homes. This might sound like a model community to you, but you would be wrong. One day, a player discovered a hidden field in the forum’s user profile form. Normally, this page allows users to change their name, their password, or their profile photo. This person discovered that the hidden field contained their unique user ID, which identifies them when the forum’s backend saves profile changes to its database. They discovered that by modifying the form to change the user ID, they could make changes to any other player’s profile. Needless to say, this idyllic online community descended into chaos. Users changed each other’s passwords, deleted each other’s messages, and attacked each-other under the cover of complete anonymity. What happened? There aren’t any official rules for developing software on the web. But if there were, my golden rule would be: Never trust user input. Ever. Always ask yourself how users will send you data that isn’t what it seems to be. If the nicest community of gamers playing the happiest game on earth can turn on each other, nowhere on the web is safe. Make sure you validate user input to make sure it’s of the correct type (e.g. string, number, JSON string) and that it’s the length that you were expecting. Don’t forget that user input doesn’t become safe once it is stored in your database; any data that originates from outside your network can still be dangerous and must be escaped before it is inserted into HTML. Make sure to check a user’s actions against what they are allowed to do. Create a clear access control policy that defines what actions a user may take, and to whose data they are allowed access to. For example, a newly-registered user should not be allowed to change the user profile of a web forum’s owner. Finally, never rely on client-side validation. Validating user input in the browser is a convenience to the user, not a security measure. Always assume the user has full control over any data sent from the browser and make sure you validate any data sent to your backend from the outside world. SQL injection: Allowing the user to run their own database queries A long time ago, my favourite website was a web forum dedicated to the Final Fantasy video game series. Like the users of the Animal Crossing forum, I’d while away many hours arguing with other people on the internet about my favourite characters, my favourite stories, and the greatest controversies of the day. One day, I noticed people were acting strangely. Users were being uncharacteristically nasty and posting in private areas of the forum they wouldn’t normally have access to. Then messages started disappearing, and user accounts for well-respected people were banned. It turns out someone had discovered a way of logging in to any other user account, using a secret password that allowed them to do literally anything they wanted. What was this password that granted untold power to those who wielded it? ' OR '1'='1 SQL is a computer language that is used to query databases. When you fill out a login form, just like the one above, your username and your password are usually inserted into an SQL query like this: SELECT COUNT(*) FROM USERS WHERE USERNAME='Alice' AND PASSWORD='hunter2' This query selects users from the database that match the username Alice and the password hunter2. If there is at least one user matching record, the user will be granted access. Let’s see what happens when we use our magic password instead! SELECT COUNT(*) FROM USERS WHERE USERNAME='Admin' AND PASSWORD='' OR '1'='1' Does the password look like part of the query to you? That’s because it is! This password is a deliberate attempt to inject our own SQL into the query, hence the term SQL injection. The query is now looking for users matching the username Admin, with a password that is blank, or 1=1. In an SQL query, 1=1 is always true, which makes this query select every single record in the database. As long as the forum software is checking for at least one matching user, it will grant the person logging in access. This password will work for any user registered on the forum! So how can you protect yourself from SQL injection? Never build SQL queries by concatenating strings. Instead, use parameterised query tools. PHP offers prepared statements, and Node.JS has the knex package. Alternatively, you can use an ORM tool, such as Propel or sequelize. Expert help in the form of language features or software tools is a key ally for securing your code. Get all the help you can! Cross site request forgery: Getting other users to do your dirty work for you Do you remember Netflix? Not the Netflix we have now, the Netflix that used to rent you DVDs by mailing them to you. My next story is about how someone managed to convince Netflix users to send him their DVDs - free of charge. Have you ever clicked on a hyperlink, only to find something that you weren’t expecting? If you were lucky, you might have just gotten Rickrolled. If you were unlucky… Let’s just say there are older and fouler things than Rick Astley in the dark places of the web. What if you could convince people to visit a page you controlled? And what if those people were Netflix users, and they were logged in? In 2006, Dave Ferguson did just that. He created a harmless-looking page with an image on it: <img src="http://www.netflix.com/JSON/AddToQueue?movieid=70110672" /> Did you notice the source URL of the image? It’s deliberately crafted to add a particular DVD to your queue. Sprinkle in a few more requests to change the user’s name and shipping address, and you could ship yourself DVDs completely free of charge! This attack is possible when websites unconditionally trust a user’s session cookies without checking where HTTP requests come from. The first check you can make is to verify that a request’s origin and referer headers match the location of the website. These headers can’t be programmatically set. Another check you can use is to add CSRF tokens to your web forms, to verify requests have come from an actual form on your website. Tokens are long, unpredictable, unique strings that are generated by your server and inserted into web forms. When users complete a form, the form data sent to the server can be checked for a recently generated token. This is an effective deterrent of CSRF attacks because CSRF tokens aren’t stored in cookies. You can also set SameSite=Strict when setting cookies with the Set-Cookie HTTP header. This communicates to browsers that cookies are not to be sent with cross-site requests. This is a relatively new feature, though it is well supported in evergreen browsers. Cross site scripting: Someone else’s code running on your website In 2005, Samy Kamkar became famous for having lots of friends. Lots and lots of friends. Samy enjoyed using MySpace which, at the time, was the world’s largest social network. Social networks at that time were more limited than today. For instance, MySpace let you upload photos to your photo gallery, but capped the limit at twelve. Twelve photos. At least you didn’t have to wade through photos of avocado toast back then… Samy discovered that MySpace also locked down the kinds of content that you could post on your MySpace page. He discovered he could inject <img /> and <div /> tags into his headline, but <script /> was filtered. MySpace wasn’t about to let someone else run their own code on MySpace. Intrigued, Samy set about finding out exactly what he could do with <img /> and <div /> tags. He found that you could add style properties to <div /> tags to style them with CSS. <div style="background:url('javascript:alert(1)')"> This code only worked in Internet Explorer and in some versions of Safari, but that was plenty of people to befriend. However, MySpace was prepared for this: they also filtered the word javascript from <div />. <div style="background:url('java script:alert(1)')"> Samy discovered that by inserting a line break into his code, MySpace would not filter out the word javascript. The browser would continue to run the code just fine! Samy had now broken past MySpace’s first line of defence and was able to start running code on his profile page. Now he started looking at what he could do with that code. alert(document.body.innerHTML) Samy wondered if he could inspect the page’s source to find the details of other MySpace users to befriend. To do this, you would normally use document.body.innerHTML, but MySpace had filtered this too. alert(eval('document.body.inne' + 'rHTML')) This isn’t a problem if you build up JavaScript code inside a string and execute it using the eval() function. This trick also worked with XMLHttpRequest.onReadyStateChange, which allowed Samy to send friend requests to the MySpace API and install the JavaScript code on his new friends’ pages. One final obstacle stood in his way. The same origin policy is a security mechanism that prevents scripts hosted on one domain interacting with sites hosted on another domain. if (location.hostname == 'profile.myspace.com') { document.location = 'http://www.myspace.com' + location.pathname + location.search } Samy discovered that only the http://www.myspace.com domain would accept his API requests, and requests from http://profile.myspace.com were being blocked by the browser’s same-origin policy. By redirecting the browser to http://www.myspace.com, he discovered that he could load profile pages and successfully make requests to MySpace’s API. Samy installed this code on his profile page, and he waited. Over the course of the next day, over a million people unwittingly installed Samy’s code into their MySpace profile pages and invited their friends. The load of friend requests on MySpace was so large that the site buckled and shut down. It took them two hours to remove Samy’s code and patch the security holes he exploited. Samy was raided by the United States secret service and sentenced to do 90 days of community service. This is the power of installing a little bit of JavaScript on someone else’s website. It is called cross site scripting, and its effects can be devastating. It is suspected that cross-site scripting was to blame for the 2018 British Airways breach that leaked the credit card details of 380,000 people. So how can you help protect yourself from cross-site scripting? Always sanitise user input when it comes in, using a library such as sanitize-html. Open source tools like this benefit from hundreds of hours of work from dozens of experienced contributors. Don’t be tempted to roll your own protection. MySpace was prepared, but they were not prepared enough. It makes no sense to turn this kind of help down. You can also use an auto-escaping templating language to make sure nobody else’s HTML can get into your pages. Both Angular and React will do this for you, and they are extremely convenient to use. You should also implement a content security policy to restrict the domains that content like scripts and stylesheets can be loaded from. Loading content from sites not under your control is a significant security risk, and you should use a CSP to lock this down to only the sources you trust. CSP can also block the use of the eval() function. For content not under your control, consider setting up sub-resource integrity protection. This allows you to add hashes to stylesheets and scripts you include on your website. Hashes are like fingerprints for digital files; if the content changes, so does the fingerprint. Adding hashes will allow your browser to keep your site safe if the content changes without you knowing. npm audit: Protecting yourself from code you don’t own JavaScript and npm run the modern web. Together, they make it easy to take advantage of the world’s largest public registry of open source software. How do you protect yourself from code written by someone you’ve never met? Enter npm audit. npm audit reviews the security of your website’s dependency tree. You can start using it by upgrading to the latest version of npm: npm install npm -g npm audit When you run npm audit, npm submits a description of your dependencies to the Registry, which returns a report of known vulnerabilities for the packages you have installed. If your website has a known cross-site scripting vulnerability, npm audit will tell you about it. What’s more, if the vulnerability has been patched, running npm audit fix will automatically install the patched package for you! Securing your site like it’s 2019 The truth is that since the early days of the web, the stakes of a security breach have become much, much higher. The web is so much more than fandom and mailing DVDs - online banking is now mainstream, social media and dating websites store intimate information about our personal lives, and we are even inviting the internet into our homes. However, we have powerful new allies helping us stay safe. There are more resources than ever before to teach us how to write secure code. Tools like Angular and React are designed with security features baked-in from the start. We have a new generation of security tools like npm audit to watch over our dependencies. As we roll over into 2019, let’s take the opportunity to reflect on the security of the code we write and be grateful for the everything we’ve learned in the last twenty years. 2018 Katie Fenn katiefenn 2018-12-01T00:00:00+00:00 https://24ways.org/2018/securing-your-site-like-its-1999/ code
264 Dynamic Social Sharing Images Way back when social media was new, you could be pretty sure that whatever you posted would be read by those who follow you. If you’d written a blog post and you wanted to share it with those who follow you, you could post a link and your followers would see it in their streams. Oh heady days! With so many social channels and a proliferation of content and promotions flying past in everyone’s streams, it’s no longer enough to share content on social media, you have to actively sell it if you want it to be seen. You really need to make the most of every opportunity to catch a reader’s attention if you’re trying to get as many eyes as possible on that sweet, sweet social content. One of the best ways to grab attention with your posts or tweets is to include an image. There’s heaps of research that says that having images in your posts helps them stand out to followers. Reports I found showed figures from anything from 35% to 150% improvement from just having image in a post. Unfortunately, the details were surrounded with gross words like engagement and visual marketing assets and so I had to close the page before I started to hate myself too much. So without hard stats to quote, we’ll call it a rule of thumb. The rule of thumb is that posts with images will grab more attention than those without, so it makes sense that when adding pages to a website, you should make sure that they have social media sharing images associated with them. Adding sharing images The process for declaring an image to be used in places like Facebook and Twitter is very simple, and at this point is familiar to many of us. You add a meta tag to the head of the page to point to the location of the image to use. When a link to the page is added to a post, the social network will fetch the page, look for the meta tag and then use the image you specified. <meta property="og:image" content="https://example.com/my_image.jpg"> There’s a good post on this over at CSS-Tricks if you need to bone up on the details of this and other similar meta tags for social media sharing. This is all fine and well for content that has a very obvious choice of image to go along with it, but what if you don’t necessarily have an image? One approach is to use stock photography, but that’s not going to be right for every situation. This was something we faced with 24 ways in 2017. We wanted to add images to the tweets we post each day announcing a new article. Some articles have images, but not all, and there tended not to be any consistency in terms of imagery from one article to the next. We always have an author photograph, but those don’t usually lend themselves directly to being the main ‘hero’ image for an article. Putting his thinking cap on, Paul came up with a design for an image that used the author photo along with a quote extracted from the article. One of the hand-made sharing images from 2017 Each day we would pick a quote from the article, and Paul would manually compose an image to be uploaded to the site. The results were great, but the whole process was a bit too labour intensive and relied on an individual (Paul) being available each day to do the work. I thought we could probably improve this. Hatching a new plan One initial idea I came up with was to script the image editor to dynamically build a new image by pulling content from our database. Sketch has plugins available to pull JSON content into a design, and our CMS can easily output JSON data, so that was one possibility. The more I thought about this and how much I wish graphic design tools worked just a little bit more like CSS, the obvious solution hit me. We should just build it with CSS! In fact, as the author name and image already exist in our CMS, and the visual styling is based on the design of the website, couldn’t this just be another page on the site generated by the CMS? Breaking it down, I figured the steps needed would be something like: Create the CSS to lay out a component that could be turned into an image Add a new field to articles in the CMS to hold a handpicked quote Build a new article template in the CMS to output the author name and quote dynamically for any article … um … screenshot? I thought I’d get cracking and see if I could figure out the final steps later. Building the page The first thing to tackle was the basic HTML and CSS to lay out the components for our image. That bit was really easy, as I just asked Paul to do it. Everyone should have a Paul. Paul’s code uses a fixed dimension container in the HTML, set to 600 × 315px. This is to make it the correct aspect ratio for Facebook’s recommended image size. It’s useful to remember here that it doesn’t need to be responsive or robust, as the page only needs to lay out correctly for a screenshot and a fixed size in a known browser. With the markup and CSS in place, I turned this into a new template. Our CMS can easily display content through any number of templates, so I created a version of the article template that was totally stripped down. It only included the author details and the quote, along with Paul’s markup. I also added the quote as a new field on the article in the CMS, so each ‘image’ could be quickly and easily customised in the editing process. I added a new field to the article template to capture the quote. With very little effort, we quickly had a page to dynamically generate our ‘image’ right from the CMS. You can see any of them by adding /sharing onto the end of an article URL for any 2018 article. Our automatically generated layout direct from the CMS It soon became clear that the elusive Step 4 was going to be the tricky part. I can create a small page on the site that looks like an image, but how should I go about turning it into one? An obvious route is to screenshot the page by hand, but that’s going back to some of the manual steps I was trying to eliminate, and also opens up a possibility for errors to be made. But it did lead me to the thought… how could I automatically take a screenshot? Enter Puppeteer Puppeteer is a Node.js library that provides a nice API onto Headless Chrome. What is Headless Chrome, you ask? It’s just a version of the Chrome browser than runs from the command line without ever drawing anything to a user interface window. It loads pages, renders CSS, runs JavaScript, pretty much every normal thing that Chrome on the desktop does, but without a clicky user interface. Headless Chrome can be used for all sorts of things such as running automated tests on front-end code after making changes, or… get this… rendering pages that can be used for screenshots. The actual process of writing some code to control Chrome and to take the screenshot is where Puppeteer comes in. Puppeteer puts a friendly layer in front of big old scary Chrome to enable us to interact with it using simple JavaScript code running in Node. Using Puppeteer, I can write a small script that will repeatably turn a URL into an image. So simple is it to do this, that’s it’s actually Puppeteer’s ‘hello world’ example. First you install Puppeteer. It downloads a compatible headless browser (actually Chromium) as a dependancy, so you don’t need to worry about installing that. At the command line: npm i puppeteer Then save a new file as example.js with this code: const puppeteer = require('puppeteer'); (async () => { const browser = await puppeteer.launch(); const page = await browser.newPage(); await page.goto('https://example.com'); await page.screenshot({path: 'example.png'}); await browser.close(); })(); and then run it using Node: node example.js This will output an image file example.png to disk, which contains a screenshot of, in this case https://example.com. The logic of the code is reasonably easy to follow: Launch a browser Open up a new page Goto a URL Take a screenshot Close the browser The async function and await keywords are a way to have the script pause and wait for normally asynchronous code to return before proceeding. That’s useful with actions like loading a web page that might take some time to complete. They’re used with Promises, and the effect is to make asynchronous code behave as if it’s synchronous. You can read more about async and await at MDN if you’re interested. That’s a good proof-of-concept using the basic Puppeteer example. I can take a screenshot of a URL! But what happens if I put the URL of my new special page in there? Our content is up in the corner of the image with lots of empty space. That’s not great. It’s okay, but not great. It looks like that, by default, Puppeteer takes a screenshot with a resolution of 800 × 600, so we need to find out how to adjust that. Fortunately, the docs aren’t the worst and I was able to find the page.setViewport() method pretty easily. const puppeteer = require('puppeteer'); (async () => { const browser = await puppeteer.launch(); const page = await browser.newPage(); await page.goto('https://24ways.org/2018/clip-paths-know-no-bounds/sharing'); await page.setViewport({ width: 600, height: 315 }); await page.screenshot({path: 'example.png'}); await browser.close(); })(); This worked! The screenshot is now 600 × 315 as expected. That’s exactly what we asked for. Trouble is, that’s a bit low res and it is nearly 2019 after all. While in those docs, I noticed the deviceScaleFactor option that can be passed to page.setViewport(). Setting that to 2 gives us an image of the same area of the screen, but with twice as many pixels. await page.setViewport({ width: 600, height: 315, deviceScaleFactor: 2 }); Perfect! We now have a programmatic way of turning a URL into an image. Improving the script Rather than having a script with a fixed URL in it that outputs an image called example.png, the next step is to make that a bit more dynamic. The aim here is to have a script that we can run with a URL as an argument and have it output an image for that one page. That way we can run it manually, or hook it into part of our site’s build process to automate the generation of the image. Our goal is to call the script like this: node shoot-sharing-image.js https://24ways.org/2018/clip-paths-know-no-bounds/ And I want the image to come out with the name clip-paths-know-no-bounds.png. To do that, I need to have my script look for command arguments, and then to split the URL up to grab the slug from it. // Get the URL and the slug segment from it const url = process.argv[2]; const segments = url.split('/'); // Get the second-to-last segment (the slug) const slug = segments[segments.length-2]; We can then use these variables later in the script, remembering to add sharing back onto the end of the URL to get our dedicated page. (async () => { const browser = await puppeteer.launch(); const page = await browser.newPage(); await page.goto(url + 'sharing'); await page.setViewport({ width: 600, height: 315, deviceScaleFactor: 2 }); await page.screenshot({path: slug + '.png'}); await browser.close(); })(); Once you’re generating the image with Node, there’s all sorts of things you can do with it. An obvious step is to move it to the correct location within your site or project. You can also run optimisations on the file. I’m using imagemin with pngquant to reduce the file size a little. const imagemin = require('imagemin'); const imageminPngquant = require('imagemin-pngquant'); await imagemin([slug + '.png'], 'build', { plugins: [ imageminPngquant({quality: '75-90'}) ] }); You can see the completed example as a gist. Integrating it with your CMS So we now have a command we can run to take a URL and generate a custom image for that URL. It’s in a format that can be called by any sort of build script, or triggered from a publishing hook in a CMS. Exactly how you do that is going to depend on the way your site is built and the technology stack you’re using, but it’s likely not too hard as long as you can run a command as part of the process. For 24 ways this year, I’ve been running the script by hand once each article is ready. My script adds the file to a git repo and pushes to a deployment remote that is configured to automatically deploy static assets to our server. Along with our theme of making incremental improvements, next year I’ll look to automate this one step further. We may also look at having a few slightly different layouts to choose from, so that each day isn’t exactly the same as the last. Interestingly, we could even try some A/B tests to see if there’s any particular format of image or type of quote that does a better job of grabbing attention. There are lots of possibilities! By using a bit of ingenuity, some custom CMS templates, and the very useful Puppeteer project, we’ve been able to reliably produce dynamic social media sharing images for all of our articles. In doing so, we reduced the dependancy on any individual for producing those images, and opened up a world of possibilities in how we use those images. I hope you’ll give it a try! 2018 Drew McLellan drewmclellan 2018-12-24T00:00:00+00:00 https://24ways.org/2018/dynamic-social-sharing-images/ code
271 Creating Custom Font Stacks with Unicode-Range Any web designer or front-end developer worth their salt will be familiar with the CSS @font-face rule used for embedding fonts in a web page. We’ve all used it — either directly in our code ourselves, or via one of the web font services like Fontdeck, Typekit or Google Fonts. If you’re like me, however, you’ll be used to just copying and pasting in a specific incantation of lines designed to get different formats of fonts working in different browsers, and may not have really explored all the capabilities of @font-face properties as defined by the spec. One such property — the unicode-range descriptor — sounds pretty dull and is easily overlooked. It does, however, have some fairly interesting possibilities when put to use in creative ways. Unicode-range The unicode-range descriptor is designed to help when using fonts that don’t have full coverage of the characters used in a page. By adding a unicode-range property to a @font-face rule it is possible to specify the range of characters the font covers. @font-face { font-family: BBCBengali; src: url(fonts/BBCBengali.ttf) format("opentype"); unicode-range: U+00-FF; } In this example, the font is to be used for characters in the range of U+00 to U+FF which runs from the unexciting control characters at the start of the Unicode table (symbols like the exclamation mark start at U+21) right through to ÿ at U+FF – the extent of the Basic Latin character range. By adding multiple @font-face rules for the same family but with different ranges, you can build up complete coverage of the characters your page uses by using different fonts. When I say that it’s possible to specify the range of characters the font covers, that’s true, but what you’re really doing with the unicode-range property is declaring which characters the font should be used for. This becomes interesting, because instead of merely working with the technical constraints of available characters in a given font, we can start picking and choosing characters to use and selectively mix fonts together. The best available ampersand A few years back, Dan Cederholm wrote a post encouraging designers to use the best available ampersand. Dan went on to outline how this can be achieved by wrapping our ampersands in a <span> element with a class applied: <span class="amp">&</span> A CSS rule can then be written to select the <span> and apply a different font: span.amp { font-family: Baskerville, Palatino, "Book Antiqua", serif; } That’s a perfectly serviceable technique, but the drawbacks are clear — you have to add extra markup which is borderline presentational, and you also have to be able to add that markup, which isn’t always possible when working with a CMS. Perhaps we could do this with unicode-range. A better best available ampersand The Unicode code point for an ampersand is U+26, so the ampersand font stack above can be created like so: @font-face { font-family: 'Ampersand'; src: local('Baskerville'), local('Palatino'), local('Book Antiqua'); unicode-range: U+26; } What we’ve done here is specify a new family called Ampersand and created a font stack for it with the user’s locally installed copies of Baskerville, Palatino or Book Antiqua. We’ve then limited it to a single character range — the ampersand. Of course, those don’t need to be local fonts — they could be web font files, too. If you have a font with a really snazzy ampersand, go for your life. We can then use that new family in a regular font stack. h1 { font-family: Ampersand, Arial, sans-serif; } With this in place, any <h1> elements in our page will use the Ampersand family (Baskerville, Palatino or Book Antiqua) for ampersands, and Arial for all other characters. If the user doesn’t have any of the Ampersand family fonts available, the ampersand will fall back to the next item in the font stack, Arial. You didn’t think it was that easy, did you? Oh, if only it were so. The problem comes, as ever, with the issue of browser support. The unicode-range property has good support in WebKit browsers (like Safari and Chrome, and the browsers on most popular smartphone platforms) and in recent versions of Internet Explorer. The big stumbling block comes in the form of Firefox, which has no support at all. If you’re familiar with how CSS works when it comes to unsupported properties, you’ll know that if a browser encounters a property it doesn’t implement, it just skips that declaration and moves on to the next. That works perfectly for things like border-radius — if the browser can’t round off the corners, the declaration is skipped and the user sees square corners instead. Perfect. Less perfect when it comes to unicode-range, because if no range is specified then the default is that the font is applied for all characters — the whole range. If you’re using a fancy font for flamboyant ampersands, you probably don’t want that applied to all your text if unicode-range isn’t supported. That would be bad. Really bad. Ensuring good fallbacks As ever, the trick is to make sure that there’s a sensible fallback in place if a browser doesn’t have support for whatever technology you’re trying to use. This is where being a super nerd about understanding the spec you’re working with really pays off. We can make use of the rules of the CSS cascade to make sure that if unicode-range isn’t supported we get a sensible fallback font. What would be ideal is if we were able to follow up the @font-face rule with a second rule to override it if Unicode ranges aren’t implemented. @font-face { font-family: 'Ampersand'; src: local('Baskerville'), local('Palatino'), local('Book Antiqua'); unicode-range: U+26; } @font-face { font-family: 'Ampersand'; src: local('Arial'); } In theory, this code should make sense for all browsers. For those that support unicode-range the two rules become cumulative. They specify different ranges for the same family, and in WebKit browsers this has the expected result of using Arial for most characters, but Baskerville and friends for the ampersand. For browsers that don’t have support, the second rule should just supersede the first, setting the font to Arial. Unfortunately, this code causes current versions of Firefox to freak out and use the first rule, applying Baskerville to the entire range. That’s both unexpected and unfortunate. Bad Firefox. On your rug. If that doesn’t work, what can we do? Well, we know that if given a unicode-range Firefox will ignore the range and apply the font to all characters. That’s really what we’re trying to achieve. So what if we specified a range for the fallback font, but made sure it only covers some obscure high-value Unicode character we’re never going to use in our page? Then it wouldn’t affect the outcome for browsers that do support ranges. @font-face { font-family: 'Ampersand'; src: local('Baskerville'), local('Palatino'), local('Book Antiqua'); unicode-range: U+26; } @font-face { /* Ampersand fallback font */ font-family: 'Ampersand'; src: local('Arial'); unicode-range: U+270C; } By specifying a range on the fallback font, Firefox appears to correctly override the first based on the cascade sort order. Browsers that do support ranges take the second rule in addition, and apply Arial for that obscure character we’re not using in any of our pages — U+270C. So we get our nice ampersands in browsers that support unicode-range and, thanks to our styling of an obscure Unicode character, the font falls back to a perfectly acceptable Arial in browsers that do not offer support. Perfect! That obscure character, my friends, is what Unicode defines as the VICTORY HAND. ✌ So, how can we use this? Ampersands are a neat trick, and it works well in browsers that support ranges, but that’s not really the point of all this. Styling ampersands is fun, but they’re only really scratching the surface. Consider more involved examples, such as substituting a different font for numerals, or symbols, or even caps. Things certainly begin to get a bit more interesting. How do you know what the codes are for different characters? Richard Ishida has a handy online conversion tool available where you can type in the characters and get the Unicode code points out the other end. Of course, the fact remains that browser support for unicode-range is currently limited, so any application needs to have fallbacks that you’re still happy for a significant proportion of your visitors to see. In some cases, such as dedicated pages for mobile devices in an HTML-based phone app, this is immediately useful as support in WebKit browsers is already very good. In other cases, you’ll have to use your own best judgement based on your needs and audience. One thing to keep in mind is that if you’re using web fonts, the entire font will be downloaded even if only one character is used. That said, the font shouldn’t be downloaded if none of the characters within the Unicode range are present in a given page. As ever, there are pros and cons to using unicode-range as well as varied but increasing support in browsers. It remains a useful tool to understand and have in your toolkit for when the right moment comes along. 2011 Drew McLellan drewmclellan 2011-12-01T00:00:00+00:00 https://24ways.org/2011/creating-custom-font-stacks-with-unicode-range/ code
276 Your jQuery: Now With 67% Less Suck Fun fact: more websites are now using jQuery than Flash. jQuery is an amazing tool that’s made JavaScript accessible to developers and designers of all levels of experience. However, as Spiderman taught us, “with great power comes great responsibility.” The unfortunate downside to jQuery is that while it makes it easy to write JavaScript, it makes it easy to write really really f*&#ing bad JavaScript. Scripts that slow down page load, unresponsive user interfaces, and spaghetti code knotted so deep that it should come with a bottle of whiskey for the next sucker developer that has to work on it. This becomes more important for those of us who have yet to move into the magical fairy wonderland where none of our clients or users view our pages in Internet Explorer. The IE JavaScript engine moves at the speed of an advancing glacier compared to more modern browsers, so optimizing our code for performance takes on an even higher level of urgency. Thankfully, there are a few very simple things anyone can add into their jQuery workflow that can clear up a lot of basic problems. When undertaking code reviews, three of the areas where I consistently see the biggest problems are: inefficient selectors; poor event delegation; and clunky DOM manipulation. We’ll tackle all three of these and hopefully you’ll walk away with some new jQuery batarangs to toss around in your next project. Selector optimization Selector speed: fast or slow? Saying that the power behind jQuery comes from its ability to select DOM elements and act on them is like saying that Photoshop is a really good tool for selecting pixels on screen and making them change color – it’s a bit of a gross oversimplification, but the fact remains that jQuery gives us a ton of ways to choose which element or elements in a page we want to work with. However, a surprising number of web developers are unaware that all selectors are not created equal; in fact, it’s incredible just how drastic the performance difference can be between two selectors that, at first glance, appear nearly identical. For instance, consider these two ways of selecting all paragraph tags inside a <div> with an ID. $("#id p"); $("#id").find("p"); Would it surprise you to learn that the second way can be more than twice as fast as the first? Knowing which selectors outperform others (and why) is a pretty key building block in making sure your code runs well and doesn’t frustrate your users waiting for things to happen. There are many different ways to select elements using jQuery, but the most common ways can be basically broken down into five different methods. In order, roughly, from fastest to slowest, these are: $("#id"); This is without a doubt the fastest selector jQuery provides because it maps directly to the native document.getElementbyId() JavaScript method. If possible, the selectors listed below should be prefaced with an ID selector in conjunction with jQuery’s .find() method to limit the scope of the page that has to be searched (as in the $("#id").find("p") example shown above). $("p");, $("input");, $("form"); and so on Selecting elements by tag name is also fast, since it maps directly to the native document.getElementsByTagname() method. $(".class"); Selecting by class name is a little trickier. While still performing very well in modern browsers, it can cause some pretty significant slowdowns in IE8 and below. Why? IE9 was the first IE version to support the native document.getElementsByClassName() JavaScript method. Older browsers have to resort to using much slower DOM-scraping methods that can really impact performance. $("[attribute=value]"); There is no native JavaScript method for this selector to use, so the only way that jQuery can perform the search is by crawling the entire DOM looking for matches. Modern browsers that support the querySelectorAll() method will perform better in certain cases (Opera, especially, runs these searches much faster than any other browser) but, generally speaking, this type of selector is Slowey McSlowersons. $(":hidden"); Like attribute selectors, there is no native JavaScript method for this one to use. Pseudo-selectors can be painfully slow since the selector has to be run against every element in your search space. Again, modern browsers with querySelectorAll() will perform slightly better here, but try to avoid these if at all possible. If you must use one, try to limit the search space to a specific portion of the page: $("#list").find(":hidden"); But, hey, proof is in the performance testing, right? It just so happens that said proof is sitting right here. Be sure to notice the class selector numbers beside IE7 and 8 compared to other browsers and then wonder how the people on the IE team at Microsoft manage to sleep at night. Yikes. Chaining Almost all jQuery methods return a jQuery object. This means that when a method is run, its results are returned and you can continue executing more methods on them. Rather than writing out the same selector multiple times over, just making a selection once allows multiple actions to be run on it. Without chaining $("#object").addClass("active"); $("#object").css("color","#f0f"); $("#object").height(300); With chaining $("#object").addClass("active").css("color", "#f0f").height(300); This has the dual effect of making your code shorter and faster. Chained methods will be slightly faster than multiple methods made on a cached selector, and both ways will be much faster than multiple methods made on non-cached selectors. Wait… “cached selector”? What is this new devilry? Caching Another easy way to speed up your code that seems to be a mystery to developers is the idea of caching your selectors. Think of how many times you end up writing the same selector over and over again in any project. Every $(".element") selector has to search the entire DOM each time, regardless of whether or not that selector had been previously run. Running the selection once and then storing the results in a variable means that the DOM only has to be searched once. Once the results of a selector have been cached, you can do anything with them. First, run your search (here we’re selecting all of the <li> elements inside <ul id="blocks">): var blocks = $("#blocks").find("li"); Now, you can use the blocks variable wherever you want without having to search the DOM every time. $("#hideBlocks").click(function() { blocks.fadeOut(); }); $("#showBlocks").click(function() { blocks.fadeIn(); }); My advice? Any selector that gets run more than once should be cached. This jsperf test shows just how much faster a cached selector runs compared to a non-cached one (and even throws some chaining love in to boot). Event delegation Event listeners cost memory. In complex websites and apps it’s not uncommon to have a lot of event listeners floating around, and thankfully jQuery provides some really easy methods for handling event listeners efficiently through delegation. In a bit of an extreme example, imagine a situation where a 10×10 cell table needs to have an event listener on each cell; let’s say that clicking on a cell adds or removes a class that defines the cell’s background color. A typical way that this might be written (and something I’ve often seen during code reviews) is like so: $('table').find('td').click(function() { $(this).toggleClass('active'); }); jQuery 1.7 has provided us with a new event listener method, .on(). It acts as a utility that wraps all of jQuery’s previous event listeners into one convenient method, and the way you write it determines how it behaves. To rewrite the above .click() example using .on(), we’d simply do the following: $('table').find('td').on('click',function() { $(this).toggleClass('active'); }); Simple enough, right? Sure, but the problem here is that we’re still binding one hundred event listeners to our page, one to each individual table cell. A far better way to do things is to create one event listener on the table itself that listens for events inside it. Since the majority of events bubble up the DOM tree, we can bind a single event listener to one element (in this case, the <table>) and wait for events to bubble up from its children. The way to do this using the .on() method requires only one change from our code above: $('table').on('click','td',function() { $(this).toggleClass('active'); }); All we’ve done is moved the td selector to an argument inside the .on() method. Providing a selector to .on() switches it into delegation mode, and the event is only fired for descendants of the bound element (table) that match the selector (td). With that one simple change, we’ve gone from having to bind one hundred event listeners to just one. You might think that the browser having to do one hundred times less work would be a good thing and you’d be completely right. The difference between the two examples above is staggering. (Note that if your site is using a version of jQuery earlier than 1.7, you can accomplish the very same thing using the .delegate() method. The syntax of how you write the function differs slightly; if you’ve never used it before, it’s worth checking the API docs for that page to see how it works.) DOM manipulation jQuery makes it very easy to manipulate the DOM. It’s trivial to create new nodes, insert them, remove other ones, move things around, and so on. While the code to do this is simple to write, every time the DOM is manipulated, the browser has to repaint and reflow content which can be extremely costly. This is no more evident than in a long loop, whether it be a standard for() loop, while() loop, or jQuery $.each() loop. In this case, let’s say we’ve just received an array full of image URLs from a database or Ajax call or wherever, and we want to put all of those images in an unordered list. Commonly, you’ll see code like this to pull this off: var arr = [reallyLongArrayOfImageURLs]; $.each(arr, function(count, item) { var newImg = '<li><img src="'+item+'"></li>'; $('#imgList').append(newImg); }); There are a couple of problems with this. For one (which you should have already noticed if you’ve read the earlier part of this article), we’re making the $("#imgList") selection once for each iteration of our loop. The other problem here is that each time the loop iterates, it’s adding a new <li> to the DOM. Each of those insertions is going to be costly, and if our array is quite large then this could lead to a massive slowdown or even the dreaded ‘A script is causing this page to run slowly’ warning. var arr = [reallyLongArrayOfImageURLs], tmp = ''; $.each(arr, function(count, item) { tmp += '<li><img src="'+item+'"></li>'; }); $('#imgList').append(tmp); All we’ve done here is create a tmp variable that each <li> is added to as it’s created. Once our loop has finished iterating, that tmp variable will contain all of our list items in memory, and can be appended to our <ul> all in one go. Browsers work much faster when working with objects in memory rather than on screen, so this is a much faster, more CPU-cycle-friendly method of building a list. Wrapping up These are far from being the only ways to make your jQuery code run better, but they are among the simplest ones to implement. Though each individual change may only make a few milliseconds of difference, it doesn’t take long for those milliseconds to add up. Studies have shown that the human eye can discern delays of as few as 100ms, so simply making a few changes sprinkled throughout your code can very easily have a noticeable effect on how well your website or app performs. Do you have other jQuery optimization tips to share? Leave them in the comments and help make us all better. Now go forth and make awesome! 2011 Scott Kosman scottkosman 2011-12-13T00:00:00+00:00 https://24ways.org/2011/your-jquery-now-with-less-suck/ code
283 CSS3 Patterns, Explained Many of you have probably seen my CSS3 patterns gallery. It became very popular throughout the year and it showed many web developers how powerful CSS3 gradients really are. But how many really understand how these patterns are created? The biggest benefit of CSS-generated backgrounds is that they can be modified directly within the style sheet. This benefit is void if we are just copying and pasting CSS code we don’t understand. We may as well use a data URI instead. Important note In all the examples that follow, I’ll be using gradients without a vendor prefix, for readability and brevity. However, you should keep in mind that in reality you need to use all the vendor prefixes (-moz-, -ms-, -o-, -webkit-) as no browser currently implements them without a prefix. Alternatively, you could use -prefix-free and have the current vendor prefix prepended at runtime, only when needed. The syntax described here is the one that browsers currently implement. The specification has since changed, but no browser implements the changes yet. If you are interested in what is coming, I suggest you take a look at the dev version of the spec. If you are not yet familiar with CSS gradients, you can read these excellent tutorials by John Allsopp and return here later, as in the rest of the article I assume you already know the CSS gradient basics: CSS3 Linear Gradients CSS3 Radial Gradients The main idea I’m sure most of you can imagine the background this code generates: background: linear-gradient(left, white 20%, #8b0 80%); It’s a simple gradient from one color to another that looks like this: See this example live As you probably know, in this case the first 20% of the container’s width is solid white and the last 20% is solid green. The other 60% is a smooth gradient between these colors. Let’s try moving these color stops closer to each other: background: linear-gradient(left, white 30%, #8b0 70%); See this example live background: linear-gradient(left, white 40%, #8b0 60%); See this example live background: linear-gradient(left, white 50%, #8b0 50%); See this example live Notice how the gradient keeps shrinking and the solid color areas expanding, until there is no gradient any more in the last example. We can even adjust the position of these two color stops to control where each color abruptly changes into another: background: linear-gradient(left, white 30%, #8b0 30%); See this example live background: linear-gradient(left, white 90%, #8b0 90%); See this example live What you need to take away from these examples is that when two color stops are at the same position, there is no gradient, only solid colors. Even without going any further, this trick is useful for a number of different use cases like faux columns or the effect I wanted to achieve in my homepage or the -prefix-free page where the background is only shown on one side and hidden on the other: Combining with background-size We can do wonders, however, if we combine this with the CSS3 background-size property: background: linear-gradient(left, white 50%, #8b0 50%); background-size: 100px 100px; See this example live And there it is. We just created the simplest of patterns: (vertical) stripes. We can remove the first parameter (left) or replace it with top and we’ll get horizontal stripes. However, let’s face it: Horizontal and vertical stripes are kinda boring. Most stripey backgrounds we see on the web are diagonal. So, let’s try doing that. Our first attempt would be to change the angle of the gradient to something like 45deg. However, this results in an ugly pattern like this: See this example live Before reading on, think for a second: why didn’t this produce the desired result? Can you figure it out? The reason is that the gradient angle rotates the gradient inside each tile, not the tiled background as a whole. However, didn’t we have the same problem the first time we tried to create diagonal stripes with an image? And then we learned that every stripe has to be included twice, like so: So, let’s try to create that effect with CSS gradients. It’s essentially what we tried before, but with more color stops: background: linear-gradient(45deg, white 25%, #8b0 25%, #8b0 50%, white 50%, white 75%, #8b0 75%); background-size:100px 100px; See this example live And there we have our stripes! An easy way to remember the order of the percentages and colors it is that you always have two of the same in succession, except the first and last color. Note: Firefox for Mac also needs an additional 100% color stop at the end of any pattern with more than two stops, like so: ..., white 75%, #8b0 75%, #8b0). The bug was reported in February 2011 and you can vote for it and track its progress at Bugzilla. Unfortunately, this is essentially a hack and we will realize that if we try to change the gradient angle to 60deg: See this example live Not that maintainable after all, eh? Luckily, CSS3 offers us another way of declaring such backgrounds, which not only helps this case but also results in much more concise code: background: repeating-linear-gradient(60deg, white, white 35px, #8b0 35px, #8b0 70px); See this example live In this case, however, the size has to be declared in the color stop positions and not through background-size, since the gradient is supposed to cover the entire container. You might notice that the declared size is different from the one specified the previous way. This is because the size of the stripes is measured differently: in the first example we specify the dimensions of the tile itself; in the second, the width of the stripes (35px), which is measured diagonally. Multiple backgrounds Using only one gradient you can create stripes and that’s about it. There are a few more patterns you can create with just one gradient (linear or radial) but they are more or less boring and ugly. Almost every pattern in my gallery contains a number of different backgrounds. For example, let’s create a polka dot pattern: background: radial-gradient(circle, white 10%, transparent 10%), radial-gradient(circle, white 10%, black 10%) 50px 50px; background-size:100px 100px; See this example live Notice that the two gradients are almost the same image, but positioned differently to create the polka dot effect. The only difference between them is that the first (topmost) gradient has transparent instead of black. If it didn’t have transparent regions, it would effectively be the same as having a single gradient, as the topmost gradient would obscure everything beneath it. There is an issue with this background. Can you spot it? This background will be fine for browsers that support CSS gradients but, for browsers that don’t, it will be transparent as the whole declaration is ignored. We have two ways to provide a fallback, each for different use cases. We have to either declare another background before the gradient, like so: background: black; background: radial-gradient(circle, white 10%, transparent 10%), radial-gradient(circle, white 10%, black 10%) 50px 50px; background-size:100px 100px; or declare each background property separately: background-color: black; background-image: radial-gradient(circle, white 10%, transparent 10%), radial-gradient(circle, white 10%, transparent 10%); background-size:100px 100px; background-position: 0 0, 50px 50px; The vigilant among you will have noticed another change we made to our code in the last example: we altered the second gradient to have transparent regions as well. This way background-color serves a dual purpose: it sets both the fallback color and the background color of the polka dot pattern, so that we can change it with just one edit. Always strive to make code that can be modified with the least number of edits. You might think that it will never be changed in that way but, almost always, given enough time, you’ll be proved wrong. We can apply the exact same technique with linear gradients, in order to create checkerboard patterns out of right triangles: background-color: white; background-image: linear-gradient(45deg, black 25%, transparent 25%, transparent 75%, black 75%), linear-gradient(45deg, black 25%, transparent 25%, transparent 75%, black 75%); background-size:100px 100px; background-position: 0 0, 50px 50px; See this example live Using the right units Don’t use pixels for the sizes without any thought. In some cases, ems make much more sense. For example, when you want to make a lined paper background, you want the lines to actually follow the text. If you use pixels, you have to change the size every time you change font-size. If you set the background-size in ems, it will naturally follow the text and you will only have to update it if you change line-height. Is it possible? The shapes that can be achieved with only one gradient are: stripes right triangles circles and ellipses semicircles and other shapes formed from slicing ellipses horizontally or vertically You can combine several of them to create squares and rectangles (two right triangles put together), rhombi and other parallelograms (four right triangles), curves formed from parts of ellipses, and other shapes. Just because you can doesn’t mean you should Technically, anything can be crafted with these techniques. However, not every pattern is suitable for it. The main advantages of this technique are: no extra HTTP requests short code human-readable code (unlike data URIs) that can be changed without even leaving the CSS file. Complex patterns that require a large number of gradients are probably better left to SVG or bitmap images, since they negate almost every advantage of this technique: they are not shorter they are not really comprehensible – changing them requires much more effort than using an image editor They still save an HTTP request, but so does a data URI. I have included some very complex patterns in my gallery, because even though I think they shouldn’t be used in production (except under very exceptional conditions), understanding how they work and coding them helps somebody understand the technology in much more depth. Another rule of thumb is that if your pattern needs shapes to obscure parts of other shapes, like in the star pattern or the yin yang pattern, then you probably shouldn’t use it. In these patterns, changing the background color requires you to also change the color of these shapes, making edits very tedious. If a certain pattern is not practicable with a reasonable amount of CSS, that doesn’t mean you should resort to bitmap images. SVG is a very good alternative and is supported by all modern browsers. Browser support CSS gradients are supported by Firefox 3.6+, Chrome 10+, Safari 5.1+ and Opera 11.60+ (linear gradients since Opera 11.10). Support is also coming in Internet Explorer when IE10 is released. You can get gradients in older WebKit versions (including most mobile browsers) by using the proprietary -webkit-gradient(), if you really need them. Epilogue I hope you find these techniques useful for your own designs. If you come up with a pattern that’s very different from the ones already included, especially if it demonstrates a cool new technique, feel free to send a pull request to the github repo of the patterns gallery. Also, I’m always fascinated to see my techniques put in practice, so if you made something cool and used CSS patterns, I’d love to know about it! Happy holidays! 2011 Lea Verou leaverou 2011-12-16T00:00:00+00:00 https://24ways.org/2011/css3-patterns-explained/ code
288 Displaying Icons with Fonts and Data- Attributes Traditionally, bitmap formats such as PNG have been the standard way of delivering iconography on websites. They’re quick and easy, and it also ensures they’re as pixel crisp as possible. Bitmaps have two drawbacks, however: multiple HTTP requests, affecting the page’s loading performance; and a lack of scalability, noticeable when the page is zoomed or viewed on a screen with a high pixel density, such as the iPhone 4 and 4S. The requests problem is normally solved by using CSS sprites, combining the icon set into one (physically) large image file and showing the relevant portion via background-position. While this works well, it can get a bit fiddly to specify all the positions. In particular, scalability is still an issue. A vector-based format such as SVG sounds ideal to solve this, but browser support is still patchy. The rise and adoption of web fonts have given us another alternative. By their very nature, they’re not only scalable, but resolution-independent too. No need to specify higher resolution graphics for high resolution screens! That’s not all though: Browser support: Unlike a lot of new shiny techniques, they have been supported by Internet Explorer since version 4, and, of course, by all modern browsers. We do need several different formats, however! Design on the fly: The font contains the basic graphic, which can then be coloured easily with CSS – changing colours for themes or :hover and :focus styles is done with one line of CSS, rather than requiring a new graphic. You can also use CSS3 properties such as text-shadow to add further effects. Using -webkit-background-clip: text;, it’s possible to use gradient and inset shadow effects, although this creates a bitmap mask which spoils the scalability. Small file size: specially designed icon fonts, such as Drew Wilson’s Pictos font, can be as little as 12Kb for the .woff font. This is because they contain fewer characters than a fully fledged font. You can see Pictos being used in the wild on sites like Garrett Murray’s Maniacal Rage. As with all formats though, it’s not without its disadvantages: Icons can only be rendered in monochrome or with a gradient fill in browsers that are capable of rendering CSS3 gradients. Specific parts of the icon can’t be a different colour. It’s only appropriate when there is an accompanying text to provide meaning. This can be alleviated by wrapping the text label in a tag (I like to use <b> rather than <span>, due to the fact that it’s smaller and isn’ t being used elsewhere) and then hiding it from view with text-indent:-999em. Creating an icon font can be a complex and time-consuming process. While font editors can carry out hinting automatically, the best results are achieved manually. Unless you’re adept at creating your own fonts, you’re restricted to what is available in the font. However, fonts like Pictos will cover the most common needs, and icons are most effective when they’re using familiar conventions. The main complaint about using fonts for icons is that it can mean adding a meaningless character to our markup. The good news is that we can overcome this by using one of two methods – CSS generated content or the data-icon attribute – in combination with the :before and :after pseudo-selectors, to keep our markup minimal and meaningful. Our simple markup looks like this: <a href="/basket" class="icon basket">View Basket</a> Note the multiple class attributes. Next, we’ll import the Pictos font using the @font-face web fonts property in CSS: @font-face { font-family: 'Pictos'; src: url('pictos-web.eot'); src: local('☺'), url('pictos-web.woff') format('woff'), url('pictos-web.ttf') format('truetype'), url('pictos-web.svg#webfontIyfZbseF') format('svg'); } This rather complicated looking set of rules is (at the time of writing) the most bulletproof way of ensuring as many browsers as possible load the font we want. We’ll now use the content property applied to the :before pseudo-class selector to generate our icon. Once again, we’ll use those multiple class attribute values to set common icon styles, then specific styles for .basket. This helps us avoid repeating styles: .icon { font-family: 'Pictos'; font-size: 22px: } .basket:before { content: "$"; } What does the :before pseudo-class do? It generates the dollar character in a browser, even when it’s not present in the markup. Using the generated content approach means our markup stays simple, but we’ll need a new line of CSS, defining what letter to apply to each class attribute for every icon we add. data-icon is a new alternative approach that uses the HTML5 data- attribute in combination with CSS attribute selectors. This new attribute lets us add our own metadata to elements, as long as its prefixed by data- and doesn’t contain any uppercase letters. In this case, we want to use it to provide the letter value for the icon. Look closely at this markup and you’ll see the data-icon attribute. <a href="/basket" class="icon" data-icon="$">View Basket</a> We could add others, in fact as many as we like. <a href="/" class="icon" data-icon="k">Favourites</a> <a href="/" class="icon" data-icon="t">History</a> <a href="/" class="icon" data-icon="@">Location</a> Then, we need just one CSS attribute selector to style all our icons in one go: .icon:before { content: attr(data-icon); /* Insert your fancy colours here */ } By placing our custom attribute data-icon in the selector in this way, we can enable CSS to read the value of that attribute and display it before the element (in this case, the anchor tag). It saves writing a lot of CSS rules. I can imagine that some may not like the extra attribute, but it does keep it out of the actual content – generated or not. This could be used for all manner of tasks, including a media player and large simple illustrations. See the demo for live examples. Go ahead and zoom the page, and the icons will be crisp, with the exception of the examples that use -webkit-background-clip: text as mentioned earlier. Finally, it’s worth pointing out that with both generated content and the data-icon method, the letter will be announced to people using screen readers. For example, with the shopping basket icon above, the reader will say “dollar sign view basket”. As accessibility issues go, it’s not exactly the worst, but could be confusing. You would need to decide whether this method is appropriate for the audience. Despite the disadvantages, icon fonts have huge potential. 2011 Jon Hicks jonhicks 2011-12-12T00:00:00+00:00 https://24ways.org/2011/displaying-icons-with-fonts-and-data-attributes/ code
289 Front-End Developers Are Information Architects Too The theme of this year’s World IA Day was “Information Everywhere, Architects Everywhere”. This article isn’t about what you may consider an information architect to be: someone in the user-experience field, who maybe studied library science, and who talks about taxonomies. This is about a realisation I had a couple of years ago when I started to run an increasing amount of usability-testing sessions with people who have disabilities: that the structure, labelling, and connections that can be made in front-end code is information architecture. People’s ability to be successful online is unequivocally connected to the quality of the code that is written. Places made of information In information architecture we talk about creating places made of information. These places are made of ones and zeros, but we talk about them as physical structures. We talk about going onto a social media platform, posting in blogs, getting locked out of an environment, and building applications. In 2002, Andrew Hinton stated: People live and work in these structures, just as they live and work in their homes, offices, factories and malls. These places are not virtual: they are as real as our own minds. 25 Theses We’re creating structures which people rely on for significant parts of their lives, so it’s critical that we carry out our work responsibly. This means we must use our construction materials correctly. Luckily, our most important material, HTML, has a well-documented specification which tells us how to build robust and accessible places. What is most important, I believe, is to understand the semantics of HTML. Semantics The word “semantic” has its origin in Greek words meaning “significant”, “signify”, and “sign”. In the physical world, a structure can have semantic qualities that tell us something about it. For example, the stunning Westminster Abbey inspires awe and signifies much about the intent and purpose of the structure. The building’s size; the quality of the stone work; the massive, detailed stained glass: these are all signs that this is a building meant for something the creators deemed important. Alternatively consider a set of large, clean, well-positioned, well-lit doors on the ground floor of an office block: they don’t need an “entrance” sign to communicate their use and to stop people trying to use a nearby fire exit to get into the building. The design of the doors signify their usage. Sometimes a more literal and less awe-inspiring approach to communicating a building’s purpose happens, but the affect is similar: the building is signifying something about its purpose. HTML has over 115 elements, many of which have semantics to signify structure and affordance to people, browsers, and assistive technology. The HTML 5.1 specification mentions semantics, stating: Elements, attributes, and attribute values in HTML are defined … to have certain meanings (semantics). For example, the <ol> element represents an ordered list, and the lang attribute represents the language of the content. HTML 5.1 Semantics, structure, and APIs of HTML documents HTML’s baked-in semantics means that developers can architect their code to signify structure, create relationships between elements, and label content so people can understand what they’re interacting with. Structuring and labelling information to make it available, usable, and understandable to people is what an information architect does. It’s also what a front-end developer does, whether they realise it or not. A brief introduction to information architecture We’re going to start by looking at what an information architect is. There are many definitions, and I’m going to quote Richard Saul Wurman, who is widely regarded as the father of information architecture. In 1976 he said an information architect is: the individual who organizes the patterns inherent in data, making the complex clear; a person who creates the structure or map of information which allows others to find their personal paths to knowledge; the emerging 21st century professional occupation addressing the needs of the age focused upon clarity, human understanding, and the science of the organization of information. Of Patterns And Structures To me, this clearly defines any developer who creates code that a browser, or other user agent (for example, a screen reader), uses to create a structured, navigable place for people. Just as there are many definitions of what an information architect is, there are for information architecture itself. I’m going to use the definition from the fourth edition of Information Architecture For The World Wide Web, in which the authors define it as: The structural design of shared information environments. The synthesis of organization, labeling, search, and navigation systems within digital, physical, and cross-channel ecosystems. The art and science of shaping information products and experiences to support usability, findability, and understanding. Information Architecture For The World Wide Web, 4th Edition To me, this describes front-end development. Done properly, there is an art to creating robust, accessible, usable, and findable spaces that delight all our users. For example, at 2015’s State Of The Browser conference, Edd Sowden talked about the accessibility of <table>s. He discovered that by simply not using the semantically-correct <th> element to mark up <table> headings, in some situations browsers will decide that a <table> is being used for layout and essentially make it invisible to assistive technology. Another example of how coding practices can affect the usability and findability of content is shown by Léonie Watson in her How ARIA landmark roles help screen reader users video. By using ARIA landmark roles, people who use screen readers are quickly able to identify and jump to common parts of a web page. Our definitions of information architects and information architecture mention patterns, rules, organisation, labelling, structure, and relationships. There are numerous different models for how these elements get boiled down to their fundamentals. In his Understanding Context book, Andrew Hinton calls them Labels, Relationships, and Rules; Jorge Arango calls them Links, Nodes, And Order; and Dan Klyn uses Ontology, Taxonomy, and Choreography, which is the one we’re going to use. Dan defines these terms as: Ontology The definition and articulation of the rules and patterns that govern the meaning of what we intend to communicate. What we mean when we say what we say. Taxonomy The arrangements of the parts. Developing systems and structures for what everything’s called, where everything’s sorted, and the relationships between labels and categories Choreography Rules for interaction among the parts. The structures it creates foster specific types of movement and interaction; anticipating the way users and information want to flow and making affordance for change over time. We now have definitions of an information architect, information architecture, and a model of the elements of information architecture. But is writing HTML really creating information or is it just wrangling data and metadata? When does data turn into information? In his book Managing For The Future Peter Drucker states: … data is not information. Information is data endowed with relevance and purpose. Managing For The Future If we use the correct semantic element to mark up content then we’re developing with purpose and creating relevance. For example, if we follow the advice of the HTML 5.1 specification and mark up headings using heading rank instead of the outline algorithm, we’re creating a structure where the depth of one heading is relevant to the previous one. Architected correctly, an <h2> element should be relevant to its parent, which should be the <h1>. By following the HTML specification we can create a structured, searchable, labeled document that will hopefully be relevant to what our users need to be successful. If you’ve never used a screen reader, you might be wondering how the headings on a page are searchable. Screen readers give users the ability to interact with headings in a couple of ways: by creating a list of headings so users can quickly scan the page for information by using a keyboard command to cycle through one heading at a time If we had a document for Christmas Day TV we might structure it something like this: <h1>Christmas Day TV schedule</h1> <h2>BBC1</h2> <h3>Morning</h3> <h3>Evening</h3> <h2>BBC2</h2> <h3>Morning</h3> <h3>Evening</h3> <h2>ITV</h2> <h3>Morning</h3> <h3>Evening</h3> <h2>Channel 4</h2> <h3>Morning</h3> <h3>Evening</h3> If I use VoiceOver to generate a list of headings, I get this: Once I have that list I can use keyboard commands to filter the list based on the heading level. For example, I can press 2 to hear just the <h2>s: If we hadn’t used headings, of if we’d nested them incorrectly, our users would be frustrated. Putting this together Let’s put this together with an example of a button that, when pressed, toggles the appearance of a panel of links. There are numerous ways we could create a button on a web page, but the best way is to just use a <button>. Every browser understands what a <button> is, how it works, and what keyboard shortcuts should be used with them. The HTML specification for the <button> element says: The <button> element represents a button labeled by its contents. The contents that a <button> can have include the type attribute, any relevant ARIA attributes, and the actual text label that the user sees. This information is more important than the visual design: it doesn’t matter how beautiful or obtuse the design is, if the underlying code is non-semantic and poorly labelled, people are going to struggle to use it. Here are three buttons, each created with the same HTML but with different designs: Regardless of what they look like, because we’ve used semantic HTML instead of a bunch of meaningless <div>s or <span>s, people who use assistive technology are going to benefit. Out of the box, without any extra development effort, a <button> is accessible and usable with a keyboard. We don’t have to write event handlers to listen for people pressing the Enter key or the space bar, which we would have to do if we’d faked a button with non-semantic elements. Our <button> can also be quickly findable: for example, in the same way it’s possible to create a list of headings with a screen reader, I can also create a list of form elements and then quickly jump to the one I want. Now we have our <button>, let’s add the panel we’re toggling the appearance of. Here’s our code: <button aria-controls="panel" aria-expanded="false" class="settings" id="settings" type="button">Settings</button> <div class="panel hidden" id="panel"> <ul aria-labelledby="settings"> <li><a href="…">Account</a></li> <li><a href="…">Privacy</a></li> <li><a href="…">Security</a></li> </ul> </div> There’s quite a bit going on here. We’re using the: aria-controls attribute to architect a connection between the <button> element and the panel whose appearance it controls. When some assistive technology, for example the JAWS screen reader, encounters an element with aria-controls it audibly tells a user about the controlled expanded element and gives them the ability to move focus to it. aria-expanded attribute to denote whether the panel is visible or not. We toggle this value using JavaScript to true when the panel is visible and false when it’s not. This important attribute tells people who use screen readers about the state of the elements they’re interacting with. For example, VoiceOver announces Settings expanded button when the panel is visible and Settings collapsed button when it’s hidden. aria-labelledby attribute to give the list a title of “Settings”. This can benefit some users of assistive technology. For example, screen readers can cycle through all the lists on a page, so being able to title them can improve findability. Being able to hear list Settings three items is, I’d argue, more useful than list three items. By doing this we’re supporting usability and findability. <ul> element to contain our list of links in our panel. Let’s look at the choice of <ul> to contain our settings choices. Firstly, our settings are related items, so they belong in a structure that semantically groups things. This is something that a list can do that other elements or patterns can’t. This pattern, for example, isn’t semantic and has no structure: <div><a href="…">Account</a></div> <div><a href="…">Privacy</a></div> <div><a href="…">Security</a></div> All we have there is three elements next to each other on the screen and in the DOM. That is not robust code that signifies anything. Why are we using an unordered list as opposed to an ordered list or a definition list? A quick look at the HTML specification tells us why: The <ul> element represents a list of items, where the order of the items is not important — that is, where changing the order would not materially change the meaning of the document. The HTML 5.1 specification’s description of the element Will the meaning of our document materially change if we moved the order of our links around? Nope. Therefore, I’d argue, we’ve used the correct element to structure our content. These coding decisions are information architecture I believe that what we’ve done here is pure information architecture. Going back to Dan Klyn’s model, we’ve practiced ontology by looking at the meaning of what we’re intending to communicate: we want to communicate there is an interactive element that toggles the appearance of an element on a page so we’ve used one, a <button>, with those semantics. programmatically we’ve used the type='button' attribute to signify that the button isn’t a menu, reset, or submit element. visually we’ve designed our <button> look like something that can be interacted with and, importantly, we haven’t removed the focus ring. we’ve labelled the <button> with the word “Settings” so that our users will hopefully understand what the button is for. we’ve used an <ul> element to structure and communicate our list of related items. We’ve also practiced taxonomy by developing systems and structures and creating relationships between our elements: by connecting the <button> to the panel using the aria-controls attribute we’ve programmatically created a relationship between two elements. we’ve developed a structure in our elements by labelling our <ul> with the same name as the <button> that controls its appearance. And finally we’ve practiced choreography by creating elements that foster movement and interaction. We’ve anticipated the way users and information want to flow: we’ve used a <button> element that is interactive and accessible out of the box. our aria-controls attribute can help some people who use screen readers move easily from the <button> to the panel it controls. by toggling the value of the aria-expanded attribute we’ve developed a system that tells assistive technology about the status of the relationship between our elements: the panel is visible or the panel is hidden. we’ve made sure our information is more usable and findable no matter how our users want or need to interact with it. Regardless of how someone “sees” our work they’re going to be able to use it because we’ve architected multiple ways to access our information. Information architecture, robust code, and accessibility The United Nations estimates that around 10% of the world’s population has some form of disability which, at the time of writing, is around 740,000,000 people. That’s a lot of people who rely on well-architected semantic code that can be interpreted by whatever assistive technology they may need to use. If everyone involved in the creation of our places made of information practiced information architecture it would make satisfying the WCAG 2.0 POUR principles so much easier. Our digital construction practices directly affect the quality of life of millions of people, and we have a responsibility to make technology available to them. In her book How To Make Sense Of Any Mess, Abby Covert states: If we’re going to be successful in this new world, we need to see information as a workable material and learn to architect it in a way that gets us to our goals. How To Make Sense Of Any Mess I believe that the world will be a better place if we start treating front-end development as information architecture. 2016 Francis Storr francisstorr 2016-12-17T00:00:00+00:00 https://24ways.org/2016/front-end-developers-are-information-architects-too/ code
292 Watch Your Language! I’m bilingual. My first language is French. I learned English in my early 20s. Learning a new language later in life meant that I was able to observe my thought processes changing over time. It made me realize that some concepts can’t be expressed in some languages, while other languages express these concepts with ease. It also helped me understand the way we label languages. English: business. French: romance. Here’s an example of how words, or the absence thereof, can affect the way we think: In French we love everything. There’s no straightforward way to say we like something, so we just end up loving everything. I love my sisters, I love broccoli, I love programming, I love my partner, I love doing laundry (this is a lie), I love my mom (this is not a lie). I love, I love, I love. It’s no wonder French is considered romantic. When I first learned English I used the word love rather than like because I hadn’t grasped the difference. Needless to say, I’ve scared away plenty of first dates! Learning another language made me realize the limitations of my native language and revealed concepts I didn’t know existed. Without the nuances a given language provides, we fail to express what we really think. The absence of words in our vocabulary gets in the way of effectively communicating and considering ideas. When I lived in Montréal, most people in my circle spoke both French and English. I could switch between them when I could more easily express an idea in one language or the other. I liked (or should I say loved?) those conversations. They were meaningful. They were efficient. I’m quadrilingual. I code in Ruby, HTML/CSS, JavaScript, Python. In the past couple of years I have been lucky enough to write code in these languages at a massive scale. In learning Ruby, much like learning English, I discovered the strengths and limitations of not only the languages I knew but the language I was learning. It taught me to choose the right tool for the job. When I started working at Shopify, making a change to a view involved copy/pasting HTML and ERB from one view to another. The CSS was roughly structured into modules, but those modules were not responsive to different screen sizes. Our HTML was complete mayhem, and we didn’t consider accessibility. All this made editing views a laborious process. Grep. Replace all. Test. Ship it. Repeat. This wasn’t sustainable at Shopify’s scale, so the newly-formed front end team was given two missions: Make the app responsive (AKA Let’s Make This Thing Responsive ASAP) Make the view layer scalable and maintainable (AKA Let’s Build a Pattern Library… in Ruby) Let’s make this thing responsive ASAP The year was 2015. The Shopify admin wasn’t mobile friendly. Our browser support was set to IE10. We had the wind in our sails. We wanted to achieve complete responsiveness in the shortest amount of time. Our answer: container queries. It seemed like the obvious decision at the time. We would be able to set rules for each component in isolation and the component would know how to lay itself out on the page regardless of where it was rendered. It would save us a ton of development time since we wouldn’t need to change our markup, it would scale well, and we would achieve complete component autonomy by not having to worry about page layout. By siloing our components, we were going to unlock the ultimate goal of componentization, cutting the tie to external dependencies. We were cool. Writing the JavaScript handling container queries was my first contribution to Shopify. It was a satisfying project to work on. We could drop our components in anywhere and they would magically look good. It took us less than a couple weeks to push this to production and make our app mostly responsive. But with time, it became increasingly obvious that this was not as performant as we had hoped. It wasn’t performant at all. Components would jarringly jump around the page before settling in on first paint. It was only when we started using the flex-wrap: wrap CSS property to build new components that we realized we were not using the right language for the job. So we swapped out JavaScript container queries for CSS flex-wrapping. Even though flex wasn’t yet as powerful as we wanted it to be, it was still a good compromise. Our components stayed independent of the window size but took much less time to render. Best of all: they used CSS instead of relying on JavaScript for layout. In other words: we were using the wrong language to express our layout to the browser, when another language could do it much more simply and elegantly. Let’s build a pattern library… in Ruby In order to make our view layer maintainable, we chose to build a comprehensive library of helpers. This library would generate our markup from a single source of truth, allowing us to make changes system-wide, in one place. No. More. Grepping. When I joined Shopify it was a Rails shop freshly wounded by a JavaScript framework (See: Batman.js). JavaScript was like Voldemort, the language that could not be named. Because of this baggage, the only way for us to build a pattern library that would get buyin from our developers was to use Rails view helpers. And for many reasons using Ruby was the right choice for us. The time spent ramping developers up on the new UI Components would be negligible since the Ruby API felt familiar. The transition would be simple since we didn’t have to introduce any new technology to the stack. The components would be fast since they would be rendered on the server. We had a plan. We put in place a set of Rails tools to make it easy to build components, then wrote a bunch of sweet, sweet components using our shiny new tools. To document our design, content and front end patterns we put together an interactive styleguide to demonstrate how every component works. Our research and development department loved it (and still do)! We continue to roll out new components, and generally the project has been successful, though it has had its drawbacks. Since the Shopify admin is mostly made up of a huge number of forms, most of the content is static. For this reason, using server-rendered components didn’t seem like a problem at the time. With new app features increasing the amount of DOM manipulation needed on the client side, our early design decisions mean making requests to the server for each re-paint. This isn’t going to cut it. I don’t know the end of this story, because we haven’t written it yet. We’ve been exploring alternatives to our current system to facilitate the rendering of our components on the client, including React, Vue.js, and Web Components, but we haven’t determined the winner yet. Only time (and data gathering) will tell. Ruby is great but it doesn’t speak the browser’s language efficiently. It was not the right language for the job. Learning a new spoken language has had an impact on how I write code. It has taught me that you don’t know what you don’t know until you have the language to express it. Understanding the strengths and limitations of any programming language is fundamental to making good design decisions. At the end of the day, you make the best choices with the information you have. But if you still feel like you’re unable to express your thoughts to the fullest with what you know, it might be time to learn a new language. 2016 Annie-Claude Côté annieclaudecote 2016-12-10T00:00:00+00:00 https://24ways.org/2016/watch-your-language/ code
293 A Favor for Your Future Self We tend to think about the future when we build things. What might we want to be able to add later? How can we refactor this down the road? Will this be easy to maintain in six months, a year, two years? As best we can, we try to think about the what-ifs, and build our websites, systems, and applications with this lens. We comment our code to explain what we knew at the time and how that impacted how we built something. We add to-dos to the things we want to change. These are all great things! Whether or not we come back to those to-dos, refactor that one thing, or add new features, we put in a bit of effort up front just in case to give us a bit of safety later. I want to talk about a situation that Past Alicia and Team couldn’t even foresee or plan for. Recently, the startup I was a part of had to remove large sections of our website. Not just content, but entire pages and functionality. It wasn’t a very pleasant experience, not only for the reason why we had to remove so much of what we had built, but also because it’s the ultimate “I really hope this doesn’t break something else” situation. It was a stressful and tedious effort of triple checking that the things we were removing weren’t dependencies elsewhere. To be honest, we wouldn’t have been able to do this with any amount of success or confidence without our test suite. Writing tests for code is one of those things that developers really, really don’t want to do. It’s one of the easiest things to cut in the development process, and there’s often a struggle to have developers start writing tests in the first place. One of the best lessons the web has taught us is that we can’t, in good faith, trust the happy path. We must make sure ourselves, and our users, aren’t in a tough spot later on because we only thought of the best case scenarios. JavaScript Regardless of your opinion on whether or not everything needs to be built primarily with JavaScript, if you’re choosing to build a JavaScript heavy app, you absolutely should be writing some combination of unit and integration tests. Unit tests are for testing extremely isolated and small pieces of code, which we refer to as the units themselves. Great for reused functions and small, scoped areas, this is the closest you examine your code with the testing microscope. For example, if we were to build a calculator, the most minute piece we could test could be the basic operations. /* * This example uses a test framework called Jasmine */ describe("Calculator Operations", function () { it("Should add two numbers", function () { // Say we have a calculator Calculator.init(); // We can run the function that does our addition calculation... var result = Calculator.addNumbers(7,3); // ...and ensure we're getting the right output expect(result).toBe(10); }); }); Even though these teeny bits work in isolation, we should ensure that connecting the large pieces work, as well. This is where integration tests excel. These tests ensure that two or more different areas of code, that may not directly know about each other, still behave in expected ways. Let’s build upon our calculator - we may want the operations to be saved in memory after a calculation runs. This isn’t as suited for a unit test because there are a few other moving pieces involved in the process (the calculations, checking if the result was an error, etc.). it(“Should remember the last calculation”, function () { // Run an operation Calculator.addNumbers(7,10); // Expect something else to have happened as a result expect(Calculator.updateCurrentValue).toHaveBeenCalled(); expect(Calculator.currentValue).toBe(17); }); Unit and integration tests provide assurance that your hand-rolled JavaScript should, for the most part, never fail in a grand fashion. Although it still might happen, you could be able to catch problems way sooner than without a test suite, and hopefully never push those failures to your production environment. Interfaces Regardless of how you’re building something, it most definitely has some kind of interface. Whether you’re using a very barebones structure, or you’re leveraging a whole design system, these things can be tested as well. Acceptance testing helps us ensure that users can get from point A to point B within our web things, which can provide assurance that major features are always functioning properly. By simulating user input and data entry, we can go through whole user workflows to test for both success and failure scenarios. These are not necessarily for simulating edge-case scenarios, but rather ensuring that our core offerings are stable. For example, if your site requires signup, you want to make sure the workflow is behaving as expected - allowing valid information to go through signup, while invalid information does not let you progress. /* * This example uses Jasmine along with an add-on called jasmine-integration */ describe("Acceptance tests", function () { // Go to our signup page var page = visit("/signup"); // Fill our signup form with invalid information page.fill_in("input[name='email']", "Not An Email"); page.fill_in("input[name='name']", "Alicia"); page.click("button[type=submit]"); // Check that we get an expected error message it("Shouldn't allow signup with invalid information", function () { expect(page.find("#signupError").hasClass("hidden")).toBeFalsy(); }); // Now, fill our signup form with valid information page.fill_in("input[name='email']", "thisismyemail@gmail.com"); page.fill_in("input[name='name']", "Gerry"); page.click("button[type=submit]"); // Check that we get an expected success message and the error message is hidden it("Should allow signup with valid information", function () { expect(page.find("#signupError").hasClass("hidden")).toBeTruthy(); expect(page.find("#thankYouMessage").hasClass("hidden")).toBeFalsy(); }); }); In terms of visual design, we’re now able to take snapshots of what our interfaces look like before and after any code changes to see what has changed. We call this visual regression testing. Rather than being a pass or fail test like our other examples thus far, this is more of an awareness test, intended to inform developers of all the visual differences that have occurred, intentional or not. Developers may accidentally introduce a styling change or fix that has unintended side effects on other areas of a website - visual regression testing helps us catch these sooner rather than later. These do require a bit more consistent grooming than other tests, but can be valuable in major CSS refactors or if your CSS is generally a bit like Jenga. Tools like PhantomCSS will take screenshots of your pages, and do a visual comparison to check what has changed between two sets of images. The code would look something like this: /* * This example uses PhantomCSS */ casper.start("/home").then(function(){ // Initial state of form phantomcss.screenshot("#signUpForm", "sign up form"); // Hit the sign up button (should trigger error) casper.click("button#signUp"); // Take a screenshot of the UI component phantomcss.screenshot("#signUpForm", "sign up form error"); // Fill in form by name attributes & submit casper.fill("#signUpForm", { name: "Alicia Sedlock", email: "alicia@example.com" }, true); // Take a second screenshot of success state phantomcss.screenshot("#signUpForm", "sign up form success"); }); You run this code before starting any development, to create your baseline set of screen captures. After you’ve completed a batch of work, you run PhantomCSS again. This will create a second batch of screenshots, which are then put through an image comparison tool to display any differences that occurred. Say you changed your margins on our form elements – your image diff would look something like this: This is a great tool for ensuring not just your site retains its expected styling, but it’s also great for ensuring nothing accidentally changes in the living style guide or modular components you may have developed. It’s hard to keep eagle eyes on every visual aspect of your site or app, so visual regression testing helps to keep these things monitored. Conclusion The shape and size of what you’re testing for your site or app will vary. You may not need lots of unit or integration tests if you don’t write a lot of JavaScript. You may not need visual regression testing for a one page site. It’s important to assess your codebase to see which tests would provide the most benefit for you and your team. Writing tests isn’t a joy for most developers, myself included. But I end up thanking Past Alicia a lot when there are tests, because otherwise I would have introduced a lot of issues into codebases. Shipping code that’s broken breaks trust with our users, and it’s our responsibility as developers to make sure that trust isn’t broken. Testing shouldn’t be considered a “nice to have” - it should be an integral piece of our workflow and our day-to-day job. 2016 Alicia Sedlock aliciasedlock 2016-12-03T00:00:00+00:00 https://24ways.org/2016/a-favor-for-your-future-self/ code
294 New Tricks for an Old Dog Much of my year has been spent helping new team members find their way around the expansive and complex codebase that is the TweetDeck front-end, trying to build a happy and productive group of people around a substantial codebase with many layers of legacy. I’ve loved doing this. Everything from writing new documentation, drawing diagrams, and holding technical architecture sessions teaches you something you didn’t know or exposes an area of uncertainty that you can go work on. In this article, I hope to share some experiences and techniques that will prove useful in your own situation and that you can impress your friends in some new and exciting ways! How do you do, fellow kids? To start with I’d like to introduce you to our JavaScript framework, Flight. Right now it’s used by twitter.com and TweetDeck although, as a company, Twitter is largely moving to React. Over time, as we used Flight for more complex interfaces, we found it wasn’t scaling with us. Composing components into trees was fiddly and often only applied for a specific parent-child pairing. It seems like an obvious feature with hindsight, but it didn’t come built-in to Flight, and it made reusing components a real challenge. There was no standard way to manage the state of a component; they all did it slightly differently, and the technique often varied by who was writing the code. This cost us in maintainability as you just couldn’t predict how a component would be built until you opened it. Making matters worse, Flight relied on events to move data around the application. Unfortunately, events aren’t good for giving structure to complex logic. They jump around in a way that’s hard to understand and debug, and force you to search your code for a specific string — the event name‚ to figure out what’s going on. To find fixes for these problems, we looked around at other frameworks. We like React for it’s simple, predictable state management and reactive re-render flow, and Elm for bringing strict functional programming to everyone. But when you have lots of existing code, rewriting or switching framework is a painful and expensive option. You have to understand how it will interact with your existing code, how you’ll test it alongside existing code, and how it will affect the size and performance of the application. This all takes time and effort! Instead of planning a rewrite, we looked for the ideas hidden within other frameworks that we could reapply in our own situation or bring to the tools we already were using. Boiled down, what we liked seemed quite simple: Component nesting & composition Easy, predictable state management Normal functions for data manipulation Making these ideas applicable to Flight took some time, but we’re in a much better place now. Through persistent trial-and-error, we have well documented, testable and standard techniques for creating complex component hierarchies, updating and reacting to state changes, and passing data around the app. While the specifics of our situation and Flight aren’t really important, this experience taught me something: Distill good tech into great ideas. You can apply great ideas anywhere. You don’t have to use cool kids’ latest framework, hottest build tool or fashionable language to benefit from them. If you can identify a nugget of gold at the heart of it all, why not use it to improve what you have already? Times, they are a changin’ Apart from stealing ideas from the new and shiny, how can we keep make the most of improved tooling and techniques? Times change and so should the way we write code. Going back in time a bit, TweetDeck used some slightly outmoded tools for building and bundling. Without a transpiler like Babel we were missing out new language features, and without a more advanced build tools like Webpack, every module’s source was encased in AMD boilerplate. In fact, we found ourselves with a mix of both AMD syntaxes: define(["lodash"], function (_) { // . . . }); define(function (require) { var _ = require("lodash"); // . . . }); This just wouldn’t do. And besides, what we really wanted was CommonJS, or even ES2015 module syntax: import _ from "lodash"; These days we’re using Babel, Webpack, ES2015 modules and many new language features that make development just… better. But how did we get there? To explain, I want to introduce you to codemods and jscodeshift. A codemod is a large-scale refactor of a whole codebase, often mechanical or repetitive. Think of renaming a module or changing an API like URL("...") to new URL("..."). jscodeshift is a toolkit for running automated codemods, where you express a code transformation using code. The automated codemod operates on each file’s syntax tree – a data-structure representation of the code — finding and modifying in place as it goes. Here’s an example that renames all instances of the variable foo to bar: module.exports = function (fileInfo, api) { return api .jscodeshift(fileInfo.source) .findVariableDeclarators('foo') .renameTo('bar') .toSource(); }; It’s a seriously powerful tool, and we’ve used it to write a series of codemods that: rename modules, unify our use of AMD to a single syntax, transition from one testing framework to another, and switch from AMD to CommonJS. These changes can be pretty huge and far-reaching. Here’s an example commit from when we switched to CommonJS: commit 8f75de8fd4c702115c7bf58febba1afa96ae52fc Date: Tue Jul 12 2016 Run AMD -> CommonJS codemod 418 files changed, 47550 insertions(+), 48468 deletions(-) Yep, that’s just under 50k lines changed, tested, merged and deployed without any trouble. AMD be gone! From this step-by-step approach, using codemods to incrementally tweak and improve, we extracted a little codemod recipe for making significant, multi-stage changes: Find all the existing patterns Choose the two most similar Unify with a codemod Repeat. For example: For module loading, we had 2 competing AMD patterns plus some use of CommonJS The two AMD syntaxes were the most similar We used a codemod to move to unify the AMD patterns Later we returned to AMD to convert it to CommonJS It’s worked for us, and if you’d like to know more about codemods then check out Evolving Complex Systems Incrementally by Facebook engineer, Christoph Pojer. Welcome aboard! As TweetDeck has gotten older and larger, the amount of things a new engineer has to learn about has exploded. The myriad of microservices that manage our data and their layers of authentication, security and business logic around them make for an overwhelming amount of information to hand to a newbie. Inspired by Amy’s amazing Guide to the Care and Feeding of Junior Devs, we realised it was important to take time to design our onboarding that each of our new hires go through to make the most of their first few weeks. Joining a new company, team, or both, is stressful and uncomfortable. Everything you can do to help a new hire will be valuable to them. So please, take time to design your onboarding! And as you build up an onboarding process, you’ll create things that are useful for more than just new hires; it’ll force you to write documentation, for example, in a way that’s understandable for people who are unfamiliar with your team, product and codebase. This can lead to more outside contributions: potential contributors feel more comfortable getting set up on your product without asking for help. This is something that’s taken for granted in open source, but somehow I think we forget about it in big companies. After all, better documentation is just a good thing. You will forget things from time to time, and you’d be surprised how often the “beginner” docs help! For TweetDeck, we put together system and architecture diagrams, and one-pager explanations of important concepts: What are our dependencies? Where are the potential points of failure? Where does authentication live? Storage? Caching? Who owns “X”? Of course, learning continues long after onboarding. The landscape is constantly shifting; old services are deprecated, new APIs appear and what once true can suddenly be very wrong. Keeping up with this is a serious challenge, and more than any one person can track. To address this, we’ve thought hard about our knowledge sharing practices across the whole team. For example, we completely changed the way we do code review. In my opinion, code review is the single most effective practice you can introduce to share knowledge around, and build the quality and consistency of your team’s work. But, if you’re not doing it, here’s my suggestion for getting started: Every pull request gets a +1 from someone else. That’s all — it’s very light-weight and easy. Just ask someone to have a quick look over your code before it goes into master. At Twitter, every commit gets a code review. We do a lot of reviewing, so small efficiency and effectiveness improvements make a big difference. Over time we learned some things: Don’t review for more than hour 1 Keep reviews smaller than ~400 lines 2 Code review your own code first 2 After an hour, and above roughly 400 lines, your ability to detect issues in a code review starts to decrease. So review little and often. The gaps around lunch, standup and before you head home are ideal. And remember, if someone’s put code up for a review, that review is blocking them doing other work. It’s your job to unblock them. On TweetDeck, we actually try to keep reviews under 250 lines. It doesn’t sound like much, but this constraint applies pressure to make smaller, incremental changes. This makes breakages easier to detect and roll back, and leads to a very natural feature development process that encourages learning and iteration. But the most important thing I’ve learned personally is that reviewing my own code is the best way to spot issues. I try to approach my own reviews the way I approach my team’s: with fresh, critical eyes, after a break, using a dedicated code review tool. It’s amazing what you can spot when you put a new in a new interface around code you’ve been staring at for hours! And yes, this list features science. The data backs up these conclusions, and if you’d like to learn more about scientific approaches to software engineering then I recommend you buy Making Software: What Really Works, and Why We Believe It. It’s ace. For more dedicated information sharing, we’ve introduced regular seminars for everyone who works on a specific area or technology. It works like this: a team-member shares or teaches something to everyone else, and next time it’s someone else’s turn. Giving everyone a chance to speak, and encouraging a wide range of topics, is starting to produce great results. If you’d like to run a seminar, one thing you could try to get started: run a point at the thing you least understand in our architecture session — thanks to James for this idea. And guess what… your onboarding architecture diagrams will help (and benefit from) this! More, please! There’s a few ideas here to get you started, but there are even more in a talk I gave this year called Frontend Archaeology, including a look at optimising for confidence with front-end operations. And finally, thanks to Amy for proof reading this and to Passy for feedback on the original talk. Dunsmore et al. 2000. Object-Oriented Inspection in the Face of Delocalisation. Beverly, MA: SmartBear Software. ↩ Cohen, Jason. 2006. Best Kept Secrets of Peer Code Review. Proceedings of the 22nd ICSE 2000: 467-476. ↩ ↩ 2016 Tom Ashworth tomashworth 2016-12-18T00:00:00+00:00 https://24ways.org/2016/new-tricks-for-an-old-dog/ code
295 Internet of Stranger Things This year I’ve been running a workshop about using JavaScript and Node.js to work with all different kinds of electronics on the Raspberry Pi. So especially for 24 ways I’m going to show you how I made a very special Raspberry Pi based internet connected project! And nothing says Christmas quite like a set of fairy lights connected to another dimension1. What you’ll see You can rig up the fairy lights in your home, with the scrawly letters written under each one. The people from the other side (i.e. the internet) will be able to write messages to you from their browser in real time. In fact why not try it now; check this web page. When you click the lights in your browser, my lights (and yours) will turn on and off in real life! (There may be a queue if there are lots of people accessing it, hit the “Send a message” button and wait your turn.) It’s all done with JavaScript, using Node.js running on both the Raspberry Pi and on the server. I’m using WebSockets to communicate in real time between the browser, server and Raspberry Pi. What you’ll need Raspberry Pi any of the following models: Zero (will need straight male header pins soldered2 and Micro USB OTG adaptor), A+, B+, 2, or 3 Micro SD card at least 4Gb Class 10 speed3 Micro USB power supply at least 2A USB Wifi dongle (unless you have a Pi 3 - that has wifi built in). Addressable fairy lights Logic level shifter (with pins soldered unless you want to do it!) Breadboard Jumper wires (3x male to male and 4x female to male) Optional but recommended Base board to hold the Pi and Breadboard (often comes with a breadboard!) Find links for where to buy all of these items that goes along with this tutorial. The total price should be around $1004. Setting up the Raspberry Pi You’ll need to install the SD card for the Raspberry Pi. You’ll find a link to download a disk image on the support document, ready-made with the Raspbian version of Linux, along with Node.js and all the files you need. Download it and write it to the SD card using the fantastic free software Etcher5. Next up you have to configure the wifi details on the SD card. If you plug the card into your computer you should see a drive called BOOT. There’s a text file on there called wpa_supplicant.conf. Open it up in your favourite text editor and replace mywifi and mypassword with your wifi details6. network={ ssid="mywifi" psk="mypassword" } Save the file, eject the card from your computer and plug it into the Raspberry Pi. If you have a base board or holder for the Raspberry Pi, attach it now. Then connect the wifi USB dongle7 and power supply, but don’t plug it in yet! Wiring! Time to wire everything up! First of all, push the Logic Level Converter into the middle of the breadboard: Logic Level Converter The logic level converter may be labelled differently from the one in the diagram but the pins are usually exactly the same internally. I would just make sure the pins marked HV (High Voltage) are on the bottom and LV (Low Voltage) are on the top. Raspberry Pi pins only output 3.3v but the lights need 5v. That’s why we need the logic level converter in there to boost up the signal. Connect the first two wires between the Raspberry Pi pins and the breadboard: Note that the pins on the Raspberry Pi are male, so you need a female to male jumper wire to connect between them and the breadboard. The colours don’t have to match but it’s easier to follow (and check) if you use the same ones as in the diagram. Then the next two: This is what you should have so far: Lights Now to connect the lights! My ones have a connector with three holes in it that I can push jumper wires into, and hopefully yours will too! So I used the male-to-male jumper wires to connect them to the breadboard. Make sure that you connect the right end of the lights, mine has a male connector at the wrong end so it’s impossible to do this, but double check. Also make sure that the holes in the light connector are the same as mine. To do this, follow the wires from the connector to the first light and look at the circuit board inside. You should just about be able to make out the connections labelled + (sometimes 5V, V+ or VCC), GND (or ‘-’ or G) and DI (sometimes DIN for data in). You can just about make out the +, DI and GND on this picture. Note that on the other side of the board there is a DO for data out - that’s what takes the data along to the chip in the next light. Make sure that you’re plugging into the data-in and not the data-out! That’s it! Everything’s plugged in and ready to go! But before you plug power into your Pi, double check all your wires and make sure they’re exactly right! You could damage your Raspberry Pi if it is not wired correctly. So triple check! The Moment of Truth! Plug in the Raspberry Pi and wait around a minute or two for it to boot up. If all is well, the lights should strobe rainbow colours for one second - that’s your confirmation that it’s connected to my WebSocket server and ready to receive messages from the upside-down! However, if the first light in the string is pulsing red, it means that you’re not connected to the internet. So check the Troubleshooting section of the support document. If it’s pulsing green then you’re connected to the internet but can’t connect to my server. It must have gone down. Sorry! The code will keep trying so leave it running and maybe it’ll come back up. Rig up the lights! Fix the lights up on the wall however you want, pins, nails, tape. I’ve used cable clips. Just be careful! I’m using a 50 light string so I’ve programmed it to use the lights at the end for the letters. That way I have just under half the string to extend down to the floor where I can keep the Raspberry Pi. Check the photo here to see how the lights line up, note that there are spare unused lights in-between each row: Now visit lights.seb.ly and you’ll see this : If you’re the only one online you’ll have direct connection to the lights and any letter you click on will light up both in the browser and in real life. If there are other people there, you’ll need to click the button to join the queue and wait your turn. How it works - the geeky details! Electronics: The pins on the Raspberry Pi are known as GPIO pins, general-purpose input/output. You can connect a wide variety of electronic components to them, LED lights, buttons, switches, and sensors. You can turn the power to the pins on and off using Node.js (or Python, if you prefer). Addressable LEDs or “Neopixels” We’re only using one GPIO pin on the Raspberry Pi (the other connections are 5V, 3.3V and ground) and that single pin is controlling all of the lights in the string. The code turns the pin on and off really fast in strictly timed morse-code-like dots and dashes to transmit binary data. The chips attached to each LED decode the binary and adjust the output to the LED accordingly. That chip then sends the data on to the next light in the string. The chips on each light are the WS2811, part of the WS281x family that come in a multitude of different form factors and are often packaged with tiny LEDs in a single component. They are commonly referred to as Neopixels8 and I used them on my Laser Light Synths project. Neopixels with the chip and the LED all in one - it’s the white square shaped component and the darker square inside is the chip. These are only 5mm wide! A Laser Light Synth! Covered with around 800 super bright neopixels! Logic Level Converter The logic level converter is a really cheap and easy way to change the level from 3.3v to 5v and back again. You must be careful that you do not connect 5v into a GPIO pin or you will most likely damage the Raspberry Pi processor chip. Power Neopixels can often draw a lot of current so you need to be careful how you power them. I’ve measured the current draw from the string to be less than 800mA so you should be fine wired directly to the 5V output. But if you use more lights or have them all on really bright at once, you’ll need to use a separate 5V power supply. If you want to learn more, check out Adafruit’s Neopixel Uberguide. Node.js There are two Node.js apps running here, one on the Raspberry Pi and one on my server. You can see the code on my GitHub at github.com/sebleedelisle/stranger-lights for the Raspberry Pi and github.com/sebleedelisle/stranger-lights-server for the server. And they’re hosted on npm as stranger-lights and stranger-lights-server. The server side code sets up a standard web server to deliver the HTML for the web interface. It also sets up a WebSocket server that allows for real-time communication between the browser and the server. This server code also manages the queue and who is in control of the lights at any given time. WebSockets I’m using the excellent Socket.io library to manage the WebSocket connection. Both the browser and the Raspberry Pi Node.js app connects to my WebSocket server. When you click on a letter in the browser, a message is sent to the server, which forwards it to the connected Raspberry Pi clients and also all the web browsers9. The Raspberry Pi code The Node.js app runs automatically on startup, and I made this happen by adding this to the /etc/rc.local file: node /home/pi/strangerthings/client.js > /dev/null & Anything in the rc.local file gets executed when the Pi boots up and this line of code runs the Node.js app and routes its output to nowhere (ie /dev/null). The & means that it runs it in the background and doesn’t hold up the boot process. Working with the Raspberry Pi headless You might know that when a computer has no screen or keyboard, you would refer to it as “running headless”. So just like most web servers, you need to configure it over the network with ssh10. If you’re on a mac you can find your Pi on the network through the name raspberrypi.local11, otherwise you’ll need to find its IP address. There’s more on the guide to Remote Access instructions on the Raspberry Pi website. And if you’re very new to the terminal, I highly recommend this great online Linux command line tutorial. Improvements This is quite an early experiment and I’m sure I’ll discover lots of optimisations over the next few weeks, especially if the server gets a proper hammering today! But there are a few things you can do. Obviously I’ve just rigged up my lights with Post-it notes. It’d be a lot nicer to get a paint brush and try to recreate the Winona-in-a-manic-state text style. Where next? Finding quality resources about Node.js for electronics on the Pi can be somewhat hit and miss, but this is getting better all the time. Alternatively I am thinking about running some online courses, please let me know if that’s something you’d be interested in, or sign up to my mailing list at st4i.com. There are many many more resources for the Raspberry Pi with Python (gpiozero is a good place to start), so if that language works for you, you’ll be spoilt for choice! Also take a look at Arduino - it’s an incredibly popular platform for electronics and the internet is literally bursting with resources. I hope you enjoyed this little foray into the world of JavaScript electronics on the Raspberry Pi! If you get this working at home please let me know! Tweet me at @seb_ly. Not a particularly original idea, but I don’t think I’ve seen anyone do it quite like this before, ie using WebSockets, and Node.js on a Raspberry Pi. Other examples: Internet of Stranger Things, Strangerlights.com, and loads of examples on Instructables ↩︎ Video guide to soldering pins on to a Pi Zero and further soldering advice from Adafruit ↩︎ Slower cards will work but performance may suffer ↩︎ Or £5,000 in UK money. Sorry, Brexit joke :) ↩︎ You will need a card reader on your computer - most micro SD cards come with an adaptor that fits standard SD slots.  ↩︎ SSID and password should be all that you need but you can see all the config options on this wpa supplicant guide ↩︎ Raspberry Pi Zero will require the OTG to USB adaptor to attach the wifi dongle ↩︎ Thanks to Adafruit who invented the term neopixels so we don’t have to refer to them as WS281x any more! ↩︎ So you can see other people sending messages in the browser ↩︎ ssh is short for Secure Shell and is a way to connect to a remote computer and type in it just like you would in the terminal. ↩︎ You can change this default hostname using raspi-config ↩︎ 2016 Seb Lee-Delisle sebleedelisle 2016-12-01T00:00:00+00:00 https://24ways.org/2016/internet-of-stranger-things/ code
296 Animation in Design Systems Our modern front-end workflow has matured over time to include design systems and component libraries that help us stay organized, improve workflows, and simplify maintenance. These systems, when executed well, ensure proper documentation of the code available and enable our systems to scale with reduced communication conflicts. But while most of these systems take a critical stance on fonts, colors, and general building blocks, their treatment of animation remains disorganized and ad-hoc. Let’s leverage existing structures and workflows to reduce friction when it comes to animation and create cohesive and performant user experiences. Understand the importance of animation Part of the reason we treat animation like a second-class citizen is that we don’t really consider its power. When users are scanning a website (or any environment or photo), they are attempting to build a spatial map of their surroundings. During this process, nothing quite commands attention like something in motion. We are biologically trained to notice motion: evolutionarily speaking, our survival depends on it. For this reason, animation when done well can guide your users. It can aid and reinforce these maps, and give us a sense that we understand the UX more deeply. We retrieve information and put it back where it came from instead of something popping in and out of place. “Where did that menu go? Oh it’s in there.” For a deeper dive into how animation can connect disparate states, I wrote about the Importance of Context-Shifting in UX Patterns for CSS-Tricks. An animation flow on mobile. Animation also aids in perceived performance. Viget conducted a study where they measured user engagement with a standard loading GIF versus a custom animation. Customers were willing to wait almost twice as long for the custom loader, even though it wasn’t anything very fancy or crazy. Just by showing their users that they cared about them, they stuck around, and the bounce rates dropped. 14 second generic loading screen.22 second custom loading screen. This also works for form submission. Giving your personal information over to an online process like a static form can be a bit harrowing. It becomes more harrowing without animation used as a signal that something is happening, and that some process is completing. That same animation can also entertain users and make them feel as though the wait isn’t as long. Eli Fitch gave a talk at CSS Dev Conf called: “Perceived Performance: The Only Kind That Really Matters”, which is one of my favorite talk titles of all time. In it, he discussed how we tend to measure things like timelines and network requests because they are more quantifiable–and therefore easier to measure–but that measuring how a user feels when visiting the site is more important and worth the time and attention. In his talk, he states “Humans over-estimate passive waits by 36%, per Richard Larson of MIT”. This means that if you’re not using animation to speed up how fast the wait time of a form submission loads, users are perceiving it to be much slower than the dev tools timeline is recording. Reign it in Unlike fonts, colors, and so on, we tend to add animation in as a last step, which leads to disorganized implementations that lack overall cohesion. If you asked a designer or developer if they would create a mockup or build a UI without knowing the fonts they were working with, they would dislike the idea. Not knowing the building blocks they’re working with means that the design can fall apart or the development can break with something so fundamental left out at the start. Good animation works the same way. The first step in reigning in your use of animation is to perform an animation audit. Look at all the places you are using animation on your site, or the places you aren’t using animation but probably should. (Hint: perceived performance of a loader on a form submission can dramatically change your bounce rates.) Not sure how to perform a good audit? Val Head has a great chapter on it in her book, Designing Interface Animations, which has of buckets of research and great ideas. Even some beautiful component libraries that have animation in the docs make this mistake. You don’t need every kind of animation, just like you don’t need every kind of font. This bloats our code. Ask yourself questions like: do you really need a flip 180 degree animation? I can’t even conceive of a place on a typical UI where that would be useful, yet most component libraries that I’ve seen have a mixin that does just this. Which leads to… Have an opinion Many people are confused about Material Design. They think that Material Design is Motion Design, mostly because they’ve never seen anyone take a stance on animation before and document these opinions well. But every time you use Material Design as your motion design language, people look at your site and think GOOGLE. Now that’s good branding. By using Google’s motion design language and not your own, you’re losing out on a chance to be memorable on your own website. What does having an opinion on motion look like in practice? It could mean you’ve decided that you never flip things. It could mean that your eases are always going to glide. In that instance, you would put your efforts towards finding an ease that looks “gliding” and pulling out any transform: scaleX(-1) animation you find on your site. Across teams, everyone knows not to spend time mocking up flipping animation (even if they’re working on an entirely different codebase), and to instead work on something that feels like it glides. You save time and don’t have to communicate again and again to make things feel cohesive. Create good developer resources Sometimes people don’t incorporate animation into a design system because they aren’t sure how, beyond the base hover states. All animation properties can be broken into interchangeable pieces. This allows developers and designers alike to mix and match and iterate quickly, while still staying in the correct language. Here are some recommendations (with code and a demo to follow): Create timing units, similar to h1, h2, h3. In a system I worked on recently, I called these t1, t2, t3. T1 would be reserved for longer pieces, down to t5 which is a bit like h5 in that it’s the default (usually around .25 seconds or thereabouts). Keep animation easings for entrance, exit, entrance emphasis and exit emphasis that people can commonly refer to. This, and the animation-fill-mode, are likely to be the only two properties that can be reused for the entrance and exit of the animation. Use the animation-name property to define the keyframes for the animation itself. I would recommend starting with 5 or 6 before making a slew of them, and see if you need more. Writing 30 different animations might seem like a nice resource, but just like your color palette having too many can unnecessarily bulk up your codebase, and keep it from feeling cohesive. Think critically about what you need here. See the Pen Modularized Animation for Component Libraries by Sarah Drasner (@sdras) on CodePen. The example above is pared-down, but you can see how in a robust system, having pieces that are interchangeable cached across the whole system would save time for iterations and prototyping, not to mention make it easy to make adjustments for different feeling movement on the same animation easily. One low hanging fruit might be a loader that leads to a success dialog. On a big site, you might have that pattern many times, so writing up a component that does only that helps you move faster while also allowing you to really zoom in and focus on that pattern. You avoid throwing something together at the last minute, or using a GIF, which are really heavy and mushy on retina. You can make singular pieces that look really refined and are reusable. React and Vue Implementations are great for reusable components, as you can create a building block with a common animation pattern, and once created, it can be a resource for all. Remember to take advantage of things like props to allow for timing and easing adjustments like we have in the previous example! Responsive At the very least we should ensure that interaction also works well on mobile, but if we’d like to create interactions that take advantage of all of the gestures mobile has to offer, we can use libraries like zingtouch or hammer to work with swipe or multiple finger detection. With a bit of work, these can all be created through native detection as well. Responsive web pages can specify initial-scale=1.0 in the meta tag so that the device is not waiting the required 300ms on the secondary tap before calling action. Interaction for touch events must either start from a larger touch-target (40px × 40px or greater) or use @media(pointer:coarse) as support allows. Buy-in Sometimes people don’t create animation resources simply because it gets deprioritized. But design systems were also something we once had to fight for, too. This year at CSS Dev Conf, Rachel Nabors demonstrated how to plot out animation wants vs. needs on a graph (reproduced with her permission) to help prioritize them: This helps people you’re working with figure out the relative necessity and workload of the addition of these animations and think more critically about it. You’re also more likely to get something through if you’re proving that what you’re making is needed and can be reused. Good compromises can be made this way: “we’re not going to go all out and create an animated ‘About Us’ page like you wanted, but I suppose we can let our users know their contact email went through with a small progress and success notification.” Successfully pushing smaller projects through helps build trust with your team, and lets them see what this type of collaboration can look like. This builds up the type of relationship necessary to push through projects that are more involved. It can’t be overstressed that good communication is key. Get started! With these tools and good communication, we can make our codebases more efficient, performant, and feel better for our users. We can enhance the user experience on our sites, and create great resources for our teams to allow them to move more quickly while innovating beautifully. 2016 Sarah Drasner sarahdrasner 2016-12-16T00:00:00+00:00 https://24ways.org/2016/animation-in-design-systems/ code
298 First Steps in VR The web is all around us. As web folk, it is our responsibility to consider the impact our work can have. Part of this includes thinking about the future; the web changes lives and if we are building the web then we are the ones making decisions that affect people in every corner of the world. I find myself often torn between wanting to make the right decisions, and just wanting to have fun. To fiddle and play. We all know how important it is to sometimes just try ideas, whether they will amount to much or not. I think of these two mindsets as production and prototyping, though of course there are lots of overlap and phases in between. I mention this because virtual reality is currently seen as a toy for rich people, and in some ways at the moment it is. But with WebVR we are able to create interesting experiences with a relatively low entry point. I want us to have open minds, play around with things, and then see how we can use the tools we have at our disposal to make things that will help people. Every year we see articles saying it will be the “year of virtual reality”, that was especially prevalent this year. 2016 has been a year of progress, VR isn’t quite mainstream but with efforts like Playstation VR and Google Cardboard, we are definitely seeing much more of it. This year also saw the consumer editions of the Oculus Rift and HTC Vive. So it does seem to be a good time for an overview of how to get involved with creating virtual reality on the web. WebVR is an API for connecting to devices and retrieving continuous data such as the position and orientation. Unlike the Web Audio API and some other APIs, WebVR does not feel like a framework. You use it however you want, taking the data and using it as you wish. To make it easier, there are plenty of resources such as Three.js, A-Frame and ReactVR that help to make the heavy lifting a bit easier. Getting Started with A-Frame I like taking the opportunity to learn new things whenever I can. So while planning this article I thought that instead of trying to teach WebGL or even Three.js in a way that is approachable for all, I would create my first project using A-Frame and write about that. This is not a tutorial as such, I just want to show how to go about getting involved with VR. The beauty of A-Frame is that it is very similar to web components, you can just write HTML to build worlds that will automatically work on all the different types of devices. It uses WebGL and WebVR but in such a way that it quite drastically reduces the learning curve. That’s not to say you can’t build complex things, you have complete access to write JavaScript and shaders. I’m lazy. Whenever I learn a new language or framework I have found that the best way, personally, for me to learn is to have a project and to copy the starting code from someone else. A project lets you have a good idea of what you want to produce and it means you can ignore a lot of the irrelevant documentation, focussing purely on what you need. That reduces the stress of figuring things out. Copying code also makes it easier, because you know your boilerplate code is working. There’s nothing worse than getting stuck before anything actually works the first time. So I tinker. I take code and I modify it, I play around. It’s fun. For this project I wanted to keep things as simple as possible, so I can easily explain it without the classic “draw a circle then draw an owl”. I wrote a list of requirements, with some stretch goals that you can give a try yourself if you fancy: Must work on Google Cardboard at a minimum, because of price Therefore, it must not rely on having a controller Auto-moving around a maze would be a good example Move in direction you look Stretch goal: Scoring, time until you hit a wall or get stuck in maze Stretch goal: Levels, so the map doesn’t need to be random Stretch goal: Snow! I decided to base this project on an example, Platforms, by Don McCurdy who wrote the really useful aframe-extras. Platforms has random 3D blocks that you can jump onto, going up into the sky. So I took his code and reduced it so that the blocks are randomly spread on the ground. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width"> <title>24 ways</title> <script src="https://aframe.io/releases/0.3.2/aframe.js"></script> <script src="//cdn.rawgit.com/donmccurdy/aframe-extras/v2.6.1/dist/aframe-extras.min.js"></script> </head> <body> <a-scene> <a-entity id="player" camera universal-controls kinematic-body position="0 1.8 0"> </a-entity> <a-entity id="walls"></a-entity> <a-grid id="ground" static-body></a-grid> <a-sky id="sky" color="#AADDF0"></a-sky> <!-- Lighting --> <a-light type="ambient" color="#ccc"></a-light> </a-scene> <script> document.querySelector('a-scene').addEventListener('render-target-loaded', function () { var MAP_SIZE = 10, PLATFORM_SIZE = 5, NUM_PLATFORMS = 50; var platformsEl = document.querySelector('#walls'); var v, box; for (var i = 0; i < NUM_PLATFORMS; i++) { // y: 0 is ground v = { x: (Math.floor(Math.random() * MAP_SIZE) - PLATFORM_SIZE) * PLATFORM_SIZE, y: PLATFORM_SIZE / 2, z: (Math.floor(Math.random() * MAP_SIZE) - PLATFORM_SIZE) * PLATFORM_SIZE }; box = document.createElement('a-box'); platformsEl.appendChild(box); box.setAttribute('color', '#39BB82'); box.setAttribute('width', PLATFORM_SIZE); box.setAttribute('height', PLATFORM_SIZE); box.setAttribute('depth', PLATFORM_SIZE); box.setAttribute('position', v.x + ' ' + v.y + ' ' + v.z); box.setAttribute('static-body', ''); } console.info('Platforms loaded.'); }); </script> </body> </html> As you can see, this is very readable. Especially if you ignore the JavaScript that is used to create the maze. A-Frame (with A-Frame Extras) gives you a lot of power with relatively little to learn. We start with an <a-scene> which is the container for everything that is going to show up on the screen. There are a few <a-entity> which can be compared to <div> as they are essentially non-semantic containers, able to be used for any purpose. The attributes are used to define functionality, for example the camera attribute sets the entity to function as a camera and kinematic-body makes it collide instead of go through objects. Attributes are also used to set position and sizes, often using JavaScript to dynamically define them. Styling Now we’ve got the HTML written, we need to style it. To do this we add A-Frame compatible attributes such as color and material. I recommend playing around, you can get some quite impressive effects fairly easily. Originally I wanted a light snowy maze but it ended up being dark and foggy, as I really liked the feeling it gave. Note, you will probably need a server running for images to work. You can do this by running python -m "SimpleHTTPServer" in the folder where the code is, then go to localhost:8000 in browser. Textures Unless you are going for a cartoony style, you probably want to find some textures. I found some on textures.com, one image worked well for the walls and the other for the floor. <a-assets> <img id="texture-floor" src="floor.jpg"> <img id="texture-wall" src="wall.jpg"> </a-assets> The <a-assets> is used to define (as well as preload and cache) all assets, including images, audio and video. As you can see, images in the Asset Management System just use normal img tags. The ids are important here as we can use them later for using the textures. To apply a texture to an object, you create a material. For a simple material where it just shows the image, you set the src to the id selector of the image. Replace: <a-grid id="ground" static-body></a-grid> With: <a-grid id="ground" static-body material="src: #texture-floor"></a-grid> This will automatically make the image repeat over the entire floor, in my case filling it with bricks. The walls are pretty much identical, with the slight exception that it is set in JavaScript as they are dynamically defined. box.setAttribute('material', 'src: #texture-wall'); That’s it for the textures, for now at least. These will not look completely realistic, as the light will bump off the rectangular wall rather than texture itself. This can be improved by using maps, textures that are used to modify the shape and physical properties of the object. Lighting The next part of styling is lighting. By using fog and different types of lighting, we are able to add atmospheric details to the game to make it feel that bit more realistic and polished. There are lots of types of light in A-Frame (most coming from Three.js). You can add a light either by using the <a-light> entity or by attaching a light attribute to any other entity. If there are no lights defined then A-Frame adds some by default so that the scene is always lit. To start with I wanted to light up the scene with a general light, type="ambient", so that the whole game felt slightly dark. I chose to set the light to a reddish colour #92455E. After playing around with intensity I chose 0.4, it added enough light to get the feeling I wanted without it being overly red. I also added a blue skybox (<a-sky>), as it looked a bit odd with a white sky. <a-light type="ambient" color="#92455E" intensity="0.4"></a-light> <a-sky id="sky" color="#0000ff"></a-sky> I felt that the maze looked good with a red tinge but it was a bit flat, everything was the same colour and it was a bit dark. So I added a light within the #player entity, this could have been as an attribute but I set it as a child a-light instead. By using type="point" with a high intensity and low distance, it showed close walls as being lighter. It also added a sort-of object to the player, it isn’t a walking human or anything but by moving light where the player is it feels a bit more physical. <a-light color="#fff" distance="5" intensity="0.7" type="point"></a-light> By this point it was starting to look decent, so I wanted to add the fog to really give some personality and depth to the maze. To do this I added the fog attribute to the <a-scene> with type=exponential so it looks thicker the further away it is and a mid intensity, so you feel a bit lost but can still see. I was very happy with this result. It took a lot of playing around with colours and values, which is fun in itself. I highly recommend you take the code (or write your own) and play around with the numbers. Movement One of the reasons I decided to use aframe-extras is that it has a few different camera controls built in. As you saw earlier, I am using the universal-controls which gives WASD (keyboard) controls by default. I wanted to make it automatically move in the direction that you’re looking, but I wasn’t quite sure how without rewriting the controls. So I asked Don McCurdy for advice and he very nicely gave me a small snippet of code to get it working. AFRAME.registerComponent('automove-controls', { init: function () { this.speed = 0.1; this.isMoving = true; this.velocityDelta = new THREE.Vector3(); }, isVelocityActive: function () { return this.isMoving; }, getVelocityDelta: function () { this.velocityDelta.z = this.isMoving ? -speed : 0; return this.velocityDelta.clone(); } }); Replace: universal-controls With: universal-controls="movementControls: automove, gamepad, keyboard" This works by creating a component automove-controls that adds auto-move to the player without overriding movement completely. It doesn’t even touch direction, it just checks if isMoving is true then moves the player by the set speed. Components can be creating for adding all kinds of functionality with relative ease. It makes it very powerful for people of all difficulty levels. Building a map Currently the maze is created randomly, which is great but means there will often be walls that overlap or the player gets trapped with nowhere to go. So to solve this, I decided to use a map editor (Tiled) so that we can create the mazes ourselves. This is a great start towards one of the stretch goals, levels. I made the maze in Tiled by finding a random tileset online (we don’t need to actually show the images), I used one tile for the wall and another for the player. Then I exported as a JavaScript file and modified it in my text editor to get rid of everything I didn’t need. I made it so 0 is the path, 1 is the wall and 2 is the player. I then added the script to the HTML, as a separate file so it’s easy to update in the future. var map = { "data":[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "height":10, "width":10 } As you can see, this gives a simple 10x10 maze with some dead ends. The player starts in the bottom right corner (my choice, could be anywhere). I rewrote the random platforms code (from Don’s example) to instead loop over the map data and place walls where it is 1 and position the player where data is 2. I set the position so that the origin of the map would be 0,1.5,0. The y axis is in this case the height (ground being 0), but if a wall is positioned at 0 by its centre then some of it is underground. So the y needed to be the height divided by 2. document.querySelector('a-scene').addEventListener('render-target-loaded', function () { var WALL_SIZE = 5, WALL_HEIGHT = 3; var el = document.querySelector('#walls'); var wall; for (var x = 0; x < map.height; x++) { for (var y = 0; y < map.width; y++) { var i = y*map.width + x; var position = (x-map.width/2)*WALL_SIZE + ' ' + 1.5 + ' ' + (y-map.height/2)*WALL_SIZE; if (map.data[i] === 1) { // Create wall wall = document.createElement('a-box'); el.appendChild(wall); wall.setAttribute('color', '#fff'); wall.setAttribute('material', 'src: #texture-wall;'); wall.setAttribute('width', WALL_SIZE); wall.setAttribute('height', WALL_HEIGHT); wall.setAttribute('depth', WALL_SIZE); wall.setAttribute('position', position); wall.setAttribute('static-body', '); } if (map.data[i] === 2) { // Set player position document.querySelector('#player').setAttribute('position', position); } } } console.info('Walls added.'); }); With this added, it makes it nice and easy to change around the map as well as to add new features. Perhaps you want monsters or objects. Just set the number in the map data and add an if statement to the loop. In the future you could add layers, so multiple things can be in the same position. Or perhaps even make the maze go up the y axis too, with ramps or staircases. There’s a lot you can do with relative ease. As you can see, A-Frame really does reduce the learning curve of 3D and VR on the web. It’s Not All Fun And Games A lot of examples of virtual reality are games, including this one. So it is understandable to think that VR is for gaming, but actually that’s just a tiny subset. There are all sorts of applications for VR, including story telling, data visualisation and even meditation. There have been a number of cases where it has been shown virtual reality can help as a tool for therapies: Oxford study finds virtual reality can help treat severe paranoia Virtual Reality Therapy for Phobias at the Duke Faculty Practice Bravemind: Virtual Reality Exposure Therapy at the University of Southern California These are just a few examples of where virtual reality is being used around the world to help people feel better and get through some very tough times. There have also been examples of it being used for simulating war zones or medical situations, both as a teaching and journalism tool. Wrapping Up Ten years ago, on this very site, Cameron Moll wrote an article explaining the mobile web. He explained how mobile phones with data plans were becoming increasingly common, that WAP 2.0 included the XHTML Mobile Profile meaning it would be familiar with web folk. “The mobile web is rapidly becoming an XHTML environment, and thus you and I can apply our existing “desktop web” skills to understand how to develop content for it.” We can look at that and laugh a little, we have come a very long way in the last decade. Even people in developing countries with very little money have mobile phones with access to a web that is far more capable than the “desktop web” Cameron was referring to. So while I am not saying virtual reality is going to change the world or replace our phones, who knows! We can use our skills as web folk to dabble, we don’t need to learn any new languages. If on the 2026 edition of 24 ways, somebody references this article and looks at how far we have come… well, let’s hope we have used our skills well and made the world just that little bit better. And if VR is a fad? Well it’s fun… have a go anyway. 2016 Shane Hudson shanehudson 2016-12-11T00:00:00+00:00 https://24ways.org/2016/first-steps-in-vr/ code
300 Taking Device Orientation for a Spin When The Police sang “Don’t Stand So Close To Me” they weren’t talking about using a smartphone to view a panoramic image on Facebook, but they could have been. For years, technology has driven relentlessly towards devices we can carry around in our pockets, and now that we’re there, we’re expected to take the thing out of our pocket and wave it around in front of our faces like a psychotic donkey in search of its own dangly carrot. But if you can’t beat them, join them. A brave new world A couple of years back all sorts of specs for new HTML5 APIs sprang up much to our collective glee. Emboldened, we ran a few tests and found they basically didn’t work in anything and went off disheartened into the corner for a bit of a sob. Turns out, while we were all busy boohooing, those browser boffins have actually being doing some work, and lo and behold, some of these APIs are even half usable. Mostly literally half usable—we’re still talking about browsers, after all. Now, of course they’re all a bit JavaScripty and are going to involve complex methods and maths and science and probably about a thousand dependancies from Github that will fall out of fashion while we’re still trying to locate the documentation, right? Well, no! So what if we actually wanted to use one of these APIs, say to impress our friends with our ability to make them wave their phones in front of their faces (because no one enjoys looking hapless more than the easily-technologically-impressed), how could we do something like that? Let’s find out. The Device Orientation API The phone-wavy API is more formally known as the DeviceOrientation Event Specification. It does a bunch of stuff that basically doesn’t work, but also gives us three values that represent orientation of a device (a phone, a tablet, probably not a desktop computer) around its x, y and z axes. You might think of it as pitch, roll and yaw if you like to spend your weekends wearing goggles and a leather hat. The main way we access these values is through an event listener, which can inform our code every time the value changes. Which is constantly, because you try and hold a phone still and then try and hold the Earth still too. The API calls those pitch, roll and yaw values alpha, beta and gamma. Chocks away: window.addEventListener('deviceorientation', function(e) { console.log(e.alpha); console.log(e.beta); console.log(e.gamma); }); If you look at this test page on your phone, you should be able to see the numbers change as you twirl the thing around your body like the dance partner you never had. Wrist strap recommended. One important note Like may of these newfangled APIs, Device Orientation is only available over HTTPS. We’re not allowed to have too much fun without protection, so make sure that you’re working on a secure line. I’ve found a quick and easy way to share my local dev environment over TLS with my devices is to use an ngrok tunnel. ngrok http -host-header=rewrite mylocaldevsite.dev:80 ngrok will then set up a tunnel to your dev site with both HTTP and HTTPS URL options. You, of course, want the HTTPS option. Right, where were we? Make something to look at It’s all well and good having a bunch of numbers, but they’re no use unless we do something with them. Something creative. Something to inspire the generations. Or we could just build that Facebook panoramic image viewer thing (because most of us are familiar with it and we’re not trying to be too clever here). Yeah, let’s just build one of those. Our basic framework is going to be similar to that used for an image carousel. We have a container, constrained in size, and CSS overflow property set to hidden. Into this we place our wide content and use positioning to move the content back and forth behind the ‘window’ so that the part we want to show is visible. Here it is mocked up with a slider to set the position. When you release the slider, the position updates. (This actually tests best on desktop with your window slightly narrowed.) The details of the slider aren’t important (we’re about to replace it with phone-wavy goodness) but the crucial part is that moving the slider results in a function call to position the image. This takes a percentage value (0-100) with 0 being far left and 100 being far right (or ‘alt-nazi’ or whatever). var position_image = function(percent) { var pos = (img_W / 100)*percent; img.style.transform = 'translate(-'+pos+'px)'; }; All this does is figure out what that percentage means in terms of the image width, and set the transform: translate(…); CSS property to move the image. (We use translate because it might be a bit faster to animate than left/right positioning.) Ok. We can now read the orientation values from our device, and we can programatically position the image. What we need to do is figure out how to convert those raw orientation values into a nice tidy percentage to pass to our function and we’re done. (We’re so not done.) The maths bit If we go back to our raw values test page and make-believe that we have a fascinating panoramic image of some far-off beach or historic monument to look at, you’ll note that the main value that is changing as we swing back and forth is the ‘alpha’ value. That’s the one we want to track. As our goal here is hey, these APIs are interesting and fun and not let’s build the world’s best panoramic image viewer, we’ll start by making a few assumptions and simplifications: When the image loads, we’ll centre the image and take the current nose-forward orientation reading as the middle. Moving left, we’ll track to the left of the image (lower percentage). Moving right, we’ll track to the right (higher percentage). If the user spins round, does cartwheels or loads the page then hops on a plane and switches earthly hemispheres, they’re on their own. Nose-forward When the page loads, the initial value of alpha gives us our nose-forward position. In Safari on iOS, this is normalised to always be 0, whereas most everywhere else it tends to be bound to pointy-uppy north. That doesn’t really matter to us, as we don’t know which direction the user might be facing in anyway — we just need to record that initial state and then use it to compare any new readings. var initial_position = null; window.addEventListener('deviceorientation', function(e) { if (initial_position === null) { initial_position = Math.floor(e.alpha); }; var current_position = initial_position - Math.floor(e.alpha); }); (I’m rounding down the values with Math.floor() to make debugging easier - we’ll take out the rounding later.) We get our initial position if it’s not yet been set, and then calculate the current position as a difference between the new value and the stored one. These values are weird One thing you need to know about these values, is that they range from 0 to 360 but then you also get weird left-of-zero values like -2 and whatever. And they wrap past 360 back to zero as you’d expect if you do a forward roll. What I’m interested in is working out my rotation. If 0 is my nose-forward position, I want a positive value as I turn right, and a negative value as I turn left. That puts the awkward 360-tipping point right behind the user where they can’t see it. var rotation = current_position; if (current_position > 180) rotation = current_position-360; Which way up? Since we’re talking about orientation, we need to remember that the values are going to be different if the device is held in portrait on landscape mode. See for yourself - wiggle it like a steering wheel and you get different values. That’s easy to account for when you know which way up the device is, but in true browser style, the API for that bit isn’t well supported. The best I can come up with is: var screen_portrait = false; if (window.innerWidth < window.innerHeight) { screen_portrait = true; } It works. Then we can use screen_portrait to branch our code: if (screen_portrait) { if (current_position > 180) rotation = current_position-360; } else { if (current_position < -180) rotation = 360+current_position; } Here’s the code in action so you can see the values for yourself. If you change screen orientation you’ll need to refresh the page (it’s a demo!). Limiting rotation Now, while the youth of today are rarely seen without a phone in their hands, it would still be unreasonable to ask them to spin through 360° to view a photo. Instead, we need to limit the range of movement to something like 60°-from-nose in either direction and normalise our values to pan the entire image across that 120° range. -60 would be full-left (0%) and 60 would be full-right (100%). If we set max_rotation = 60, that code ends up looking like this: if (rotation > max_rotation) rotation = max_rotation; if (rotation < (0-max_rotation)) rotation = 0-max_rotation; var percent = Math.floor(((rotation + max_rotation)/(max_rotation*2))*100); We should now be able to get a rotation from -60° to +60° expressed as a percentage. Try it for yourself. The big reveal All that’s left to do is pass that percentage to our image positioning function and would you believe it, it might actually work. position_image(percent); You can see the final result and take it for a spin. Literally. So what have we made here? Have we built some highly technical panoramic image viewer to aid surgeons during life-saving operations using only JavaScript and some slightly questionable mathematics? No, my friends, we have not. Far from it. What we have made is progress. We’ve taken a relatively newly available hardware API and a bit of simple JavaScript and paired it with existing CSS knowledge and made something that we didn’t have this morning. Something we probably didn’t even want this morning. Something that if you take a couple of steps back and squint a bit might be a prototype for something vaguely interesting. But more importantly, we’ve learned that our browsers are just a little bit more capable than we thought. The web platform is maturing rapidly. There are new, relatively unexplored APIs for doing all sorts of crazy thing that are often dismissed as the preserve of native apps. Like some sort of app marmalade. Poppycock. The web is an amazing, exciting place to create things. All it takes is some base knowledge of the fundamentals, a creative mind and a willingness to learn. We have those! So let’s create things. 2016 Drew McLellan drewmclellan 2016-12-24T00:00:00+00:00 https://24ways.org/2016/taking-device-orientation-for-a-spin/ code
303 We Need to Talk About Technical Debt In my work with clients, a lot of time is spent assessing old, legacy, sprawling systems and identifying good code, bad code, and technical debt. One thing that constantly strikes me is the frequency with which bad code and technical debt are conflated, so let me start by saying this: Not all technical debt is bad code, and not all bad code is technical debt. Sometimes your bad code is just that: bad code. Calling it technical debt often feels like a more forgiving and friendly way of referring to what may have just been a poor implementation or a substandard piece of work. It is an oft-misunderstood phrase, and when mistaken for meaning ‘anything legacy or old hacky or nasty or bad’, technical debt is swept under the carpet along with all of the other parts of the codebase we’d rather not talk about, and therein lies the problem. We need to talk about technical debt. What We Talk About When We Talk About Technical Debt The thing that separates technical debt from the rest of the hacky code in our project is the fact that technical debt, by definition, is something that we knowingly and strategically entered into. Debt doesn’t happen by accident: debt happens when we choose to gain something otherwise-unattainable immediately in return for paying it back (with interest) later on. An Example You’re a front-end developer working on a SaaS product, and your sales team is courting a large customer – a customer so large that you can’t really afford to lose them. The customer tells you that as long as you can allow them to theme your SaaS application according to their branding, they are willing to sign on the dotted line… the problem being that your CSS architecture was never designed to incorporate theming at all, and there isn’t currently a nice, clean way to incorporate a theme into the codebase. You and the business make the decision that you will hack a theme into the product in two days. It’s going to be messy, it’s going to be ugly, but you can’t afford to lose a huge customer just because your CSS isn’t quite right, right now. This is technical debt. You deliver the theme, the customer signs up, and everyone is happy. Except you (and the business, because you are one and the same) have a decision to make: Do we go back and build theming into the CSS architecture as a first-class citizen, porting the hacked theme back into a codified and formal framework? Do we carry on as we are? Things are working okay, and the customer paid up, so is there any reason to invest time and effort into things after we (and the customer) got what we wanted? Option 1 is choosing to pay off your debts; Option 2 is ignoring your repayments. With Option 1, you’re acknowledging that you did what you could given the constraints, but, free of constraints, you’d have done something different. Now, you are choosing to implement that something different. With Option 2, however, you are avoiding your responsibility to repay your debt, and you are letting interest accrue. The problem here is that… your SaaS product now offers theming to one of your customers; another potential customer might also demand the ability to theme their instance of your product; you can’t refuse them that request, nor can you quickly fulfil it; you hack in another theme, thus adding to the balance of your existing debt; and so on (plus interest) for every subsequent theme you need to implement. Here you have increased entropy whilst making little to no attempt to address what you already knew to be problems. Your second, third, fourth, fifth request for theming will be hacked on top of your hack, further accumulating debt whilst offering nothing by way of a repayment. After a long enough period, the code involved will get so unwieldy, so hard to work with, that you are forced to tear it all down and start again, and the most painful part of this is that you’re actually paying off even more than your debt repayments would have been in the first place. Two days of hacking plus, say, five days of subsequent refactoring, would still have been substantially less than the weeks you will now have to spend rewriting your CSS to fix and incorporate the themes properly. You’ve made a loss; your strategic debt ultimately became a loss-making exercise. The important thing to note here is that you didn’t necessarily write bad code. You knew there were two options: the quick way and the correct way. The decision to take the quick route was a definite choice, because you knew there was a better way. Implementing the better way is your repayment. Good Debt and Bad Debt Technical debt is acceptable as long as you have intentions to settle; it can be a valuable solution to a business problem, provided the right approach is taken afterwards. That doesn’t, however, mean that all debt is born equal. Just as in real life, there is good debt and there is bad debt. Good debt might be… a mortgage; a student loan, or; a business loan. These are types of debt that will secure you the means of repaying them. These are well considered debts whose very reason for being will allow you to make the money to pay them off—they have real, tangible benefit. A business loan to secure some equipment and premises will allow you to start an enterprise whose revenue will allow you to pay that debt back; a student loan will allow you to secure the kind of job that has the ability to pay a student loan back. These kinds of debt involve a considered and well-balanced decision to acquire something in the short term in the knowledge that you will have the means, in the long term, to pay it back. Conversely, bad debt might be… borrowing $1,000 from a loan shark so you can go to Vegas, or; taking out a payday loan in order to buy a new television. Both of these kinds of debt will leave you paying for things that didn’t provide you a way of earning your own capital. That is to say, the loans taken did not secure anything that would help pay off said loans. These are bad debts that will usually provide a net loss. You really are only gaining the short term in exchange for a long term financial responsibility: i.e., was it worth it? A good litmus test for debt is to compare the gains of its immediate benefit with the cost of its long term commitment. The earlier example of theming a site is a good debt, provided we are keeping up our repayments (all debt is bad debt if you don’t). A calculated decision to do something ‘wrong’ in the short term with the promise of better payoffs later on. Bad Technical Debt The majority of my work is with front-end development teams—CSS is what I do. To that end, the most succinct example of technical debt for that audience is simply: !important All front-end developers know the horrors and dangers associated with using !important, yet we continue to use it. Why? It’s not necessarily because we’re bad developers, but because we see a shortcut. !important is usually implemented as a quick way out of a sticky specificity situation. We could spend the rest of the day refactoring our CSS to fix the issue at its source, or we can spend mere seconds typing the word !important and patch over the symptoms. This is us making an explicit decision to do something less than ideal now in exchange for immediate benefit. After all, refactoring our CSS will take a lot more time, and will still only leave us with the same outcome that the vastly quicker !important solution will, so it seems to make better business sense. However, this is a bad debt. !important takes seconds to implement but weeks to refactor. The cost of refactoring this back out later will be an order of magnitude higher than it would be to have done things properly the first time. The first !important usually sets a precedent, and subsequent developers are likely to have to use it themselves in order to get around the one that you left. So many CSS projects deteriorate because of this one simple word, and rewrites become more and more imminent. That makes it possibly the most costly 10 bytes a CSS developer could ever write. Bad Code Now we’ve got a good idea of what constitutes technical debt, let’s take a look at what constitutes bad code. Something I hear time and time again in my client work goes a little like this: We’ve amassed a lot of technical debt and we’d like to get a strategy in place to begin dealing with it. Whilst I genuinely admire their willingness to identify and desire to fix problems in their code, sometimes they’re not looking at technical debt at all—sometimes they’re just looking at bad code, plain and simple. Where technical debt is knowing that there’s a better way, but the quicker way makes more sense right now, bad code is not caring if there’s a better way at all. Again, looking at a CSS-specific world, a lot of bad code is contributed by non-front-end developers with little training, appreciation, or even respect for the front-end landscape. Writing code with reckless abandon should not be described as technical debt, because to do so would imply that… the developers knew they were implementing a sub-par solution, but… the developers also knew that a better solution was out there, which… implies that it can be tidied up relatively simply. Developers writing bad code is a larger and more cultural problem that requires a lot more effort to fix. Hopefully—and usually—bad code is in the minority, but it helps to be objective in identifying and solving it. Bad code usually doesn’t happen for a good enough reason, and is therefore much harder to justify. Technical debt often represents ability in judgement, whereas bad code often represents a gap in skills. Takeaway Take time to familiarise yourself with the true concepts underlying technical debt and why it exists. Understand that technical debt can be good or bad. Admit that sometimes code is just of poor quality. Understanding these points will allow you to make better calls around what you might need to refactor and when, and what skills gaps you might have in your team. Sometimes it’s okay to cut corners if there is a tangible gain to be had in the immediate term. Technical debt is okay provided it is a sensible debt and you have intentions to pay it off. Technical debt is not necessarily synonymous with bad code, and bad code isn’t necessarily technical debt. Technical debt is code that was implemented given limited knowledge or resource, with the understanding that you would need to repay something in future. Technical debt is not inherently bad—failure to make repayments is. Periodically, it is justifiable—encouraged, even—to enter a debt in order to fulfil a more pressing matter. However, it is imperative that we begin making repayments as soon as we are capable, be that based on newly available time or knowledge. Bad code is worse than technical debt as it represents a lack of knowledge or quality control within a team. It needs a much more fundamental fix. 2016 Harry Roberts harryroberts 2016-12-05T00:00:00+00:00 https://24ways.org/2016/we-need-to-talk-about-technical-debt/ code
305 CSS Writing Modes Since you may not have a lot of time, I’m going to start at the end, with the dessert. You can use a little-known, yet important and powerful CSS property to make text run vertically. Like this. Or instead of running text vertically, you can layout a set of icons or interface buttons in this way. Or, of course, with anything on your page. The CSS I’ve applied makes the browser rethink the orientation of the world, and flow the layout of this element at a 90° angle to “normal”. Check out the live demo, highlight the headline, and see how the cursor is now sideways. See the Pen Writing Mode Demo — Headline by Jen Simmons (@jensimmons) on CodePen. The code for accomplishing this is pretty simple. h1 { writing-mode: vertical-rl; } That’s all it takes to switch the writing mode from the web’s default horizontal top-to-bottom mode to a vertical right-to-left mode. If you apply such code to the html element, the entire page is switched, affecting the scroll direction, too. In my example above, I’m telling the browser that only the h1 will be in this vertical-rl mode, while the rest of my page stays in the default of horizontal-tb. So now the dessert course is over. Let me serve up this whole meal, and explain the the CSS Writing Mode Specification. Why learn about writing modes? There are three reasons I’m teaching writing modes to everyone—including western audiences—and explaining the whole system, instead of quickly showing you a simple trick. We live in a big, diverse world, and learning about other languages is fascinating. Many of you lay out pages in languages like Chinese, Japanese and Korean. Or you might be inspired to in the future. Using writing-mode to turn bits sideways is cool. This CSS can be used in all kinds of creative ways, even if you are working only in English. Most importantly, I’ve found understanding Writing Modes incredibly helpful when understanding Flexbox and CSS Grid. Before I learned Writing Mode, I felt like there was still a big hole in my knowledge, something I just didn’t get about why Grid and Flexbox work the way they do. Once I wrapped my head around Writing Modes, Grid and Flexbox got a lot easier. Suddenly the Alignment properties, align-* and justify-*, made sense. Whether you know about it or not, the writing mode is the first building block of every layout we create. You can do what we’ve been doing for 25 years – and leave your page set to the default left-to-right direction, horizontal top-to-bottom writing mode. Or you can enter a world of new possibilities where content flows in other directions. CSS properties I’m going to focus on the CSS writing-mode property in this article. It has five possible options: writing-mode: horizontal-tb; writing-mode: vertical-rl; writing-mode: vertical-lr; writing-mode: sideways-rl; writing-mode: sideways-lr; The CSS Writing Modes Specification is designed to support a wide range of written languages in all our human and linguistic complexity. Which—spoiler alert—is pretty insanely complex. The global evolution of written languages has been anything but simple. So I’ve got to start with explaining some basic concepts of web page layout and writing systems. Then I can show you what these CSS properties do. Inline Direction, Block Direction, and Character Direction In the world of the web, there’s a concept of ‘block’ and ‘inline’ layout. If you’ve ever written display: block or display: inline, you’ve leaned on these concepts. In the default writing mode, blocks stack vertically starting at the top of the page and working their way down. Think of how a bunch of block-levels elements stack—like a bunch of a paragraphs—that’s the block direction. Inline is how each line of text flows. The default on the web is from left to right, in horizontal lines. Imagine this text that you are reading right now, being typed out one character at a time on a typewriter. That’s the inline direction. The character direction is which way the characters point. If you type a capital “A” for instance, on which side is the top of the letter? Different languages can point in different directions. Most languages have their characters pointing towards the top of the page, but not all. Put all three together, and you start to see how they work as a system. The default settings for the web work like this. Now that we know what block, inline, and character directions mean, let’s see how they are used in different writing systems from around the world. The four writing systems of CSS Writing Modes The CSS Writing Modes Specification handles all the use cases for four major writing systems; Latin, Arabic, Han and Mongolian. Latin-based systems One writing system dominates the world more than any other, reportedly covering about 70% of the world’s population. The text is horizontal, running from left to right, or LTR. The block direction runs from top to bottom. It’s called the Latin-based system because it includes all languages that use the Latin alphabet, including English, Spanish, German, French, and many others. But there are many non-Latin-alphabet languages that also use this system, including Greek, Cyrillic (Russian, Ukrainian, Bulgarian, Serbian, etc.), and Brahmic scripts (Devanagari, Thai, Tibetan), and many more. You don’t need to do anything in your CSS to trigger this mode. This is the default. Best practices, however, dictate that you declare in your opening <html> element which language and which direction (LTR or RTL) you are using. This website, for instance, uses <html lang='en-gb' dir='ltr'> to let the browser know this content is published in Great Britian’s version of English, in a left to right direction. Arabic-based systems Arabic, Hebrew and a few other languages run the inline direction from right to left. This is commonly known as RTL. Note that the inline direction still runs horizontally. The block direction runs from top to bottom. And the characters are upright. It’s not just the flow of text that runs from right to left, but everything about the layout of the website. The upper right-hand corner is the starting position. Important things are on the right. The eyes travel from right to left. So, typically RTL websites use layouts that are just like LTR websites, only flipped. On websites that support both LTR and RTL, like the United Nations’ site at un.org, the two layouts are mirror images of each other. For many web developers, our experiences with internationalization have focused solely on supporting Arabic and Hebrew script. CSS layout hacks for internationalization & RTL To prepare an LTR project to support RTL, developers have had to create all sorts of hacks. For example, the Drupal community started a convention of marking every margin-left and -right, every padding-left and -right, every float: left and float: right with the comment /* LTR */. Then later developers could search for each instance of that exact comment, and create stylesheets to override each left with right, and vice versa. It’s a tedious and error prone way to work. CSS itself needed a better way to let web developers write their layout code once, and easily switch language directions with a single command. Our new CSS layout system does exactly that. Flexbox, Grid and Alignment use start and end instead of left and right. This lets us define everything in relationship to the writing system, and switch directions easily. By writing justify-content: flex-start, justify-items: end, and eventually margin-inline-start: 1rem we have code that doesn’t need to be changed. This is a much better way to work. I know it can be confusing to think through start and end as replacements for left and right. But it’s better for any multiligual project, and it’s better for the web as a whole. Sadly, I’ve seen CSS preprocessor tools that claim to “fix” the new CSS layout system by getting rid of start and end and bringing back left and right. They want you to use their tool, write justify-content: left, and feel self-righteous. It seems some folks think the new way of working is broken and should be discarded. It was created, however, to fulfill real needs. And to reflect a global internet. As Bruce Lawson says, WWW stands for the World Wide Web, not the Wealthy Western Web. Please don’t try to convince the industry that there’s something wrong with no longer being biased towards western culture. Instead, spread the word about why this new system is here. Spend a bit of time drilling the concept of inline and block into your head, and getting used to start and end. It will be second nature soon enough. I’ve also seen CSS preprocessors that let us use this new way of thinking today, even as all the parts aren’t fully supported by browsers yet. Some tools let you write text-align: start instead of text-align: left, and let the preprocessor handle things for you. That is terrific, in my opinion. A great use of the power of a preprocessor to help us switch over now. But let’s get back to RTL. How to declare your direction You don’t want to use CSS to tell the browser to switch from an LTR language to RTL. You want to do this in your HTML. That way the browser has the information it needs to display the document even if the CSS doesn’t load. This is accomplished mainly on the html element. You should also declare your main language. As I mentioned above, the 24 ways website is using <html lang='en-gb' dir='ltr'> to declare the LTR direction and the use of British English. The UN Arabic website uses <html lang='ar' dir='rtl'>to declare the site as an Arabic site, using a RTL layout. Things get more complicated when you’ve got a page with a mix of languages. But I’m not going to get into all of that, since this article is focused on CSS and layouts, not explaining everything about internationalization. Let me just leave direction here by noting that much of the heavy work of laying out the characters which make up each word is handled by Unicode. If you are interested in learning more about LTR, RTL and bidirectional text, watch this video: Introduction to Bidirectional Text, a presentation by Elika Etemad. Meanwhile, let’s get back to CSS. The writing mode CSS for Latin-based and Arabic-based systems For both of these systems—Latin-based and Arabic-based, whether LTR or RTL—the same CSS property applies for specifying the writing mode: writing-mode: horizontal-tb. That’s because in both systems, the inline text flow is horizontal, while the block direction is top-to-bottom. This is expressed as horizontal-tb. horizontal-tb is the default writing mode for the web, so you don’t need to specify it unless you are overriding something else higher up in the cascade. You can just imagine that every site you’ve ever built came with: html { writing-mode: horizontal-tb; } Now let’s turn our attention to the vertical writing systems. Han-based systems This is where things start to get interesting. Han-based writing systems include CJK languages, Chinese, Japanese, Korean and others. There are two options for laying out a page, and sometimes both are used at the same time. Much of CJK text is laid out like Latin-based languages, with a horizontal top-to-bottom block direction, and a left-to-right inline direction. This is the more modern way to doing things, started in the 20th century in many places, and further pushed into domination by the computer and later the web. The CSS to do this bit of the layouts is the same as above: section { writing-mode: horizontal-tb; } Or, you know, do nothing, and get that result as a default. Alternatively Han-based languages can be laid out in a vertical writing mode, where the inline direction runs vertically, and the block direction goes from right to left. See both options in this diagram: Note that the horizontal text flows from left to right, while the vertical text flows from right to left. Wild, eh? This Japanese issue of Vogue magazine is using a mix of writing modes. The cover opens on the left spine, opposite of what an English magazine does. This page mixes English and Japanese, and typesets the Japanese text in both horizontal and vertical modes. Under the title “Richard Stark” in red, you can see a passage that’s horizontal-tb and LTR, while the longer passage of text at the bottom of the page is typeset vertical-rl. The red enlarged cap marks the beginning of that passage. The long headline above the vertical text is typeset LTR, horizontal-tb. The details of how to set the default of the whole page will depend on your use case. But each element, each headline, each section, each article can be marked to flow the opposite of the default however you’d like. For example, perhaps you leave the default as horizontal-tb, and specify your vertical elements like this: div.articletext { writing-mode: vertical-rl; } Or alternatively you could change the default for the page to a vertical orientation, and then set specific elements to horizontal-tb, like this: html { writing-mode: vertical-rl; } h2, .photocaptions, section { writing-mode: horizontal-tb; } If your page has a sideways scroll, then the writing mode will determine whether the page loads with upper left corner as the starting point, and scroll to the right (horizontal-tb as we are used to), or if the page loads with the upper right corner as the starting point, scrolling to the left to display overflow. Here’s an example of that change in scrolling direction, in a CSS Writing Mode demo by Chen Hui Jing. Check out her demo — you can switch from horizontal to vertical writing modes with a checkbox and see the difference. Mongolian-based systems Now, hopefully so far all of this kind of makes sense. It might be a bit more complicated than expected, but it’s not so hard. Well, enter the Mongolian-based systems. Mongolian is also a vertical script language. Text runs vertically down the page. Just like Han-based systems. There are two major differences. First, the block direction runs the other way. In Mongolian, block-level elements stack from left to right. Here’s a drawing of how Wikipedia would look in Mongolian if it were laid out correctly. Perhaps the Mongolian version of Wikipedia will be redone with this layout. Now you might think, that doesn’t look so weird. Tilt your head to the left, and it’s very familiar. The block direction starts on the left side of the screen and goes to the right. The inline direction starts on the top of the page and moves to the bottom (similar to RTL text, just turned 90° counter-clockwise). But here comes the other huge difference. The character direction is “upside down”. The top of the Mongolian characters are not pointing to the left, towards the start edge of the block direction. They point to the right. Like this: Now you might be tempted to ignore all this. Perhaps you don’t expect to be typesetting Mongolian content anytime soon. But here’s why this is important for everyone — the way Mongolian works defines the results writing-mode: vertical-lr. And it means we cannot use vertical-lr for typesetting content in other languages in the way we might otherwise expect. If we took what we know about vertical-rl and guessed how vertical-lr works, we might imagine this: But that’s wrong. Here’s how they actually compare: See the unexpected situation? In both writing-mode: vertical-rl and writing-mode: vertical-lr latin text is rotated clockwise. Neither writing mode let’s us rotate text counter-clockwise. If you are typesetting Mongolian content, apply this CSS in the same way you would apply writing-mode to Han-based writing systems. To the whole page on the html element, or to specific pages of the page like this: section { writing-mode: vertical-lr; } Now, if you are using writing-mode for a graphic design effect on a language that is otherwise typesets horizontally, I don’t think writing-mode: vertical-lr is useful. If the text wraps onto two lines, it stacks in a very unexpected way. So I’ve sort of obliterated it from my toolkit. I find myself using writing-mode: vertical-rl a lot. And never using -lr. Hm. Writing modes for graphic design So how do we use writing-mode to turn English headlines sideways? We could rely on transform: rotate() Here are two examples, one for each direction. (By the way, each of these demos use CSS Grid for their overall layout, so be sure to test them in a browser that supports CSS Grid, like Firefox Nightly.) In this demo 4A, the text is rotated clockwise using this code: h1 { writing-mode: vertical-rl; } In this demo 4B, the text is rotated counter-clockwise using this code: h1 { writing-mode: vertical-rl; transform: rotate(180deg); text-align: right; } I use vertical-rl to rotate the text so that it takes up the proper amount of space in the overall flow of the layout. Then I rotate it 180° to spin it around to the other direction. And then I use text-align: right to get it to rise up to the top of it’s container. This feels like a hack, but it’s a hack that works. Now what I would like to do instead is use another CSS value that was designed for this use case — one of the two other options for writing mode. If I could, I would lay out example 4A with: h1 { writing-mode: sideways-rl; } And layout example 4B with: h1 { writing-mode: sideways-lr; } The problem is that these two values are only supported in Firefox. None of the other browsers recognize sideways-*. Which means we can’t really use it yet. In general, the writing-mode property is very well supported across browsers. So I’ll use writing-mode: vertical-rl for now, with the transform: rotate(180deg); hack to fake the other direction. There’s much more to what we can do with the CSS designed to support multiple languages, but I’m going to stop with this intermediate introduction. If you do want a bit more of a taste, look at this example that adds text-orientation: upright; to the mix — turning the individual letters of the latin font to be upright instead of sideways. It’s this demo 4C, with this CSS applied: h1 { writing-mode: vertical-rl; text-orientation: upright; text-transform: uppercase; letter-spacing: -25px; } You can check out all my Writing Modes demos at labs.jensimmons.com/#writing-modes. I’ll leave you with this last demo. One that applies a vertical writing mode to the sub headlines of a long article. I like how small details like this can really bring a fresh feeling to the content. See the Pen Writing Mode Demo — Article Subheadlines by Jen Simmons (@jensimmons) on CodePen. 2016 Jen Simmons jensimmons 2016-12-23T00:00:00+00:00 https://24ways.org/2016/css-writing-modes/ code
306 What next for CSS Grid Layout? In 2012 I wrote an article for 24 ways detailing a new CSS Specification that had caught my eye, at the time with an implementation only in Internet Explorer. What I didn’t realise at the time was that CSS Grid Layout was to become a theme on which I would base the next four years of research, experimentation, writing and speaking. As I write this article in December 2016, we are looking forward to CSS Grid Layout being shipped in Chrome and Firefox. What will ship early next year in those browsers is expanded and improved from the early implementation I explored in 2012. Over the last four years the spec has been developed as part of the CSS Working Group process, and has had input from browser engineers, specification writers and web developers. Use cases have been discussed, and features added. The CSS Grid Layout specification is now a Candidate Recommendation. This status means the spec is to all intents and purposes, finished. The discussions now happening are on fine implementation details, and not new feature ideas. It makes sense to draw a line under a specification in order that browser vendors can ship complete, interoperable implementations. That approach is good for all of us, it makes development far easier if we know that a browser supports all of the features of a specification, rather than working out which bits are supported. However it doesn’t mean that works stops here, and that new use cases and features can’t be proposed for future levels of Grid Layout. Therefore, in this article I’m going to take a look at some of the things I think grid layout could do in the future. I would love for these thoughts to prompt you to think about how Grid - or any CSS specification - could better suit the use cases you have. Subgrid - the missing feature of Level 1 The implementation of CSS Grid Layout in Chrome, Firefox and Webkit is comparable and very feature complete. There is however one standout feature that has not been implemented in any browser as yet - subgrid. Once you set the value of the display property to grid, any direct children of that element become grid items. This is similar to the way that flexbox behaves, set display: flex and all direct children become flex items. The behaviour does not apply to children of those items. You can nest grids, just as you can nest flex containers, but the child grids have no relationship to the parent. Nesting Grids by Rachel Andrew (@rachelandrew) on CodePen. The subgrid behaviour would enable the grid defined on the parent to be used by the children. I feel this would be most useful when working with a multiple column flexible grid - for example a typical 12 column grid. I could define a grid on a wrapper, then position UI elements on that grid - from the major structural elements of my page down through the child elements to a form where I wanted the field to line up with items above. The specification contained an initial description of subgrid, with a value of subgrid for grid-template-columns and grid-template-rows, you can read about this in the August 2015 Working Draft. This version of the specification would have meant you could declare a subgrid in one dimension only, and create a different set of tracks in the other. In an attempt to get some implementation of subgrid, a revised specification was proposed earlier this year. This gives a single subgrid value of the display property. As we now cannot specify a subgrid on rows OR columns this limits us to have a subgrid that works in two dimensions. At this point neither version has been implemented by anyone, and subgrids are marked as “at risk” in the Level 1 Candidate Recommendation. With regard to ‘at-risk’ this is explained as follows: “‘At-risk’ is a W3C Process term-of-art, and does not necessarily imply that the feature is in danger of being dropped or delayed. It means that the WG believes the feature may have difficulty being interoperably implemented in a timely manner, and marking it as such allows the WG to drop the feature if necessary when transitioning to the Proposed Rec stage, without having to publish a new Candidate Rec without the feature first.” If we lose subgrid from Level 1, as it looks likely that we will, this does give us a chance to further discuss and iterate on that feature. My current thoughts are that I’m not completely happy about subgrids being tied to both dimensions and feel that a return to the earlier version, or something like it, would be preferable. Further reading about subgrid My post from 2015 detailing why I feel subgrid is important My post based on the revised specification Eric Meyer’s thoughts on subgrid Write-up of a discussion from Igalia who work on the Blink and Webkit browser implementations Styling cells, tracks and areas Having defined a grid with CSS Grid Layout you can place child elements into that grid, however what you can’t do is style the grid tracks or cells. Grid doesn’t even go as far as multiple column layout, which has the column-rule properties. In order to set a background colour on a grid cell at the moment you would have to add an empty HTML element or insert some generated content as in the below example. I’m using a 1 pixel grid gap to fake lines between grid cells, and empty div elements, and some generated content to colour those cells. Faked backgrounds and borders by Rachel Andrew (@rachelandrew) on CodePen. I think it would be a nice addition to Grid Layout to be able to directly add backgrounds and borders to cells, tracks and areas. There is an Issue raised in the CSS WG Drafts repository for Decorative Grid Cell pseudo-elements, if you want to add thoughts to that. More control over auto placement If you haven’t explicitly placed the direct children of your grid element they will be laid out according to the grid auto placement rules. You can see in this example how we have created a grid and the items are placing themselves into cells on that grid. Items auto-place on a defined grid by Rachel Andrew (@rachelandrew) on CodePen. The auto-placement algorithm is very cool. We can position some items, leaving others to auto-place; we can set items to span more than one track; we can use the grid-auto-flow property with a value of dense to backfill gaps in our grid. Websafe colors meet CSS Grid (auto-placement demo) by Rachel Andrew (@rachelandrew) on CodePen. I think however this could be taken further. In this issue posted to my CSS Grid AMA on GitHub, the question is raised as to whether it would be possible to ask grid to place items on the next available line of a certain name. This would allow you to skip tracks in the grid when using auto-placement, an issue that has also been raised by Emil Björklund in this post to the www-style list prior to spec discussion moving to Github. I think there are probably similar issues, if you can think of one add a comment here. Creating non-rectangular grid areas A grid area is a collection of grid cells, defined by setting the start and end lines for columns and rows or by creating the area in the value of the grid-template-areas property as shown below. Those areas however must be rectangular - you can’t create an L-shaped or otherwise non-regular shape. Grid Areas by Rachel Andrew (@rachelandrew) on CodePen. Perhaps in the future we could define an L-shape or other non-rectangular area into which content could flow, as in the below currently invalid code where a quote is embedded into an L-shaped content area. .wrapper { display: grid; grid-template-areas: "sidebar header header" "sidebar content quote" "sidebar content content"; } Flowing content through grid cells or areas Some uses cases I have seen perhaps are not best solved by grid layout at all, but would involve grid working alongside other CSS specifications. As I detail in this post, there are a class of problems that I believe could be solved with the CSS Regions specification, or a revised version of that spec. Being able to create a grid layout, then flow content through the areas could be very useful. Jen Simmons presented to the CSS Working Group at the Lisbon meeting a suggestion as to how this might work. In a post from earlier this year I looked at a collection of ideas from specifications that include Grid, Regions and Exclusions. These working notes from my own explorations might prompt ideas of your own. Solving the keyboard/layout disconnect One issue that grid, and flexbox to a lesser extent, raises is that it is very easy to end up with a layout that is disconnected from the underlying markup. This raises problems for people navigating using the keyboard as when tabbing around the document you find yourself jumping to unexpected places. The problem is explained by Léonie Watson with reference to flexbox in Flexbox and the keyboard navigation disconnect. The grid layout specification currently warns against creating such a disconnect, however I think it will take careful work by web developers in order to prevent this. It’s also not always as straightforward as it seems. In some cases you want the logical order to follow the source, and others it would make more sense to follow the visual. People are thinking about this issue, as you can read in this mailing list discussion. Bringing your ideas to the future of Grid Layout When I’m not getting excited about new CSS features, my day job involves working on a software product - the CMS that is serving this very website, Perch. When we launched Perch there were many use cases that we had never thought of, despite having a good idea of what might be needed in a CMS and thinking through lots of use cases. The additional use cases brought to our attention by our customers and potential customers informed the development of the product from launch. The same will be true for Grid Layout. As a “product” grid has been well thought through by many people. Yet however hard we try there will be use cases we just didn’t think of. You may well have one in mind right now. That’s ok, because as with any CSS specification, once Level One of grid is complete, work can begin on Level Two. The feature set of Level Two will be informed by the use cases that emerge as people get to grips with what we have now. This is where you get to contribute to the future of layout on the web. When you hit up against the things you cannot do, don’t just mutter about how the CSS Working Group don’t listen to regular developers and code around the problem. Instead, take a few minutes and write up your use case. Post it to your blog, to Medium, create a CodePen and go to the CSS Working Group GitHub specs repository and post an issue there. Write some pseudo-code, draw a picture, just make sure that the use case is described in enough detail that someone can see what problem you want grid to solve. It may be that - as with any software development - your use case can’t be solved in exactly the way you suggest. However once we have a use case, collected with other use cases, methods of addressing that class of problems can be investigated. I opened this article by explaining I’d written about grid layout four years ago, and how we’re only now at a point where we will have Grid Layout available in the majority of browsers. Specification development, and implementation into browsers takes time. This is actually a good thing, as it’s impossible to take back CSS once it is out there and being used by production websites. We want CSS in the wild to be well thought through and that takes time. So don’t feel that because you don’t see your use case added to a spec immediately it has been ignored. Do your future self a favour and write down your frustrations or thoughts, and we can all make sure that the web platform serves the use cases we’re dealing with now and in the future. 2016 Rachel Andrew rachelandrew 2016-12-12T00:00:00+00:00 https://24ways.org/2016/what-next-for-css-grid-layout/ code
307 Get the Balance Right: Responsive Display Text Last year in 24 ways I urged you to Get Expressive with Your Typography. I made the case for grabbing your readers’ attention by setting text at display sizes, that is to say big. You should consider very large text in the same way you might a hero image: a picture that creates an atmosphere and anchors your layout. When setting text to be read, it is best practice to choose body and subheading sizes from a pre-defined scale appropriate to the viewport dimensions. We set those sizes using rems, locking the text sizes together so they all scale according to the page default and your reader’s preferences. You can take the same approach with display text by choosing larger sizes from the same scale. However, display text, as defined by its purpose and relative size, is text to be seen first, and read second. In other words a picture of text. When it comes to pictures, you are likely to scale all scene-setting imagery - cover photos, hero images, and so on - relative to the viewport. Take the same approach with display text: lock the size and shape of the text to the screen or browser window. Introducing viewport units With CSS3 came a new set of units which are locked to the viewport. You can use these viewport units wherever you might otherwise use any other unit of length such as pixels, ems or percentage. There are four viewport units, and in each case a value of 1 is equal to 1% of either the viewport width or height as reported in reference1 pixels: vw - viewport width, vh - viewport height, vmin - viewport height or width, whichever is smaller vmax - viewport height or width, whichever is larger In one fell swoop you can set the size of a display heading to be proportional to the screen or browser width, rather than choosing from a scale in a series of media queries. The following makes the heading font size 13% of the viewport width: h1 { font-size: 13 vw; } So for a selection of widths, the rendered font size would be: Rendered font size (px) Viewport width 13 vw 320 42 768 100 1024 133 1280 166 1920 250 A problem with using vw in this manner is the difference in text block proportions between portrait and landscape devices. Because the font size is based on the viewport width, the text on a landscape display is far bigger than when rendered on the same device held in a portrait orientation. Landscape text is much bigger than portrait text when using vw units. The proportions of the display text relative to the screen are so dissimilar that each orientation has its own different character, losing the inconsistency and considered design you would want when designing to make an impression. However if the text was the same size in both orientations, the visual effect would be much more consistent. This where vmin comes into its own. Set the font size using vmin and the size is now set as a proportion of the smallest side of the viewport, giving you a far more consistent rendering. h1 { font-size: 13vmin; } Landscape text is consistent with portrait text when using vmin units. Comparing vw and vmin renderings for various common screen dimensions, you can see how using vmin keeps the text size down to a usable magnitude: Rendered font size (px) Viewport 13 vw 13 vmin 320 × 480 42 42 414 × 736 54 54 768 × 1024 100 100 1024 × 768 133 100 1280 × 720 166 94 1366 × 768 178 100 1440 × 900 187 117 1680 × 1050 218 137 1920 × 1080 250 140 2560 × 1440 333 187 Hybrid font sizing Using vertical media queries to set text in direct proportion to screen dimensions works well when sizing display text. In can be less desirable when sizing supporting text such as sub-headings, which you may not want to scale upwards at the same rate as the display text. For example, we can size a subheading using vmin so that it starts at 16 px on smaller screens and scales up in the same way as the main heading: h1 { font-size: 13vmin; } h2 { font-size: 5vmin; } Using vmin alone for supporting text can scale it too quickly The balance of display text to supporting text on the phone works well, but the subheading text on the tablet, even though it has been increased in line with the main heading, is starting to feel disproportionately large and a little clumsy. This problem becomes magnified on even bigger screens. A solution to this is use a hybrid method of sizing text2. We can use the CSS calc() function to calculate a font size simultaneously based on both rems and viewport units. For example: h2 { font-size: calc(0.5rem + 2.5vmin); } For a 320 px wide screen, the font size will be 16 px, calculated as follows: (0.5 × 16) + (320 × 0.025) = 8 + 8 = 16px For a 768 px wide screen, the font size will be 27 px: (0.5 × 16) + (768 × 0.025) = 8 + 19 = 27px This results in a more balanced subheading that doesn’t take emphasis away from the main heading: To give you an idea of the effect of using a hybrid approach, here’s a side-by-side comparison of hybrid and viewport text sizing: table.ex--scale{width:100%;overflow: hidden;} table.ex--scale td{vertical-align:baseline;text-align:center;padding:0} tr.ex--scale-key{color:#666} tr.ex--scale-key td{font-size:.875rem;padding:0 0.125em} .ex--scale-2 tr.ex--scale-size{color:#ccc} tr.ex--scale-size td{font-size:1em;line-height:.34em;padding-bottom:.5rem} td.ex--scale-step{color:#000} td.ex--scale-hilite{color:red} .ex--scale-3 tr.ex--scale-size td{line-height:.9em} top: calc() hybrid method; bottom: vmin only 16 20 27 32 35 40 44 16 24 38 48 54 64 72 320 480 768 960 1080 1280 1440 Over this festive period, try experiment with the proportion of rem and vmin in your hybrid calculation to see what feels best for your particular setting. A reference pixel is based on the logical resolution of a device which takes into account double density screens such as Retina displays. ↩︎ For even more sophisticated uses of hybrid text sizing see the work of Mike Riethmuller. ↩︎ 2016 Richard Rutter richardrutter 2016-12-09T00:00:00+00:00 https://24ways.org/2016/responsive-display-text/ code
308 How to Make a Chrome Extension to Delight (or Troll) Your Friends If you’re like me, you grew up drawing mustaches on celebrities. Every photograph was subject to your doodling wrath, and your brilliance was taken to a whole new level with computer programs like Microsoft Paint. The advent of digital cameras meant that no one was safe from your handiwork, especially not your friends. And when you finally got your hands on Photoshop, you spent hours maniacally giggling at your artistic genius. But today is different. You’re a serious adult with important things to do and a reputation to uphold. You keep up with modern web techniques and trends, and have little time for fun other than a random Giphy on Slack… right? Nope. If there’s one thing 2016 has taught me, it’s that we—the self-serious, world-changing tech movers and shakers of the universe—haven’t changed one bit from our younger, more delightable selves. How do I know? This year I created a Chrome extension called Tabby Cat and watched hundreds of thousands of people ditch productivity for randomly generated cats. Tabby Cat replaces your new tab page with an SVG cat featuring a silly name like “Stinky Dinosaur” or “Tiny Potato”. Over time, the cats collect goodies that vary in absurdity from fishbones to lawn flamingos to Raybans. Kids and adults alike use this extension, and analytics show the majority of use happens Monday through Friday from 9-5. The popularity of Tabby Cat has convinced me there’s still plenty of room in our big, grown-up hearts for fun. Today, we’re going to combine the formula behind Tabby Cat with your intrinsic desire to delight (or troll) your friends, and create a web app that generates your friends with random objects and environments of your choosing. You can publish it as a Chrome extension to replace your new tab, or simply host it as a website and point to it with the New Tab Redirect extension. Here’s a sneak peek at my final result featuring my partner, my cat, and I in cheerfully weird accessories. Your result will look however you want it to. Along the way, we’ll cover how to build a Chrome extension that replaces the new tab page, and explore ways to program randomness into your work to create something truly delightful. What you’ll need Adobe Illustrator (or a similar illustration program to export PNG) Some images of your friends A text editor Note: This can be as simple or as complex as you want it to be. Most of the application is pre-built so you can focus on kicking back and getting in touch with your creative side. If you want to dive in deeper, you’ll find ways to do it. Getting started Download a local copy of the boilerplate for today’s tutorial here, and open it in a text editor. Inside, you’ll find a simple web app that you can run in Chrome. Open index.html in Chrome. You should see a grey page that says “Noname”. Open template.pdf in Adobe Illustrator or a similar program that can export PNG. The file contains an artboard measuring 800px x 800px, with a dotted blue outline of a face. This is your template. Note: We’re using Google Chrome to build and preview this application because the end-result is a Chrome extension. This means that the application isn’t totally cross-browser compatible, but that’s okay. Step 1: Gather your friends The first thing to do is choose who your muses are. Since the holidays are upon us, I’d suggest finding inspiration in your family. Create your artwork For each person, find an image where their face is pointed as forward as possible. Place the image onto the Artwork layer of the Illustrator file, and line up their face with the template. Then, rename the artboard something descriptive like face_bob. Here’s my crew: As you can see, my use of the word “family” extends to cats. There’s no judgement here. Notice that some of my photos don’t completely fill the artboard–that’s fine. The images will be clipped into ovals when they’re rendered in the application. Now, export your images by following these steps: Turn the Template layer off and export the images as PNGs. In the Export dialog, tick the “Use Artboards” checkbox and enter the range with your faces. Export at 72ppi to keep things running fast. Save your images into the images/ folder in your project. Add your images to config.js Open scripts/config.js. This is where you configure your extension. Add key value pairs to the faces object. The key should be the person’s name, and the value should be the filepath to the image. faces: { leslie: 'images/face_leslie.png', kyle: 'images/face_kyle.png', beep: 'images/face_beep.png' } The application will choose one of these options at random each time you open a new tab. This pattern is used for everything in the config file. You give the application groups of choices, and it chooses one at random each time it loads. The only thing that’s special about the faces object is that person’s name will also be displayed when their face is chosen. Now, when you refresh the project in Chrome, you should see one of your friends along with their name, like this: Congrats, you’re off and running! Step 2: Add adjectives Now that you’ve loaded your friends into the application, it’s time to call them names. This step definitely yields the most laughs for the least amount of effort. Add a list of adjectives into the prefixes array in config.js. To get the words flowing, I took inspiration from ways I might describe some of my relatives during a holiday gathering… prefixes: [ 'Loving', 'Drunk', 'Chatty', 'Merry', 'Creepy', 'Introspective', 'Cheerful', 'Awkward', 'Unrelatable', 'Hungry', ... ] When you refresh Chrome, you should see one of these words prefixed before your friend’s name. Voila! Step 3: Choose your color palette Real talk: I’m bad at choosing color palettes, so I have a trick up my sleeve that I want to share with you. If you’ve been blessed with the gift of color aptitude, skip ahead. How to choose colors To create a color palette, I start by going to a Coolors.co, and I hit the spacebar until I find a palette that I like. We need a wide gamut of hues for our palette, so lock down colors you like and keep hitting the spacebar until you find a nice, full range. You can use as many or as few colors as you like. Copy these colors into your swatches in Adobe Illustrator. They’ll be the base for any illustrations you create later. Now you need a set of background colors. Here’s my trick to making these consistent with your illustration palette without completely blending in. Use the “Adjust Palette” tool in Coolors to dial up the brightness a few notches, and the saturation down just a tad to remove any neon effect. These will be your background colors. Add your background colors to config.js Copy your hex codes into the bgColors array in config.js. bgColors: [ '#FFDD77', '#FF8E72', '#ED5E84', '#4CE0B3', '#9893DA', ... ] Now when you go back to Chrome and refresh the page, you’ll see your new palette! Step 4: Accessorize This is the fun part. We’re going to illustrate objects, accessories, lizards—whatever you want—and layer them on top of your friends. Your objects will be categorized into groups, and one option from each group will be randomly chosen each time you load the page. Think of a group like “hats” or “glasses”. This will allow combinations of accessories to show at once, without showing two of the same type on the same person. Create a group of accessories To get started, open up Illustrator and create a new artboard out of the template. Think of a group of objects that you can riff on. I found hats to be a good place to start. If you don’t feel like illustrating, you can use cut-out images instead. Next, follow the same steps as you did when you exported the faces. Here they are again: Turn the Template layer off and export the images as PNGs. In the Export dialog, tick the “Use Artboards” checkbox and enter the range with your hats. Export at 72ppi to keep things running fast. Save your images into the images/ folder in your project. Add your accessories to config.js In config.js, add a new key to the customProps object that describes the group of accessories that you just created. Its value should be an array of the filepaths to your images. This is my hats array: customProps: { hats: [ 'images/hat_crown.png', 'images/hat_santa.png', 'images/hat_tophat.png', 'images/hat_antlers.png' ] } Refresh Chrome and behold, accessories! Create as many more accessories as you want Repeat the steps above to create as many groups of accessories as you want. I went on to make glasses and hairstyles, so my final illustrator file looks like this: The last step is adding your new groups to the config object. List your groups in the order that you want them to be stacked in the DOM. My final output will be hair, then hats, then glasses: customProps: { hair: [ 'images/hair_bowl.png', 'images/hair_bob.png' ], hats: [ 'images/hat_crown.png', 'images/hat_santa.png', 'images/hat_tophat.png', 'images/hat_antlers.png' ], glasses: [ 'images/glasses_aviators.png', 'images/glasses_monacle.png' ] } And, there you have it! Randomly generated friends with random accessories. Feel free to go much crazier than I did. I considered adding a whole group of animals in celebration of the new season of Planet Earth, or even adding Sir David Attenborough himself, or doing a bit of role reversal and featuring the animals with little safari hats! But I digress… Step 5: Publish it It’s time to put this in your new tabs! You have two options: Publish it as a Chrome extension in the Chrome Web Store. Host it as a website and point to it with the New Tab Redirect extension. Today, we’re going to cover Option #1 because I want to show you how to make the simplest Chrome extension possible. However, I recommend Option #2 if you want to keep your project private. Every Chrome extension that you publish is made publicly available, so unless your friends want their faces published to an extension that anyone can use, I’d suggest sticking to Option #2. How to make a simple Chrome extension to replace the new tab page All you need to do to make your project into a Chrome extension is add a manifest.json file to the root of your project with the following contents. There are plenty of other properties that you can add to your manifest file, but these are the only ones that are required for a new tab replacement: { "manifest_version": 2, "name": "Your extension name", "version": "1.0", "chrome_url_overrides" : { "newtab": "index.html" } } To test your extension, you’ll need to run it in Developer Mode. Here’s how to do that: Go to the Extensions page in Chrome by navigating to chrome://extensions/. Tick the checkbox in the upper-right corner labelled “Developer Mode”. Click “Load unpacked extension…” and select this project. If everything is running smoothly, you should see your project when you open a new tab. If there are any errors, they should appear in a yellow box on the Extensions page. Voila! Like I said, this is a very light example of a Chrome extension, but Google has tons of great documentation on how to take things further. Check it out and see what inspires you. Share the love Now that you know how to make a new tab extension, go forth and create! But wield your power responsibly. New tabs are opened so often that they’ve become a part of everyday life–just consider how many tabs you opened today. Some people prefer to-do lists in their tabs, and others prefer cats. At the end of the day, let’s make something that makes us happy. Cheers! 2016 Leslie Zacharkow lesliezacharkow 2016-12-08T00:00:00+00:00 https://24ways.org/2016/how-to-make-a-chrome-extension/ code
309 HTTP/2 Server Push and Service Workers: The Perfect Partnership Being a web developer today is exciting! The web has come a long way since its early days and there are so many great technologies that enable us to build faster, better experiences for our users. One of these technologies is HTTP/2 which has a killer feature known as HTTP/2 Server Push. During this year’s Chrome Developer Summit, I watched a really informative talk by Sam Saccone, a Software Engineer on the Google Chrome team. He gave a talk entitled Planning for Performance, and one of the topics that he covered immediately piqued my interest; the idea that HTTP/2 Server Push and Service Workers were the perfect web performance combination. If you’ve never heard of HTTP/2 Server Push before, fear not - it’s not as scary as it sounds. HTTP/2 Server Push simply allows the server to send data to the browser without having to wait for the browser to explicitly request it first. In this article, I am going to run through the basics of HTTP/2 Server Push and show you how, when combined with Service Workers, you can deliver the ultimate in web performance to your users. What is HTTP/2 Server Push? When a user navigates to a URL, a browser will make an HTTP request for the underlying web page. The browser will then scan the contents of the HTML document for any assets that it may need to retrieve such as CSS, JavaScript or images. Once it finds any assets that it needs, it will then make multiple HTTP requests for each resource that it needs and begin downloading one by one. While this approach works well, the problem is that each HTTP request means more round trips to the server before any data arrives at the browser. These extra round trips take time and can make your web pages load slower. Before we go any further, let’s see what this might look like when your browser makes a request for a web page. If you were to view this in the developer tools of your browser, it might look a little something like this: As you can see from the image above, once the HTML file has been downloaded and parsed, the browser then makes HTTP requests for any assets that it needs. This is where HTTP/2 Server Push comes in. The idea behind HTTP/2 Server Push is that when the browser requests a web page from the server, the server already knows about all the assets that are needed for the web page and “pushes” it to browser. This happens when the first HTTP request for the web page takes place and it eliminates an extra round trip, making your site faster. Using the same example above, let’s “push” the JavaScript and CSS files instead of waiting for the browser to request them. The image below gives you an idea of what this might look like. Whoa, that looks different - let’s break it down a little. Firstly, you can see that the JavaScript and CSS files appear earlier in the waterfall chart. You might also notice that the loading times for the files are extremely quick. The browser doesn’t need to make an extra HTTP request to the server, instead it receives the critical files it needs all at once. Much better! There are a number of different approaches when it comes to implementing HTTP/2 Server Push. Adoption is growing and many commercial CDNs such as Akamai and Cloudflare already offer support for Server Push. You can even roll your own implementation depending on your environment. I’ve also previously blogged about building a basic HTTP/2 Server Push example using Node.js. In this post, I’m not going to dive into how to implement HTTP/2 Server Push as that is an entire post in itself! However, I do recommend reading this article to find out more about the inner workings. HTTP/2 Server Push is awesome, but it isn’t a magic bullet. It is fantastic for improving the load time of a web page when it first loads for a user, but it isn’t that great when they request the same web page again. The reason for this is that HTTP/2 Server Push is not cache “aware”. This means that the server isn’t aware about the state of your client. If you’ve visited a web page before, the server isn’t aware of this and will push the resource again anyway, regardless of whether or not you need it. HTTP/2 Server Push effectively tells the browser that it knows better and that the browser should receive the resources whether it needs them or not. In theory browsers can cancel HTTP/2 Server Push requests if they’re already got something in cache but unfortunately no browsers currently support it. The other issue is that the server will have already started to send some of the resource to the browser by the time the cancellation occurs. HTTP/2 Server Push & Service Workers So where do Service Workers fit in? Believe it or not, when combined together HTTP/2 Server Push and Service Workers can be the perfect web performance partnership. If you’ve not heard of Service Workers before, they are worker scripts that run in the background of your website. Simply put, they act as middleman between the client and the browser and enable you to intercept any network requests that come and go from the browser. They are packed with useful features such as caching, push notifications, and background sync. Best of all, they are written in JavaScript, making it easy for web developers to understand. Using Service Workers, you can easily cache assets on a user’s device. This means when a browser makes an HTTP request for an asset, the Service Worker is able to intercept the request and first check if the asset already exists in cache on the users device. If it does, then it can simply return and serve them directly from the device instead of ever hitting the server. Let’s stop for a second and analyse what that means. Using HTTP/2 Server Push, you are able to push critical assets to the browser before the browser requests them. Then, using Service Workers you are able to cache these resources so that the browser never needs to make a request to the server again. That means a super fast first load and an even faster second load! Let’s put this into action. The following HTML code is a basic web page that retrieves a few images and two JavaScript files. <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>HTTP2 Push Demo</title> </head> <body> <h1>HTTP2 Push</h1> <img src="./images/beer-1.png" width="200" height="200" /> <img src="./images/beer-2.png" width="200" height="200" /> <br> <br> <img src="./images/beer-3.png" width="200" height="200" /> <img src="./images/beer-4.png" width="200" height="200" /> <!-- Scripts --> <script async src="./js/promise.min.js"></script> <script async src="./js/fetch.js"></script> <script> // Register the service worker if ('serviceWorker' in navigator) { navigator.serviceWorker.register('./service-worker.js').then(function(registration) { // Registration was successful console.log('ServiceWorker registration successful with scope: ', registration.scope); }).catch(function(err) { // registration failed :( console.log('ServiceWorker registration failed: ', err); }); } </script> </body> </html> In the HTML code above, I am registering a Service Worker file named service-worker.js. In order to start caching assets, I am going to use the Service Worker toolbox . It is a lightweight helper library to help you get started creating your own Service Workers. Using this library, we can actually cache the base web page with the path /push. The Service Worker Toolbox comes with a built-in routing system which is based on the same routing as Express. With just a few lines of code, you can start building powerful caching patterns. I’ve add the following code to the service-worker.js file. (global => { 'use strict'; // Load the sw-toolbox library. importScripts('/js/sw-toolbox/sw-toolbox.js'); // The route for any requests toolbox.router.get('/push', global.toolbox.fastest); toolbox.router.get('/images/(.*)', global.toolbox.fastest); toolbox.router.get('/js/(.*)', global.toolbox.fastest); // Ensure that our service worker takes control of the page as soon as possible. global.addEventListener('install', event => event.waitUntil(global.skipWaiting())); global.addEventListener('activate', event => event.waitUntil(global.clients.claim())); })(self); Let’s break this code down further. Around line 4, I am importing the Service Worker toolbox. Next, I am specifying a route that will listen to any requests that match the URL /push. Because I am also interested in caching the images and JavaScript for that page, I’ve told the toolbox to listen to these routes too. The best thing about the code above is that if any of the assets exist in cache, we will instantly return the cached version instead of waiting for it to download. If the asset doesn’t exist in cache, the code above will add it into cache so that we can retrieve it when it’s needed again. You may also notice the code global.toolbox.fastest - this is important because gives you the compromise of fulfilling from the cache immediately, while firing off an additional HTTP request updating the cache for the next visit. But what does this mean when combined with HTTP/2 Server Push? Well, it means that on the first load of the web page, you are able to “push” everything to the user at once before the browser has even requested it. The Service Worker activates and starts caching the assets on the users device. The next time a user visits the page, the Service Worker will intercept the request and serve the asset directly from cache. Amazing! Using this technique, the waterfall chart for a repeat visit should look like the image below. If you look closely at the image above, you’ll notice that the web page returns almost instantly without ever making an HTTP request over the network. Using the Service Worker library, we cached the base page for the route /push, which allowed us to retrieve this directly from cache. Whether used on their own or combined together, the best thing about these two features is that they are the perfect progressive enhancement. If your user’s browser doesn’t support them, they will simply fall back to HTTP/1.1 without Service Workers. Your users may not experience as fast a load time as they would with these two techniques, but it would be no different from their normal experience. HTTP/2 Server Push and Service Workers are really the perfect partners when it comes to web performance. Summary When used correctly, HTTP/2 Server Push and Service Workers can have a positive impact on your site’s load times. Together they mean super fast first load times and even faster repeat views to a web page. Whilst this technique is really effective, it’s worth noting that HTTP/2 push is not a magic bullet. Think about the situations where it might make sense to use it and don’t just simply “push” everything; it could actually lead to having slower page load times. If you’d like to learn more about the rules of thumb for HTTP/2 Server Push, I recommend reading this article for more information. All of the code in this example is available on my Github repo - if you have any questions, please submit an issue and I’ll get back to you as soon as possible. If you’d like to learn more about this technique and others relating to HTTP/2, I highly recommend watching Sam Saccone’s talk at this years Chrome Developer Summit. I’d also like to say a massive thank you to Robin Osborne, Andy Davies and Jeffrey Posnick for helping me review this article before putting it live! 2016 Dean Hume deanhume 2016-12-15T00:00:00+00:00 https://24ways.org/2016/http2-server-push-and-service-workers/ code
310 Fairytale of new Promise There are only four good Christmas songs. I know, yeah, JavaScript or whatever. We’ll get to that in a minute, I promise. First—and I cannot stress this enough— there are four good Christmas songs. You’re free to disagree with me here, of course, but please try to understand that you will be wrong. They don’t all have the most safe-for-work titles; I can’t list all of them here, but if you choose to let your fingers do the walkin’ to your nearest search engine, I will say that one was released by the band FEAR way back in 1982 and one was on Run the Jewels’ self-titled debut album. The lyrics are a hell of a lot worse than the titles, so maybe wait until you get home from work before you queue them up. Wear headphones, if you’ve got thin walls. For my money, though, the two I can reference by name are the top of that small heap: Tom Waits’ Christmas Card from a Hooker in Minneapolis, and The Pogues’ Fairytale of New York. The former once held the honor of being the only good Christmas song—about which which I was also unequivocally correct, right up until I changed my mind. It’s not the song up for discussion today, but feel free to familiarize yourself just the same—I’ll wait. Fairytale of New York—the top of the list—starts out by hinting at some pretty standard holiday fare; dreams and cheer and whatnot. Typical seasonal stuff, so long as you ignore that the story seems to be recounted as a drunken flashback in a jail cell. You can probably make a few guesses at the underlying spirit of the song based on that framing: following a lucky break, our bright-eyed protagonists move to New York in search of fame and fortune, only to quickly descend into bad decisions, name-calling, and vaguely festive chaos. This song speaks to me on a couple of levels, not the least of which is as a retelling of my day-to-day interactions with JavaScript. Each day’s melody might vary a little bit, granted, but the lyrics almost always follow a pretty clear arc toward “PARENTAL ADVISORY: EXPLICIT CONTENT.” You might have heard a similar tune yourself; it goes a little somethin’ like setTimeout(function() { console.log( "this should be happening last" ); }, 1000); . Callbacks are calling callbacks calling callbacks and something is happening somewhere, as the JavaScript interpreter plods through our code start-to-finish, line-by-line, step-by-step. If we need to take actions based on the results of something that could take its sweet time resolving, well, we’d better fiddle with the order of things to make sure those actions don’t happen too soon. “But I can see a better time,” as the song says, “when all our dreams come true.” So, with that Pogues brand of holiday spirit squarely in mind—by which I mean that your humble narrator is almost certainly drunk, and may be incarcerated at the time of publication—gather ’round for a story of hope, of hardships, of semi-asynchronous JavaScript programming, and ultimately: of Promise unfulfilled. The Main Thread JavaScript is single-minded, in a manner of speaking. Anything we tell the JavaScript runtime to do goes into a single-file queue; you’ll see it referred to as the “main thread,” or “UI thread.” That thread can be shared by a number of critical browser processes, like rendering and re-rendering parts of the page, and user interactions ranging from the simple—say, highlighting text—to the more complex—interacting with form elements. If that sounds a little scary to you, well, that’s because it is. The more complex our scripts, the more we’re cramming into that single-file main thread, to be processed along with—say—some of our CSS animations. Too much JavaScript clogging up the main thread means a lot of user-facing performance jankiness. Getting away from that single thread is a big part of all the excitement around Web Workers, which allow us to offload entire scripts into their own dedicated background threads—though not without limitations of their own. Outside of Web Workers, that everything-thread is the only game in town: scripts executed one thing at a time, functions calling functions calling functions, taking numbers and crowding up the same deli counter as a user’s interactions—which, in this already strained metaphor, would be ham, I guess? Asynchronous JavaScript Now, those queued actions may include asynchronous things. For example: AJAX callbacks, setTimeout/setInterval, and addEventListener won’t block the main thread while we’re waiting for a request to come back, a timer to tick away, or an event to trigger. Once those things do kick in, though, the actions they’re meant to perform will get shuffled right back into that single-thread queue. There are a couple of places you might have written asynchronously-fired JavaScript, even if you’re not super familiar with the overarching concept: XMLHttpRequest—“AJAX,” if ya nasty—or just kicking off a function once a user triggers a click or mouseenter event. Event-driven development is writ a little larger, with the overall flow of the script dictated by events, both internal and external. Writing event-driven JavaScript applications is a step in the right direction for sure—it won’t cure what ails the main thread, but it does work with the medium in a reasonable way. Event-driven development allows us to manage our use of the main thread in a way that makes sense. If any of this rings a bell for you, the motivation for Promises should feel familiar. For example, a custom init event might kick things off, and fire a create event that applies our classes and restructures our markup which, on completion, fires a bindEvents event to handle all the event listeners for user interaction. There might not sound like much difference between that and one big function that kicks off, manipulates the DOM, and binds our events line-by-line—but in a script of sufficient size and complexity we’re not only provided with a decoupled flow through the script, but obvious touchpoints for future updates and a predictable structure for ongoing maintenance. This pattern falls apart a little where we were still creating, binding, and listening for events in the same top-to-bottom, one-item-at-a-time way—we had to set a listener on a given object before the event fires, or nothing would happen: // Create the event: var event = document.createEvent( "Event" ); // Name the event: event.initEvent( "doTheStuff", true, true ); // Listen for the custom `doTheStuff` event on `window`: window.addEventListener( "doTheStuff", initializeEverything ); // Fire the custom event window.dispatchEvent( event ); This example is a little contrived, and this stuff is a lot more manageable for sure with the addition of a framework, but that’s the basic gist: create and name the event, add a listener for the event, and—after setting our listener—dispatch the event. Events and callbacks aren’t the only game in town for weaving our way in and out of the main thread, though—at least, not anymore. Promises A Promise is, at the risk of sounding sentimental, pure potential—an empty container into which a value eventually results. A Promise can exist in several states: “pending,” while the computation they contain is being performed or “resolved” once that computation is complete. Once resolved, a Promise is “fulfilled” if it gave us back something we expect, or “rejected” if it didn’t. The Promise constructor accepts a callback with two arguments: resolve and reject. We perform an action—asynchronous or otherwise—within that callback. If everything in there has gone according to plan, we call resolve. If something has gone awry, we call reject—with an error, conventionally. To illustrate, let’s tack something together with a pretty decent chance of doing what we don’t want: a promise meant only to give us the number 1, but has a chance of giving us back a 2. No reasonable person would ever do this, of course, but I wouldn’t necessarily put it past me. var promisedOne = new Promise( function( resolve, reject ) { var coinToss = Math.floor( Math.random() * 2 ) + 1; if( coinToss === 1 ) { resolve( coinToss ); } else { reject( new Error( "That ain’t a one." ) ); } }); There’s nothing too surprising in there, after you boil it all down. It’s a little return-y, with the exception that we’re flagging results as “as expected” or “something went wrong.” Tapping into that Promise uses another new keyword: then—and as someone who attempts to make sense of JavaScript by breaking it down to plain ol’ human-language, I’m a big fan of this syntax. then is tacked onto our Promise identifier, and does just what it says on the tin: once the Promise is resolved, then do one of two things, both supplied as callbacks: the first in the case of a fulfilled promise, and the second in the case of a rejected one. Those two callbacks will have, as arguments, the results we specified with resolve orreject, respectively. It sounds like a lot in prose, but in code it’s a pretty simple pattern: promisedOne.then( function( result ) { console.log( result ); }, function( error ) { console.error( error ); }); If you’ve spent any time working with AJAX—jQuery-wise, in particular—you’ve seen something like this pattern before: a success callback and an error callback. The state of a promise, once fulfilled or rejected, cannot be changed—any reference we make to promisedOne will have a single, fixed result. It may not look like too much the way I’m using it here, but it’s powerful stuff—a pattern for asynchronously resolving anything. I’ve recently used Promises alongside a script that emulates Font Load Events, to apply webfonts asynchronously and avoid a potential performance hit. Font Face Observer allows us to, as the name implies, determine when the files referenced by our @font-face rules have finished loading. var fontObserver = new FontFaceObserver( "Fancy Font" ); fontObserver.check().then(function() { document.documentElement.className += " fonts-loaded"; }, function( error ) { console.error( error ); }); fontObserver.check() gives us back a Promise, allowing us to chain on a then containing our callbacks for success and failure. We use the fulfilled callback to bolt a class onto the page once the font file has been fully transferred. We don’t bother including an argument in the first function, since we don’t care about the result itself so much as we care that the promise resolved without error—we’re not doing anything with the resolved value, just adding a class to the page. We do include the error argument, since we’ll want to know what happened should something go wrong. Now, this isn’t the tidiest syntax around—at least to my eyes—with those two functions just kinda floating in a then. Luckily there’s an similar alternative syntax; one that I find a bit easier to parse at-a-glance: fontObserver.check() .then(function() { document.documentElement.className += " fonts-loaded"; }) .catch(function( error ) { console.log( error ); }); The first callback inside then provides us with our success state, while the catch provides us with a single, explicit “something went wrong” callback. The two syntaxes aren’t completely identical in all situations, but for a simple case like this, I find it a little neater. The Common Thread I guess I still owe you an explanation, huh. Not about the JavaScript-whatever; I think I’ve explained that plenty. No, I mean Fairytale of New York, and why it’s perched up there at the top of the four (4) song heap. Fairytale is a sad song, ostensibly. If you follow the main thread—start to finish, line-by-line, step by step— Fairytale is a sad song. And I can see you out there, visions of Die Hard dancing in your heads: “but is it a Christmas song?” Well, for my money, nothing says “holidays” quite like unreliable narration. Shane MacGowan, the song’s author, has placed the first verse about “Christmas Eve in the drunk tank” as happening right after the “lucky one, came in eighteen-to-one”—not at the chronological end of the story. That means the song might not be mostly drunken flashback, but all of it a single, overarching flashback including a Christmas Eve in protective custody. It could be that the man and woman are, together, recounting times long past—good times and bad times—maybe not even in chronological order. Hell, the “NYPD Choir” mentioned in the chorus? There’s no such thing. We’re not big Christmas folks, my family and I. But just the same, every year, the handful of us get together, and every year—like clockwork—there’s a lull in conversation, there’s a sharp exhale, and Ma says “we all made it.” Not to a house, not to a dinner, but through another year, to another Christmas. At this point, without fail, someone starts telling a story—and one begets another, and so on. Sometimes the stories are happy, sometimes they’re sad, more often than not they’re both. Some are about things we were lucky to walk away from, some are about a time when another one of us didn’t. Start-to-finish, line-by-line, step-by-step, the main thread through the year doesn’t change, and maybe there isn’t a whole lot we can do to change it. But by carefully weaving our way in and out of that thread—stories all out of sync and resolving one way or the other, with the results determined by questionably reliable narrators—we can change the way we interact with it and, little by little, we can start making sense of it. 2016 Mat Marquis matmarquis 2016-12-19T00:00:00+00:00 https://24ways.org/2016/fairytale-of-new-promise/ code
313 Centered Tabs with CSS Doug Bowman’s Sliding Doors is pretty much the de facto way to build tabbed navigation with CSS, and rightfully so – it is, as they say, rockin’ like Dokken. But since it relies heavily on floats for the positioning of its tabs, we’re constrained to either left- or right-hand navigation. But what if we need a bit more flexibility? What if we need to place our navigation in the center? Styling the li as a floated block does give us a great deal of control over margin, padding, and other presentational styles. However, we should learn to love the inline box – with it, we can create a flexible, centered alternative to floated navigation lists. Humble Beginnings Do an extra shot of ‘nog, because you know what’s coming next. That’s right, a simple unordered list: <div id="navigation"> <ul> <li><a href="#"><span>Home</span></a></li> <li><a href="#"><span>About</span></a></li> <li><a href="#"><span>Our Work</span></a></li> <li><a href="#"><span>Products</span></a></li> <li class="last"><a href="#"><span>Contact Us</span></a></li> </ul> </div> If we were wedded to using floats to style our list, we could easily fix the width of our ul, and trick it out with some margin: 0 auto; love to center it accordingly. But this wouldn’t net us much flexibility: if we ever changed the number of navigation items, or if the user increased her browser’s font size, our design could easily break. Instead of worrying about floats, let’s take the most basic approach possible: let’s turn our list items into inline elements, and simply use text-align to center them within the ul: #navigation ul, #navigation ul li { list-style: none; margin: 0; padding: 0; } #navigation ul { text-align: center; } #navigation ul li { display: inline; margin-right: .75em; } #navigation ul li.last { margin-right: 0; } Our first step is sexy, no? Well, okay, not really – but it gives us a good starting point. We’ve tamed our list by removing its default styles, set the list items to display: inline, and centered the lot. Adding a background color to the links shows us exactly how the different elements are positioned. Now the fun stuff. Inline Elements, Padding, and You So how do we give our links some dimensions? Well, as the CSS specification tells us, the height property isn’t an option for inline elements such as our anchors. However, what if we add some padding to them? #navigation li a { padding: 5px 1em; } I just love leading questions. Things are looking good, but something’s amiss: as you can see, the padded anchors seem to be escaping their containing list. Thankfully, it’s easy to get things back in line. Our anchors have 5 pixels of padding on their top and bottom edges, right? Well, by applying the same vertical padding to the list, our list will finally “contain” its child elements once again. ’Tis the Season for Tabbing Now, we’re finally able to follow the “Sliding Doors” model, and tack on some graphics: #navigation ul li a { background: url("tab-right.gif") no-repeat 100% 0; color: #06C; padding: 5px 0; text-decoration: none; } #navigation ul li a span { background: url("tab-left.gif") no-repeat; padding: 5px 1em; } #navigation ul li a:hover span { color: #69C; text-decoration: underline; } Finally, our navigation’s looking appropriately sexy. By placing an equal amount of padding on the top and bottom of the ul, our tabs are properly “contained”, and we can subsequently style the links within them. But what if we want them to bleed over the bottom-most border? Easy: we can simply decrease the bottom padding on the list by one pixel, like so. A Special Note for Special Browsers The Mac IE5 users in the audience are likely hopping up and down by now: as they’ve discovered, our centered navigation behaves rather annoyingly in their browser. As Philippe Wittenbergh has reported, Mac IE5 is known to create “phantom links” in a block-level element when text-align is set to any value but the default value of left. Thankfully, Philippe has documented a workaround that gets that [censored] venerable browser to behave. Simply place the following code into your CSS, and the links will be restored to their appropriate width: /**//*/ #navigation ul li a { display: inline-block; white-space: nowrap; width: 1px; } /**/ IE for Windows, however, displays an extra kind of crazy. The padding I’ve placed on my anchors is offsetting the spans that contain the left curve of my tabs; thankfully, these shenanigans are easily straightened out: /**/ * html #navigation ul li a { padding: 0; } /**/ And with that, we’re finally finished. All set. And that’s it. With your centered navigation in hand, you can finally enjoy those holiday toddies and uncomfortable conversations with your skeevy Uncle Eustace. 2005 Ethan Marcotte ethanmarcotte 2005-12-08T00:00:00+00:00 https://24ways.org/2005/centered-tabs-with-css/ code
314 Easy Ajax with Prototype There’s little more impressive on the web today than a appropriate touch of Ajax. Used well, Ajax brings a web interface much closer to the experience of a desktop app, and can turn a bear of an task into a pleasurable activity. But it’s really hard, right? It involves all the nasty JavaScript that no one ever does often enough to get really good at, and the browser support is patchy, and urgh it’s just so much damn effort. Well, the good news is that – ta-da – it doesn’t have to be a headache. But man does it still look impressive. Here’s how to amaze your friends. Introducing prototype.js Prototype is a JavaScript framework by Sam Stephenson designed to help make developing dynamic web apps a whole lot easier. In basic terms, it’s a JavaScript file which you link into your page that then enables you to do cool stuff. There’s loads of capability built in, a portion of which covers our beloved Ajax. The whole thing is freely distributable under an MIT-style license, so it’s good to go. What a nice man that Mr Stephenson is – friends, let us raise a hearty cup of mulled wine to his good name. Cheers! sluurrrrp. First step is to download the latest Prototype and put it somewhere safe. I suggest underneath the Christmas tree. Cutting to the chase Before I go on and set up an example of how to use this, let’s just get to the crux. Here’s how Prototype enables you to make a simple Ajax call and dump the results back to the page: var url = 'myscript.php'; var pars = 'foo=bar'; var target = 'output-div'; var myAjax = new Ajax.Updater(target, url, {method: 'get', parameters: pars}); This snippet of JavaScript does a GET to myscript.php, with the parameter foo=bar, and when a result is returned, it places it inside the element with the ID output-div on your page. Knocking up a basic example So to get this show on the road, there are three files we need to set up in our site alongside prototype.js. Obviously we need a basic HTML page with prototype.js linked in. This is the page the user interacts with. Secondly, we need our own JavaScript file for the glue between the interface and the stuff Prototype is doing. Lastly, we need the page (a PHP script in my case) that the Ajax is going to make its call too. So, to that basic HTML page for the user to interact with. Here’s one I found whilst out carol singing: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>Easy Ajax</title> <script type="text/javascript" src="prototype.js"></script> <script type="text/javascript" src="ajax.js"></script> </head> <body> <form method="get" action="greeting.php" id="greeting-form"> <div> <label for="greeting-name">Enter your name:</label> <input id="greeting-name" type="text" /> <input id="greeting-submit" type="submit" value="Greet me!" /> </div> <div id="greeting"></div> </form> </body> </html> As you can see, I’ve linked in prototype.js, and also a file called ajax.js, which is where we’ll be putting our glue. (Careful where you leave your glue, kids.) Our basic example is just going to take a name and then echo it back in the form of a seasonal greeting. There’s a form with an input field for a name, and crucially a DIV (greeting) for the result of our call. You’ll also notice that the form has a submit button – this is so that it can function as a regular form when no JavaScript is available. It’s important not to get carried away and forget the basics of accessibility. Meanwhile, back at the server So we need a script at the server which is going to take input from the Ajax call and return some output. This is normally where you’d hook into a database and do whatever transaction you need to before returning a result. To keep this as simple as possible, all this example here will do is take the name the user has given and add it to a greeting message. Not exactly Web 2-point-HoHoHo, but there you have it. Here’s a quick PHP script – greeting.php – that Santa brought me early. <?php $the_name = htmlspecialchars($_GET['greeting-name']); echo "<p>Season's Greetings, $the_name!</p>"; ?> You’ll perhaps want to do something a little more complex within your own projects. Just sayin’. Gluing it all together Inside our ajax.js file, we need to hook this all together. We’re going to take advantage of some of the handy listener routines and such that Prototype also makes available. The first task is to attach a listener to set the scene once the window has loaded. He’s how we attach an onload event to the window object and get it to call a function named init(): Event.observe(window, 'load', init, false); Now we create our init() function to do our evil bidding. Its first job of the day is to hide the submit button for those with JavaScript enabled. After that, it attaches a listener to watch for the user typing in the name field. function init(){ $('greeting-submit').style.display = 'none'; Event.observe('greeting-name', 'keyup', greet, false); } As you can see, this is going to make a call to a function called greet() onkeyup in the greeting-name field. That function looks like this: function greet(){ var url = 'greeting.php'; var pars = 'greeting-name='+escape($F('greeting-name')); var target = 'greeting'; var myAjax = new Ajax.Updater(target, url, {method: 'get', parameters: pars}); } The key points to note here are that any user input needs to be escaped before putting into the parameters so that it’s URL-ready. The target is the ID of the element on the page (a DIV in our case) which will be the recipient of the output from the Ajax call. That’s it No, seriously. That’s everything. Try the example. Amaze your friends with your 1337 Ajax sk1llz. 2005 Drew McLellan drewmclellan 2005-12-01T00:00:00+00:00 https://24ways.org/2005/easy-ajax-with-prototype/ code
315 Edit-in-Place with Ajax Back on day one we looked at using the Prototype library to take all the hard work out of making a simple Ajax call. While that was fun and all, it didn’t go that far towards implementing something really practical. We dipped our toes in, but haven’t learned to swim yet. So here is swimming lesson number one. Anyone who’s used Flickr to publish their photos will be familiar with the edit-in-place system used for quickly amending titles and descriptions on photographs. Hovering over an item turns its background yellow to indicate it is editable. A simple click loads the text into an edit box, right there on the page. Prototype includes all sorts of useful methods to help reproduce something like this for our own projects. As well as the simple Ajax GETs we learned how to do last time, we can also do POSTs (which we’ll need here) and a whole bunch of manipulations to the user interface – all through simple library calls. Here’s what we’re building, so let’s do it. Getting Started There are two major components to this process; the user interface manipulation and the Ajax call itself. Our set-up is much the same as last time (you may wish to read the first article if you’ve not already done so). We have a basic HTML page which links in the prototype.js file and our own editinplace.js. Here’s what Santa dropped down my chimney: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>Edit-in-Place with Ajax</title> <link href="editinplace.css" rel="Stylesheet" type="text/css" /> <script src="prototype.js" type="text/javascript"></script> <script src="editinplace.js" type="text/javascript"></script> </head> <body> <h1>Edit-in-place</h1> <p id="desc">Dashing through the snow on a one horse open sleigh.</p> </body> </html> So that’s our page. The editable item is going to be the <p> called desc. The process goes something like this: Highlight the area onMouseOver Clear the highlight onMouseOut If the user clicks, hide the area and replace with a <textarea> and buttons Remove all of the above if the user cancels the operation When the Save button is clicked, make an Ajax POST and show that something’s happening When the Ajax call comes back, update the page with the new content Events and Highlighting The first step is to offer feedback to the user that the item is editable. This is done by shading the background colour when the user mouses over. Of course, the CSS :hover pseudo class is a straightforward way to do this, but for three reasons, I’m using JavaScript to switch class names. :hover isn’t supported on many elements in Internet Explorer for Windows I want to keep control over when the highlight switches off after an update, regardless of mouse position If JavaScript isn’t available we don’t want to end up with the CSS suggesting it might be With this in mind, here’s how editinplace.js starts: Event.observe(window, 'load', init, false); function init(){ makeEditable('desc'); } function makeEditable(id){ Event.observe(id, 'click', function(){edit($(id))}, false); Event.observe(id, 'mouseover', function(){showAsEditable($(id))}, false); Event.observe(id, 'mouseout', function(){showAsEditable($(id), true)}, false); } function showAsEditable(obj, clear){ if (!clear){ Element.addClassName(obj, 'editable'); }else{ Element.removeClassName(obj, 'editable'); } } The first line attaches an onLoad event to the window, so that the function init() gets called once the page has loaded. In turn, init() sets up all the items on the page that we want to make editable. In this example I’ve just got one, but you can add as many as you like. The function madeEditable() attaches the mouseover, mouseout and click events to the item we’re making editable. All showAsEditable does is add and remove the class name editable from the object. This uses the particularly cunning methods Element.addClassName() and Element.removeClassName() which enable you to cleanly add and remove effects without affecting any styling the object may otherwise have. Oh, remember to add a rule for .editable to your style sheet: .editable{ color: #000; background-color: #ffffd3; } The Switch As you can see above, when the user clicks on an editable item, a call is made to the function edit(). This is where we switch out the static item for a nice editable textarea. Here’s how that function looks. function edit(obj){ Element.hide(obj); var textarea ='<div id="' + obj.id + '_editor"> <textarea id="' + obj.id + '_edit" name="' + obj.id + '" rows="4" cols="60">' + obj.innerHTML + '</textarea>'; var button = '<input id="' + obj.id + '_save" type="button" value="SAVE" /> OR <input id="' + obj.id + '_cancel" type="button" value="CANCEL" /></div>'; new Insertion.After(obj, textarea+button); Event.observe(obj.id+'_save', 'click', function(){saveChanges(obj)}, false); Event.observe(obj.id+'_cancel', 'click', function(){cleanUp(obj)}, false); } The first thing to do is to hide the object. Prototype comes to the rescue with Element.hide() (and of course, Element.show() too). Following that, we build up the textarea and buttons as a string, and then use Insertion.After() to place our new editor underneath the (now hidden) editable object. The last thing to do before we leave the user to edit is it attach listeners to the Save and Cancel buttons to call either the saveChanges() function, or to cleanUp() after a cancel. In the event of a cancel, we can clean up behind ourselves like so: function cleanUp(obj, keepEditable){ Element.remove(obj.id+'_editor'); Element.show(obj); if (!keepEditable) showAsEditable(obj, true); } Saving the Changes This is where all the Ajax fun occurs. Whilst the previous article introduced Ajax.Updater() for simple Ajax calls, in this case we need a little bit more control over what happens once the response is received. For this purpose, Ajax.Request() is perfect. We can use the onSuccess and onFailure parameters to register functions to handle the response. function saveChanges(obj){ var new_content = escape($F(obj.id+'_edit')); obj.innerHTML = "Saving..."; cleanUp(obj, true); var success = function(t){editComplete(t, obj);} var failure = function(t){editFailed(t, obj);} var url = 'edit.php'; var pars = 'id=' + obj.id + '&content=' + new_content; var myAjax = new Ajax.Request(url, {method:'post', postBody:pars, onSuccess:success, onFailure:failure}); } function editComplete(t, obj){ obj.innerHTML = t.responseText; showAsEditable(obj, true); } function editFailed(t, obj){ obj.innerHTML = 'Sorry, the update failed.'; cleanUp(obj); } As you can see, we first grab in the contents of the textarea into the variable new_content. We then remove the editor, set the content of the original object to “Saving…” to show that an update is occurring, and make the Ajax POST. If the Ajax fails, editFailed() sets the contents of the object to “Sorry, the update failed.” Admittedly, that’s not a very helpful way to handle the error but I have to limit the scope of this article somewhere. It might be a good idea to stow away the original contents of the object (obj.preUpdate = obj.innerHTML) for later retrieval before setting the content to “Saving…”. No one likes a failure – especially a messy one. If the Ajax call is successful, the server-side script returns the edited content, which we then place back inside the object from editComplete, and tidy up. Meanwhile, back at the server The missing piece of the puzzle is the server-side script for committing the changes to your database. Obviously, any solution I provide here is not going to fit your particular application. For the purposes of getting a functional demo going, here’s what I have in PHP. <?php $id = $_POST['id']; $content = $_POST['content']; echo htmlspecialchars($content); ?> Not exactly rocket science is it? I’m just catching the content item from the POST and echoing it back. For your application to be useful, however, you’ll need to know exactly which record you should be updating. I’m passing in the ID of my <div>, which is not a fat lot of use. You can modify saveChanges() to post back whatever information your app needs to know in order to process the update. You should also check the user’s credentials to make sure they have permission to edit whatever it is they’re editing. Basically the same rules apply as with any script in your application. Limitations There are a few bits and bobs that in an ideal world I would tidy up. The first is the error handling, as I’ve already mentioned. The second is that from an idealistic standpoint, I’d rather not be using innerHTML. However, the reality is that it’s presently the most efficient way of making large changes to the document. If you’re serving as XML, remember that you’ll need to replace these with proper DOM nodes. It’s also important to note that it’s quite difficult to make something like this universally accessible. Whenever you start updating large chunks of a document based on user interaction, a lot of non-traditional devices don’t cope well. The benefit of this technique, though, is that if JavaScript is unavailable none of the functionality gets implemented at all – it fails silently. It is for this reason that this shouldn’t be used as a complete replacement for a traditional, universally accessible edit form. It’s a great time-saver for those with the ability to use it, but it’s no replacement. See it in action I’ve put together an example page using the inert PHP script above. That is to say, your edits aren’t committed to a database, so the example is reset when the page is reloaded. 2005 Drew McLellan drewmclellan 2005-12-23T00:00:00+00:00 https://24ways.org/2005/edit-in-place-with-ajax/ code
316 Have Your DOM and Script It Too When working with the XMLHttpRequest object it appears you can only go one of three ways: You can stay true to the colorful moniker du jour and stick strictly to the responseXML property You can play with proprietary – yet widely supported – fire and inject the value of responseText property into the innerHTML of an element of your choosing Or you can be eval() and parse JSON or arbitrary JavaScript delivered via responseText But did you know that there’s a fourth option giving you the best of the latter two worlds? Mint uses this unmentioned approach to grab fresh HTML and run arbitrary JavaScript simultaneously. Without relying on eval(). “But wait-”, you might say, “when would I need to do this?” Besides the example below this technique is handy for things like tab groups that need initialization onload but miss the main onload event handler by a mile thanks to asynchronous scripting. Consider the problem Originally Mint used option 2 to refresh or load new tabs into individual Pepper panes without requiring a full roundtrip to the server. This was all well and good until I introduced the new Client Mode which when enabled allows anyone to view a Mint installation without being logged in. If voyeurs are afoot as Client Mode is disabled, the next time they refresh a pane the entire login page is inserted into the current document. That’s not very helpful so I needed a way to redirect the current document to the login page. Enter the solution Wouldn’t it be cool if browsers interpreted the contents of script tags crammed into innerHTML? Sure, but unfortunately, that just wasn’t meant to be. However like the body element, image elements have an onload event handler. When the image has fully loaded the handler runs the code applied to it. See where I’m going with this? By tacking a tiny image (think single pixel, transparent spacer gif – shudder) onto the end of the HTML returned by our Ajax call, we can smuggle our arbitrary JavaScript into the existing document. The image is added to the DOM, and our stowaway can go to town. <p>This is the results of our Ajax call.</p> <img src="../images/loaded.gif" alt="" onload="alert('Now that I have your attention...');" /> Please be neat So we’ve just jammed some meaningless cruft into our DOM. If our script does anything with images this addition could have some unexpected side effects. (Remember The Fly?) So in order to save that poor, unsuspecting element whose innerHTML we just swapped out from sharing Jeff Goldblum’s terrible fate we should tidy up after ourselves. And by using the removeChild method we do just that. <p>This is the results of our Ajax call.</p> <img src="../images/loaded.gif" alt="" onload="alert('Now that I have your attention...');this.parentNode.removeChild(this);" /> 2005 Shaun Inman shauninman 2005-12-24T00:00:00+00:00 https://24ways.org/2005/have-your-dom-and-script-it-too/ code
318 Auto-Selecting Navigation In the article Centered Tabs with CSS Ethan laid out a tabbed navigation system which can be centred on the page. A frequent requirement for any tab-based navigation is to be able to visually represent the currently selected tab in some way. If you’re using a server-side language such as PHP, it’s quite easy to write something like class="selected" into your markup, but it can be even simpler than that. Let’s take the navigation div from Ethan’s article as an example. <div id="navigation"> <ul> <li><a href="#"><span>Home</span></a></li> <li><a href="#"><span>About</span></a></li> <li><a href="#"><span>Our Work</span></a></li> <li><a href="#"><span>Products</span></a></li> <li class="last"><a href="#"><span>Contact Us</span></a></li> </ul> </div> As you can see we have a standard unordered list which is then styled with CSS to look like tabs. By giving each tab a class which describes it’s logical section of the site, if we were to then apply a class to the body tag of each page showing the same, we could write a clever CSS selector to highlight the correct tab on any given page. Sound complicated? Well, it’s not a trivial concept, but actually applying it is dead simple. Modifying the markup First thing is to place a class name on each li in the list: <div id="navigation"> <ul> <li class="home"><a href="#"><span>Home</span></a></li> <li class="about"><a href="#"><span>About</span></a></li> <li class="work"><a href="#"><span>Our Work</span></a></li> <li class="products"><a href="#"><span>Products</span></a></li> <li class="last contact"><a href="#"><span>Contact Us</span></a></li> </ul> </div> Then, on each page of your site, apply the a matching class to the body tag to indicate which section of the site that page is in. For example, on your About page: <body class="about">...</body> Writing the CSS selector You can now write a single CSS rule to match the selected tab on any given page. The logic is that you want to match the ‘about’ tab on the ‘about’ page and the ‘products’ tab on the ‘products’ page, so the selector looks like this: body.home #navigation li.home, body.about #navigation li.about, body.work #navigation li.work, body.products #navigation li.products, body.contact #navigation li.contact{ ... whatever styles you need to show the tab selected ... } So all you need to do when you create a new page in your site is to apply a class to the body tag to say which section it’s in. The CSS will do the rest for you – without any server-side help. 2005 Drew McLellan drewmclellan 2005-12-10T00:00:00+00:00 https://24ways.org/2005/auto-selecting-navigation/ code
319 Avoiding CSS Hacks for Internet Explorer Back in October, IEBlog issued a call to action, asking developers to clean up their CSS hacks for IE7 testing. Needless to say, a lot of hubbub ensued… both on IEBlog and elsewhere. My contribution to all of the noise was to suggest that developers review their code and use good CSS hacks. But what makes a good hack? Tantek Çelik, the Godfather of CSS hacks, gave us the answer by explaining how CSS hacks should be designed. In short, they should (1) be valid, (2) target only old/frozen/abandoned user-agents/browsers, and (3) be ugly. Tantek also went on to explain that using a feature of CSS is not a hack. Now, I’m not a frequent user of CSS hacks, but Tantek’s post made sense to me. In particular, I felt it gave developers direction on how we should be coding to accommodate that sometimes troublesome browser, Internet Explorer. But what I’ve found, through my work with other developers, is that there is still much confusion over the use of CSS hacks and IE. Using examples from the code I’ve seen recently, allow me to demonstrate how to clean up some IE-specific CSS hacks. The two hacks that I’ve found most often in the code I’ve seen and worked with are the star html bug and the underscore hack. We know these are both IE-specific by checking Kevin Smith’s CSS Filters chart. Let’s look at each of these hacks and see how we can replace them with the same CSS feature-based solution. The star html bug This hack violates Tantek’s second rule as it targets current (and future) UAs. I’ve seen this both as a stand alone rule, as well as an override to some other rule in a style sheet. Here are some code samples: * html div#header {margin-top:-3px;} .promo h3 {min-height:21px;} * html .promo h3 {height:21px;} The underscore hack This hack violates Tantek’s first two rules: it’s invalid (according to the W3C CSS Validator) and it targets current UAs. Here’s an example: ol {padding:0; _padding-left:5px;} Using child selectors We can use the child selector to replace both the star html bug and underscore hack. Here’s how: Write rules with selectors that would be successfully applied to all browsers. This may mean starting with no declarations in your rule! div#header {} .promo h3 {} ol {padding:0;} To these rules, add the IE-specific declarations. div#header {margin-top:-3px;} .promo h3 {height:21px;} ol {padding:0 0 0 5px;} After each rule, add a second rule. The selector of the second rule must use a child selector. In this new rule, correct any IE-specific declarations previously made. div#header {margin-top:-3px;} body > div#header {margin-top:0;} .promo h3 {height:21px;} .promo > h3 {height:auto; min-height:21px;} ol {padding:0 0 0 5px;} html > body ol {padding:0;} Voilà – no more hacks! There are a few caveats to this that I won’t go into… but assuming you’re operating in strict mode and barring any really complicated stuff you’re doing in your code, your CSS will still render perfectly across browsers. And while this may make your CSS slightly heftier in size, it should future-proof it for IE7 (or so I hope). Happy holidays! 2005 Kimberly Blessing kimberlyblessing 2005-12-17T00:00:00+00:00 https://24ways.org/2005/avoiding-css-hacks-for-internet-explorer/ code
320 DOM Scripting Your Way to Better Blockquotes Block quotes are great. I don’t mean they’re great for indenting content – that would be an abuse of the browser’s default styling. I mean they’re great for semantically marking up a chunk of text that is being quoted verbatim. They’re especially useful in blog posts. <blockquote> <p>Progressive Enhancement, as a label for a strategy for Web design, was coined by Steven Champeon in a series of articles and presentations for Webmonkey and the SxSW Interactive conference.</p> </blockquote> Notice that you can’t just put the quoted text directly between the <blockquote> tags. In order for your markup to be valid, block quotes may only contain block-level elements such as paragraphs. There is an optional cite attribute that you can place in the opening <blockquote> tag. This should contain a URL containing the original text you are quoting: <blockquote cite="http://en.wikipedia.org/wiki/Progressive_Enhancement"> <p>Progressive Enhancement, as a label for a strategy for Web design, was coined by Steven Champeon in a series of articles and presentations for Webmonkey and the SxSW Interactive conference.</p> </blockquote> Great! Except… the default behavior in most browsers is to completely ignore the cite attribute. Even though it contains important and useful information, the URL in the cite attribute is hidden. You could simply duplicate the information with a hyperlink at the end of the quoted text: <blockquote cite="http://en.wikipedia.org/wiki/Progressive_Enhancement"> <p>Progressive Enhancement, as a label for a strategy for Web design, was coined by Steven Champeon in a series of articles and presentations for Webmonkey and the SxSW Interactive conference.</p> <p class="attribution"> <a href="http://en.wikipedia.org/wiki/Progressive_Enhancement">source</a> </p> </blockquote> But somehow it feels wrong to have to write out the same URL twice every time you want to quote something. It could also get very tedious if you have a lot of quotes. Well, “tedious” is no problem to a programming language, so why not use a sprinkling of DOM Scripting? Here’s a plan for generating an attribution link for every block quote with a cite attribute: Write a function called prepareBlockquotes. Begin by making sure the browser understands the methods you will be using. Get all the blockquote elements in the document. Start looping through each one. Get the value of the cite attribute. If the value is empty, continue on to the next iteration of the loop. Create a paragraph. Create a link. Give the paragraph a class of “attribution”. Give the link an href attribute with the value from the cite attribute. Place the text “source” inside the link. Place the link inside the paragraph. Place the paragraph inside the block quote. Close the for loop. Close the function. Here’s how that translates to JavaScript: function prepareBlockquotes() { if (!document.getElementsByTagName || !document.createElement || !document.appendChild) return; var quotes = document.getElementsByTagName("blockquote"); for (var i=0; i<quotes.length; i++) { var source = quotes[i].getAttribute("cite"); if (!source) continue; var para = document.createElement("p"); var link = document.createElement("a"); para.className = "attribution"; link.setAttribute("href",source); link.appendChild(document.createTextNode("source")); para.appendChild(link); quotes[i].appendChild(para); } } Now all you need to do is trigger that function when the document has loaded: window.onload = prepareBlockquotes; Better yet, use Simon Willison’s handy addLoadEvent function to queue this function up with any others you might want to execute when the page loads. That’s it. All you need to do is save this function in a JavaScript file and reference that file from the head of your document using <script> tags. You can style the attribution link using CSS. It might look good aligned to the right with a smaller font size. If you’re looking for something to do to keep you busy this Christmas, I’m sure that this function could be greatly improved. Here are a few ideas to get you started: Should the text inside the generated link be the URL itself? If the block quote has a title attribute, how would you take its value and use it as the text inside the generated link? Should the attribution paragraph be placed outside the block quote? If so, how would you that (remember, there is an insertBefore method but no insertAfter)? Can you think of other instances of useful information that’s locked away inside attributes? Access keys? Abbreviations? 2005 Jeremy Keith jeremykeith 2005-12-05T00:00:00+00:00 https://24ways.org/2005/dom-scripting-your-way-to-better-blockquotes/ code
321 Tables with Style It might not seem like it but styling tabular data can be a lot of fun. From a semantic point of view, there are plenty of elements to tie some style into. You have cells, rows, row groups and, of course, the table element itself. Adding CSS to a paragraph just isn’t as exciting. Where do I start? First, if you have some tabular data (you know, like a spreadsheet with rows and columns) that you’d like to spiffy up, pop it into a table — it’s rightful place! To add more semantics to your table — and coincidentally to add more hooks for CSS — break up your table into row groups. There are three types of row groups: the header (thead), the body (tbody) and the footer (tfoot). You can only have one header and one footer but you can have as many table bodies as is appropriate. Sample table example Inspiration Table Striping To improve scanning information within a table, a common technique is to style alternating rows. Also known as zebra tables. Whether you apply it using a class on every other row or turn to JavaScript to accomplish the task, a handy-dandy trick is to use a semi-transparent PNG as your background image. This is especially useful over patterned backgrounds. tbody tr.odd td { background:transparent url(background.png) repeat top left; } * html tbody tr.odd td { background:#C00; filter: progid:DXImageTransform.Microsoft.AlphaImageLoader( src='background.png', sizingMethod='scale'); } We turn off the default background and apply our PNG hack to have this work in Internet Explorer. Styling Columns Did you know you could style a column? That’s right. You can add special column (col) or column group (colgroup) elements. With that you can add border or background styles to the column. <table> <col id="ingredients"> <col id="serve12"> <col id="serve24"> ... Check out the example. Fun with Backgrounds Pop in a tiled background to give your table some character! Internet Explorer’s PNG hack unfortunately only works well when applied to a cell. To figure out which background will appear over another, just remember the hierarchy: (bottom) Table → Column → Row Group → Row → Cell (top) The Future is Bright Once browser-makers start implementing CSS3, we’ll have more power at our disposal. Just with :first-child and :last-child, you can pull off a scalable version of our previous table with rounded corners and all — unfortunately, only Firefox manages to pull this one off successfully. And the selector the masses are clamouring for, nth-child, will make zebra tables easy as eggnog. 2005 Jonathan Snook jonathansnook 2005-12-19T00:00:00+00:00 https://24ways.org/2005/tables-with-style/ code
322 Introduction to Scriptaculous Effects Gather around kids, because this year, much like in that James Bond movie with Denise Richards, Christmas is coming early… in the shape of scrumptuous smooth javascript driven effects at your every whim. Now what I’m going to do, is take things down a notch. Which is to say, you don’t need to know much beyond how to open a text file and edit it to follow this article. Personally, I for instance can’t code to save my life. Well, strictly speaking, that’s not entirely true. If my life was on the line, and the code needed was really simple and I wasn’t under any time constraints, then yeah maybe I could hack my way out of it But my point is this: I’m not a programmer in the traditional sense of the word. In fact, what I do best, is scrounge code off of other people, take it apart and then put it back together with duct tape, chewing gum and dumb blind luck. No, don’t run! That happens to be a good thing in this case. You see, we’re going to be implementing some really snazzy effects (which are considerably more relevant than most people are willing to admit) on your site, and we’re going to do it with the aid of Thomas Fuchs’ amazing Script.aculo.us library. And it will be like stealing candy from a child. What Are We Doing? I’m going to show you the very basics of implementing the Script.aculo.us javascript library’s Combination Effects. These allow you to fade elements on your site in or out, slide them up and down and so on. Why Use Effects at All? Before get started though, let me just take a moment to explain how I came to see smooth transitions as something more than smoke and mirror-like effects included for with little more motive than to dazzle and make parents go ‘uuh, snazzy’. Earlier this year, I had the good fortune of meeting the kind, gentle and quite knowledgable Matt Webb at a conference here in Copenhagen where we were both speaking (though I will be the first to admit my little talk on Open Source Design was vastly inferior to Matt’s talk). Matt held a talk called Fixing Broken Windows (based on the Broken Windows theory), which really made an impression on me, and which I have since then referred back to several times. You can listen to it yourself, as it’s available from Archive.org. Though since Matt’s session uses many visual examples, you’ll have to rely on your imagination for some of the examples he runs through during it. Also, I think it looses audio for a few seconds every once in a while. Anyway, one of the things Matt talked a lot about, was how our eyes are wired to react to movement. The world doesn’t flickr. It doesn’t disappear or suddenly change and force us to look for the change. Things move smoothly in the real world. They do not pop up. How it Works Once the necessary files have been included, you trigger an effect by pointing it at the ID of an element. Simple as that. Implementing the Effects So now you know why I believe these effects have a place in your site, and that’s half the battle. Because you see, actually getting these effects up and running, is deceptively simple. First, go and download the latest version of the library (as of this writing, it’s version 1.5 rc5). Unzip itand open it up. Now we’re going to bypass the instructions in the readme file. Script.aculo.us can do a bunch of quite advanced things, but all we really want from it is its effects. And by sidestepping the rest of the features, we can shave off roughly 80KB of unnecessary javascript, which is well worth it if you ask me. As with Drew’s article on Easy Ajax with Prototype, script.aculo.us also uses the Prototype framework by Sam Stephenson. But contrary to Drew’s article, you don’t have to download Prototype, as a version comes bundled with script.aculo.us (though feel free to upgrade to the latest version if you so please). So in the unzipped folder, containing the script.aculo.us files and folder, go into ‘lib’ and grab the ‘prototype.js’ file. Move it to whereever you want to store the javascript files. Then fetch the ‘effects.js’ file from the ‘src’ folder and put it in the same place. To make things even easier for you to get this up and running, I have prepared a small javascript snippet which does some checking to see what you’re trying to do. The script.aculo.us effects are all either ‘turn this off’ or ‘turn this on’. What this snippet does, is check to see what state the target currently has (is it on or off?) and then use the necessary effect. You can either skip to the end and download the example code, or copy and paste this code into a file manually (I’ll refer to that file as combo.js): Effect.OpenUp = function(element) { element = $(element); new Effect.BlindDown(element, arguments[1] || {}); } Effect.CloseDown = function(element) { element = $(element); new Effect.BlindUp(element, arguments[1] || {}); } Effect.Combo = function(element) { element = $(element); if(element.style.display == 'none') { new Effect.OpenUp(element, arguments[1] || {}); }else { new Effect.CloseDown(element, arguments[1] || {}); } } Currently, this code uses the BlindUp and BlindDown code, which I personally like, but there’s nothing wrong with you changing the effect-type into one of the other effects available. Now, include the three files in the header of your code, like so: <script src="prototype.js" type="text/javascript"></script> <script src="effects.js" type="text/javascript"></script> <script src="combo.js" type="text/javascript"></script> Now insert the element you want to use the effect on, like so: <div id="content" style="display: none;">Lorem ipsum dolor sit amet.</div> The above element will start out invisible, and when triggered will be revealed. If you want it to start visible, simply remove the style parameter. And now for the trigger <a href="javascript:Effect.Combo('content');">Click Here</a> And that, is pretty much it. Clicking the link should unfold the DIV targeted by the effect, in this case ‘content’. Effect Options Now, it gets a bit long-haired though. The documentation for script.aculo.us is next to non-existing, and because of that you’ll have to do some digging yourself to appreciate the full potentialof these effects. First of all, what kind of effects are available? Well you can go to the demo page and check them out, or you can open the ‘effects.js’ file and have a look around, something I recommend doing regardlessly, to gain an overview of what exactly you’re dealing with. If you dissect it for long enough, you can even distill some of the options available for the various effects. In the case of the BlindUp and BlindDown effect, which we’re using in our example (as triggered from combo.js), one of the things that would be interesting to play with would be the duration of the effect. If it’s too long, it will feel slow and unresponsive. Too fast and it will be imperceptible. You set the options like so: <a href="javascript:Effect.Combo('content', {duration: .2});">Click Here</a> The change from the previous link being the inclusion of , {duration: .2}. In this case, I have lowered the duration to 0.2 second, to really make it feel snappy. You can also go all-out and turn on all the bells and whistles of the Blind effect like so (slowed down to a duration of three seconds so you can see what’s going on): <a href="javascript:Effect.Combo('content', {duration: 3, scaleX: true, scaleContent: true});">Click Here</a> Conclusion And that’s pretty much it. The rest is a matter of getting to know the rest of the effects and their options as well as finding out just when and where to use them. Remember the ancient Chinese saying: Less is more. Download Example I have prepared a very basic example, which you can download and use as a reference point. 2005 Michael Heilemann michaelheilemann 2005-12-12T00:00:00+00:00 https://24ways.org/2005/introduction-to-scriptaculous-effects/ code
323 Introducing UDASSS! Okay. What’s that mean? Unobtrusive Degradable Ajax Style Sheet Switcher! Boy are you in for treat today ‘cause we’re gonna have a whole lotta Ajaxifida Unobtrucitosity CSS swappin’ Fun! Okay are you really kidding? Nope. I’ve even impressed myself on this one. Unfortunately, I don’t have much time to tell you the ins and outs of what I actually did to get this to work. We’re talking JavaScript, CSS, PHP…Ajax. But don’t worry about that. I’ve always believed that a good A.P.I. is an invisible A.P.I… and this I felt I achieved. The only thing you need to know is how it works and what to do. A Quick Introduction Anyway… First of all, the idea is very simple. I wanted something just like what Paul Sowden put together in Alternative Style: Working With Alternate Style Sheets from Alistapart Magazine EXCEPT a few minor (not-so-minor actually) differences which I’ve listed briefly below: Allow users to switch styles without JavaScript enabled (degradable) Preventing the F.O.U.C. before the window ‘load’ when getting preferred styles Keep the JavaScript entirely off our markup (no onclick’s or onload’s) Make it very very easy to implement (ok, Paul did that too) What I did to achieve this was used server-side cookies instead of JavaScript cookies. Hence, PHP. However this isn’t a “PHP style switcher” – which is where Ajax comes in. For the extreme technical folks, no, there is no xml involved here, or even a callback response. I only say Ajax because everyone knows what ‘it’ means. With that said, it’s the Ajax that sets the cookies ‘on the fly’. Got it? Awesome! What you need Luckily, I’ve done the work for you. It’s all packaged up in a nice zip file (at the end…keep reading for now) – so from here on out, just follow these instructions As I’ve mentioned, one of the things we’ll be working with is PHP. So, first things first, open up a file called index and save it with a ‘.php’ extension. Next, place the following text at the top of your document (even above your DOCTYPE) <?php require_once('utils/style-switcher.php'); // style sheet path[, media, title, bool(set as alternate)] $styleSheet = new AlternateStyles(); $styleSheet->add('css/global.css','screen,projection'); // [Global Styles] $styleSheet->add('css/preferred.css','screen,projection','Wog Standard'); // [Preferred Styles] $styleSheet->add('css/alternate.css','screen,projection','Tiny Fonts',true); // [Alternate Styles] $styleSheet->add('css/alternate2.css','screen,projection','Big O Fonts',true); // // [Alternate Styles] $styleSheet->getPreferredStyles(); ?> The way this works is REALLY EASY. Pay attention closely. Notice in the first line we’ve included our style-switcher.php file. Next we instantiate a PHP class called AlternateStyles() which will allow us to configure our style sheets. So for kicks, let’s just call our object $styleSheet As part of the AlternateStyles object, there lies a public method called add. So naturally with our $styleSheet object, we can call it to (da – da-da-da!) Add Style Sheets! How the add() method works The add method takes in a possible four arguments, only one is required. However, you’ll want to add some… since the whole point is working with alternate style sheets. $path can simply be a uri, absolute, or relative path to your style sheet. $media adds a media attribute to your style sheets. $title gives a name to your style sheets (via title attribute).$alternate (which shows boolean) simply tells us that these are the alternate style sheets. add() Tips For all global style sheets (meaning the ones that will always be seen and will not be swapped out), simply use the add method as shown next to // [Global Styles]. To add preferred styles, do the same, but add a ‘title’. To add the alternate styles, do the same as what we’ve done to add preferred styles, but add the extra boolean and set it to true. Note following when adding style sheets Multiple global style sheets are allowed You can only have one preferred style sheet (That’s a browser rule) Feel free to add as many alternate style sheets as you like Moving on Simply add the following snippet to the <head> of your web document: <script type="text/javascript" src="js/prototype.js"></script> <script type="text/javascript" src="js/common.js"></script> <script type="text/javascript" src="js/alternateStyles.js"></script> <?php $styleSheet->drop(); ?> Nothing much to explain here. Just use your copy & paste powers. How to Switch Styles Whether you knew it or not, this baby already has the built in ‘ubobtrusive’ functionality that lets you switch styles by the drop of any link with a class name of ‘altCss‘. Just drop them where ever you like in your document as follows: <a class="altCss" href="index.php?css=Bog_Standard">Bog Standard</a> <a class="altCss" href="index.php?css=Really_Small_Fonts">Small Fonts</a> <a class="altCss" href="index.php?css=Large_Fonts">Large Fonts</a> Take special note where the file is linking to. Yep. Just linking right back to the page we’re on. The only extra parameters we pass in is a variable called ‘css’ – and within that we append the names of our style sheets. Also take very special note on the names of the style sheets have an under_score to take place of any spaces we might have. Go ahead… play around and change the style sheet on the example page. Try disabling JavaScript and refreshing your browser. Still works! Cool eh? Well, I put this together in one night so it’s still a work in progress and very beta. If you’d like to hear more about it and its future development, be sure stop on by my site where I’ll definitely be maintaining it. Download the beta anyway Well this wouldn’t be fun if there was nothing to download. So we’re hooking you up so you don’t go home (or logoff) unhappy Download U.D.A.S.S.S | V0.8 Merry Christmas! Thanks for listening and I hope U.D.A.S.S.S. has been well worth your time and will bring many years of Ajaxy Style Switchin’ Fun! Many Blessings, Merry Christmas and have a great new year! 2005 Dustin Diaz dustindiaz 2005-12-18T00:00:00+00:00 https://24ways.org/2005/introducing-udasss/ code
326 Don't be eval() JavaScript is an interpreted language, and like so many of its peers it includes the all powerful eval() function. eval() takes a string and executes it as if it were regular JavaScript code. It’s incredibly powerful and incredibly easy to abuse in ways that make your code slower and harder to maintain. As a general rule, if you’re using eval() there’s probably something wrong with your design. Common mistakes Here’s the classic misuse of eval(). You have a JavaScript object, foo, and you want to access a property on it – but you don’t know the name of the property until runtime. Here’s how NOT to do it: var property = 'bar'; var value = eval('foo.' + property); Yes it will work, but every time that piece of code runs JavaScript will have to kick back in to interpreter mode, slowing down your app. It’s also dirt ugly. Here’s the right way of doing the above: var property = 'bar'; var value = foo[property]; In JavaScript, square brackets act as an alternative to lookups using a dot. The only difference is that square bracket syntax expects a string. Security issues In any programming language you should be extremely cautious of executing code from an untrusted source. The same is true for JavaScript – you should be extremely cautious of running eval() against any code that may have been tampered with – for example, strings taken from the page query string. Executing untrusted code can leave you vulnerable to cross-site scripting attacks. What’s it good for? Some programmers say that eval() is B.A.D. – Broken As Designed – and should be removed from the language. However, there are some places in which it can dramatically simplify your code. A great example is for use with XMLHttpRequest, a component of the set of tools more popularly known as Ajax. XMLHttpRequest lets you make a call back to the server from JavaScript without refreshing the whole page. A simple way of using this is to have the server return JavaScript code which is then passed to eval(). Here is a simple function for doing exactly that – it takes the URL to some JavaScript code (or a server-side script that produces JavaScript) and loads and executes that code using XMLHttpRequest and eval(). function evalRequest(url) { var xmlhttp = new XMLHttpRequest(); xmlhttp.onreadystatechange = function() { if (xmlhttp.readyState==4 && xmlhttp.status==200) { eval(xmlhttp.responseText); } } xmlhttp.open("GET", url, true); xmlhttp.send(null); } If you want this to work with Internet Explorer you’ll need to include this compatibility patch. 2005 Simon Willison simonwillison 2005-12-07T00:00:00+00:00 https://24ways.org/2005/dont-be-eval/ code
327 Improving Form Accessibility with DOM Scripting The form label element is an incredibly useful little element – it lets you link the form field unquestionably with the descriptive label text that sits alongside or above it. This is a very useful feature for people using screen readers, but there are some problems with this element. What happens if you have one piece of data that, for various reasons (validation, the way your data is collected/stored etc), needs to be collected using several form elements? The classic example is date of birth – ideally, you’ll ask for the date of birth once but you may have three inputs, one each for day, month and year, that you also need to provide hints about the format required. The problem is that to be truly accessible you need to label each field. So you end up needing something to say “this is a date of birth”, “this is the day field”, “this is the month field” and “this is the day field”. Seems like overkill, doesn’t it? And it can uglify a form no end. There are various ways that you can approach it (and I think I’ve seen them all). Some people omit the label and rely on the title attribute to help the user through; others put text in a label but make the text 1 pixel high and merging in to the background so that screen readers can still get that information. The most common method, though, is simply to set the label to not display at all using the CSS display:none property/value pairing (a technique which, for the time being, seems to work on most screen readers). But perhaps we can do more with this? The technique I am suggesting as another alternative is as follows (here comes the pseudo-code): Start with a totally valid and accessible form Ensure that each form input has a label that is linked to its related form control Apply a class to any label that you don’t want to be visible (for example superfluous) Then, through the magic of unobtrusive JavaScript/the DOM, manipulate the page as follows once the page has loaded: Find all the label elements that are marked as superfluous and hide them Find out what input element each of these label elements is related to Then apply a hint about formatting required for input (gleaned from the original, now-hidden label text) – add it to the form input as default text Finally, add in a behaviour that clears or selects the default text (as you choose) So, here’s the theory put into practice – a date of birth, grouped using a fieldset, and with the behaviours added in using DOM, and here’s the JavaScript that does the heavy lifting. But why not just use display:none? As demonstrated at Juicy Studio, display:none seems to work quite well for hiding label elements. So why use a sledge hammer to crack a nut? In all honesty, this is something of an experiment, but consider the following: Using the DOM, you can add extra levels of help, potentially across a whole form – or even range of forms – without necessarily increasing your markup (it goes beyond simply hiding labels) Screen readers today may identify a label that is set not to display, but they may not in the future – this might provide a way around By expanding this technique above, it might be possible to visually change the parent container that groups these items – in this case, a fieldset and legend, which are notoriously difficult to style consistently across different browsers – while still retaining the underlying semantic/logical structure Well, it’s an idea to think about at least. How is it for you? How else might you use DOM scripting to improve the accessiblity or usability of your forms? 2005 Ian Lloyd ianlloyd 2005-12-03T00:00:00+00:00 https://24ways.org/2005/improving-form-accessibility-with-dom-scripting/ code
331 Splintered Striper Back in March 2004, David F. Miller demonstrated a little bit of DOM scripting magic in his A List Apart article Zebra Tables. His script programmatically adds two alternating CSS background colours to table rows, making them more readable and visually pleasing, while saving the document author the tedious task of manually assigning the styling to large static data tables. Although David’s original script performs its duty well, it is nonetheless very specific and limited in its application. It only: works on a single table, identified by its id, with at least a single tbody section assigns a background colour allows two colours for odd and even rows acts on data cells, rather than rows, and then only if they have no class or background colour already defined Taking it further In a recent project I found myself needing to apply a striped effect to a medium sized unordered list. Instead of simply modifying the Zebra Tables code for this particular case, I decided to completely recode the script to make it more generic. Being more general purpose, the function in my splintered striper experiment is necessarily more complex. Where the original script only expected a single parameter (the id of the target table), the new function is called as follows: striper('[parent element tag]','[parent element class or null]','[child element tag]','[comma separated list of classes]') This new, fairly self-explanatory function: targets any type of parent element (and, if specified, only those with a certain class) assigns two or more classes (rather than just two background colours) to the child elements inside the parent preserves any existing classes already assigned to the child elements See it in action View the demonstration page for three usage examples. For simplicity’s sake, we’re making the calls to the striper function from the body’s onload attribute. In a real deployment situation, we would look at attaching a behaviour to the onload programmatically — just remember that, as we need to pass variables to the striper function, this would involve creating a wrapper function which would then be attached…something like: function stripe() { striper('tbody','splintered','tr','odd,even'); } window.onload=stripe; A final thought Just because the function is called striper does not mean that it’s limited to purely applying a striped look; as it’s more of a general purpose “alternating class assignment” script, you can achieve a whole variety of effects with it. 2005 Patrick Lauke patricklauke 2005-12-15T00:00:00+00:00 https://24ways.org/2005/splintered-striper/ code
332 CSS Layout Starting Points I build a lot of CSS layouts, some incredibly simple, others that cause sleepless nights and remind me of the torturous puzzle books that were given to me at Christmas by aunties concerned for my education. However, most of the time these layouts fit quite comfortably into one of a very few standard formats. For example: Liquid, multiple column with no footer Liquid, multiple column with footer Fixed width, centred Rather than starting out with blank CSS and (X)HTML documents every time you need to build a layout, you can fairly quickly create a bunch of layout starting points, that will give you a solid basis for creating the rest of the design and mean that you don’t have to remember how a three column layout with a footer is best achieved every time you come across one! These starting points can be really basic, in fact that’s exactly what you want as the final design, the fonts, the colours and so on will be different every time. It’s just the main sections we want to be able to quickly get into place. For example, here is a basic starting point CSS and XHTML document for a fixed width, centred layout with a footer. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Fixed Width and Centred starting point document</title> <link rel="stylesheet" type="text/css" href="fixed-width-centred.css" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> </head> <body> <div id="wrapper"> <div id="side"> <div class="inner"> <p>Sidebar content here</p> </div> </div> <div id="content"> <div class="inner"> <p>Your main content goes here.</p> </div> </div> <div id="footer"> <div class="inner"> <p>Ho Ho Ho!</p> </div> </div> </div> </body> </html> body { text-align: center; min-width: 740px; padding: 0; margin: 0; } #wrapper { text-align: left; width: 740px; margin-left: auto; margin-right: auto; padding: 0; } #content { margin: 0 200px 0 0; } #content .inner { padding-top: 1px; margin: 0 10px 10px 10px; } #side { float: right; width: 180px; margin: 0; } #side .inner { padding-top: 1px; margin: 0 10px 10px 10px; } #footer { margin-top: 10px; clear: both; } #footer .inner { margin: 10px; } 9 times out of 10, after figuring out exactly what main elements I have in a layout, I can quickly grab the ‘one I prepared earlier’, mark-up the relevant sections within the ready-made divs, and from that point on, I only need to worry about the contents of those different areas. The actual layout is tried and tested, one that I know works well in different browsers and that is unlikely to throw me any nasty surprises later on. In addition, considering how the layout is going to work first prevents the problem of developing a layout, then realising you need to put a footer on it, and needing to redevelop the layout as the method you have chosen won’t work well with a footer. While enjoying your mince pies and mulled wine during the ‘quiet time’ between Christmas and New Year, why not create some starting point layouts of your own? The css-discuss Wiki, CSS layouts section is a great place to find examples that you can try out and find your favourite method of creating the various layout types. 2005 Rachel Andrew rachelandrew 2005-12-04T00:00:00+00:00 https://24ways.org/2005/css-layout-starting-points/ code
333 The Attribute Selector for Fun and (no ad) Profit If I had a favourite CSS selector, it would undoubtedly be the attribute selector (Ed: You really need to get out more). For those of you not familiar with the attribute selector, it allows you to style an element based on the existence, value or partial value of a specific attribute. At it’s very basic level you could use this selector to style an element with particular attribute, such as a title attribute. <abbr title="Cascading Style Sheets">CSS</abbr> In this example I’m going to make all <abbr> elements with a title attribute grey. I am also going to give them a dotted bottom border that changes to a solid border on hover. Finally, for that extra bit of feedback, I will change the cursor to a question mark on hover as well. abbr[title] { color: #666; border-bottom: 1px dotted #666; } abbr[title]:hover { border-bottom-style: solid; cursor: help; } This provides a nice way to show your site users that <abbr> elements with title tags are special, as they contain extra, hidden information. Most modern browsers such as Firefox, Safari and Opera support the attribute selector. Unfortunately Internet Explorer 6 and below does not support the attribute selector, but that shouldn’t stop you from adding nice usability embellishments to more modern browsers. Internet Explorer 7 looks set to implement this CSS2.1 selector, so expect to see it become more common over the next few years. Styling an element based on the existence of an attribute is all well and good, but it is still pretty limited. Where attribute selectors come into their own is their ability to target the value of an attribute. You can use this for a variety of interesting effects such as styling VoteLinks. VoteWhats? If you haven’t heard of VoteLinks, it is a microformat that allows people to show their approval or disapproval of a links destination by adding a pre-defined keyword to the rev attribute. For instance, if you had a particularly bad meal at a restaurant, you could signify your dissaproval by adding a rev attribute with a value of vote-against. <a href="http://www.mommacherri.co.uk/" rev="vote-against">Momma Cherri's</a> You could then highlight these links by adding an image to the right of these links. a[rev="vote-against"]{ padding-right: 20px; background: url(images/vote-against.png) no-repeat right top; } This is a useful technique, but it will only highlight VoteLinks on sites you control. This is where user stylesheets come into effect. If you create a user stylesheet containing this rule, every site you visit that uses VoteLinks will receive your new style. Cool huh? However my absolute favourite use for attribute selectors is as a lightweight form of ad blocking. Most online adverts conform to industry-defined sizes. So if you wanted to block all banner-ad sized images, you could simply add this line of code to your user stylesheet. img[width="468"][height="60"], img[width="468px"][height="60px"] { display: none !important; } To hide any banner-ad sized element, such as flash movies, applets or iFrames, simply apply the above rule to every element using the universal selector. *[width="468"][height="60"], *[width="468px"][height="60px"] { display: none !important; } Just bare in mind when using this technique that you may accidentally hide something that isn’t actually an advert; it just happens to be the same size. The Interactive Advertising Bureau lists a number of common ad sizes. Using these dimensions, you can create stylesheet that blocks all the popular ad formats. Apply this as a user stylesheet and you never need to suffer another advert again. Here’s wishing you a Merry, ad-free Christmas. 2005 Andy Budd andybudd 2005-12-11T00:00:00+00:00 https://24ways.org/2005/the-attribute-selector-for-fun-and-no-ad-profit/ code
334 Transitional vs. Strict Markup When promoting web standards, standardistas often talk about XHTML as being more strict than HTML. In a sense it is, since it requires that all elements are properly closed and that attribute values are quoted. But there are two flavours of XHTML 1.0 (three if you count the Frameset DOCTYPE, which is outside the scope of this article), defined by the Transitional and Strict DOCTYPEs. And HTML 4.01 also comes in those flavours. The names reveal what they are about: Transitional DOCTYPEs are meant for those making the transition from older markup to modern ways. Strict DOCTYPEs are actually the default – the way HTML 4.01 and XHTML 1.0 were constructed to be used. A Transitional DOCTYPE may be used when you have a lot of legacy markup that cannot easily be converted to comply with a Strict DOCTYPE. But Strict is what you should be aiming for. It encourages, and in some cases enforces, the separation of structure and presentation, moving the presentational aspects from markup to CSS. From the HTML 4 Document Type Definition: This is HTML 4.01 Strict DTD, which excludes the presentation attributes and elements that W3C expects to phase out as support for style sheets matures. Authors should use the Strict DTD when possible, but may use the Transitional DTD when support for presentation attribute and elements is required. An additional benefit of using a Strict DOCTYPE is that doing so will ensure that browsers use their strictest, most standards compliant rendering modes. Tommy Olsson provides a good summary of the benefits of using Strict over Transitional in Ten questions for Tommy Olsson at Web Standards Group: In my opinion, using a Strict DTD, either HTML 4.01 Strict or XHTML 1.0 Strict, is far more important for the quality of the future web than whether or not there is an X in front of the name. The Strict DTD promotes a separation of structure and presentation, which makes a site so much easier to maintain. For those looking to start using web standards and valid, semantic markup, it is important to understand the difference between Transitional and Strict DOCTYPEs. For complete listings of the differences between Transitional and Strict DOCTYPEs, see XHTML: Differences between Strict & Transitional, Comparison of Strict and Transitional XHTML, and XHTML1.0 Element Attributes by DTD. Some of the differences are more likely than others to cause problems for developers moving from a Transitional DOCTYPE to a Strict one, and I’d like to mention a few of those. Elements that are not allowed in Strict DOCTYPEs center font iframe strike u Attributes not allowed in Strict DOCTYPEs align (allowed on elements related to tables: col, colgroup, tbody, td, tfoot, th, thead, and tr) language background bgcolor border (allowed on table) height (allowed on img and object) hspace name (allowed in HTML 4.01 Strict, not allowed on form and img in XHTML 1.0 Strict) noshade nowrap target text, link, vlink, and alink vspace width (allowed on img, object, table, col, and colgroup) Content model differences An element type’s content model describes what may be contained by an instance of the element type. The most important difference in content models between Transitional and Strict is that blockquote, body, and form elements may only contain block level elements. A few examples: text and images are not allowed immediately inside the body element, and need to be contained in a block level element like p or div input elements must not be direct descendants of a form element text in blockquote elements must be wrapped in a block level element like p or div Go Strict and move all presentation to CSS Something that can be helpful when doing the transition from Transitional to Strict DOCTYPEs is to focus on what each element of the page you are working on is instead of how you want it to look. Worry about looks later and get the structure and semantics right first. 2005 Roger Johansson rogerjohansson 2005-12-13T00:00:00+00:00 https://24ways.org/2005/transitional-vs-strict-markup/ code
335 Naughty or Nice? CSS Background Images Web Standards based development involves many things – using semantically sound HTML to provide structure to our documents or web applications, using CSS for presentation and layout, using JavaScript responsibly, and of course, ensuring that all that we do is accessible and interoperable to as many people and user agents as we can. This we understand to be good. And it is good. Except when we don’t clearly think through the full implications of using those techniques. Which often happens when time is short and we need to get things done. Here are some naughty examples of CSS background images with their nicer, more accessible counterparts. Transaction related messages I’m as guilty of this as others (or, perhaps, I’m the only one that has done this, in which case this can serve as my holiday season confessional) We use lovely little icons to show status messages for a transaction to indicate if the action was successful, or was there a warning or error? For example: “Your postal/zip code was not in the correct format.” Notice that we place a nice little icon there, and use background colours and borders to convey a specific message: there was a problem that needs to be fixed. Notice that all of this visual information is now contained in the CSS rules for that div: <div class="error"> <p>Your postal/zip code was not in the correct format.</p> </div> div.error { background: #ffcccc url(../images/error_small.png) no-repeat 5px 4px; color: #900; border-top: 1px solid #c00; border-bottom: 1px solid #c00; padding: 0.25em 0.5em 0.25em 2.5em; font-weight: bold; } Using this approach also makes it very easy to create a div.success and div.warning CSS rules meaning we have less to change in our HTML. Nice, right? No. Naughty. Visual design communicates The CSS is being used to convey very specific information. The choice of icon, the choice of background colour and borders tell us visually that there is something wrong. With the icon as a background image – there is no way to specify any alt text for the icon, and significant meaning is lost. A screen reader user, for example, misses the fact that it is an “error.” The solution? Ask yourself: what is the bare minimum needed to indicate there was an error? Currently in the absence of CSS there will be no icon – which (I’m hoping you agree) is critical to communicating there was an error. The icon should be considered content and not simply presentational. The borders and background colour are certainly much less critical – they belong in the CSS. Lets change the code to place the image directly in the HTML and using appropriate alt text to better communicate the meaning of the icon to all users: <div class="bettererror"> <img src="images/error_small.png" alt="Error" /> <p>Your postal/zip code was not in the correct format.</p> </div> div.bettererror { background-color: #ffcccc; color: #900; border-top: 1px solid #c00; border-bottom: 1px solid #c00; padding: 0.25em 0.5em 0.25em 2.5em; font-weight: bold; position: relative; min-height: 1.25em; } div.bettererror img { display: block; position: absolute; left: 0.25em; top: 0.25em; padding: 0; margin: 0; } div.bettererror p { position: absolute; left: 2.5em; padding: 0; margin: 0; } Compare these two examples of transactional messages Status of a Record This example is pretty straightforward. Consider the following: a real estate listing on a web site. There are three “states” for a listing: new, normal, and sold. Here’s how they look: Example of a New Listing Example of A Sold Listing If we (forgive the pun) blindly apply the “use a CSS background image” technique we clearly run into problems with the new and sold images – they actually contain content with no way to specify an alternative when placed in the CSS. In this case of the “new” image, we can use the same strategy as we used in the first example (the transaction result). The “new” image should be considered content and is placed in the HTML as part of the <h2>...</h2> that identifies the listing. However when considering the “sold” listing, there are less changes to be made to keep the same look by leaving the “SOLD” image as a background image and providing the equivalent information elsewhere in the listing – namely, right in the heading. For those that can’t see the background image, the status is communicated clearly and right away. A screen reader user that is navigating by heading or viewing a listing will know right away that a particular property is sold. Of note here is that in both cases (new and sold) placing the status near the beginning of the record helps with a zoom layout as well. Better Example of A Sold Listing Summary Remember: in the holiday season, its what you give that counts!! Using CSS background images is easy and saves time for you but think of the children. And everyone else for that matter… CSS background images should only be used for presentational images, not for those that contain content (unless that content is already represented and readily available elsewhere). 2005 Derek Featherstone derekfeatherstone 2005-12-20T00:00:00+00:00 https://24ways.org/2005/naughty-or-nice-css-background-images/ code
336 Practical Microformats with hCard You’ve probably heard about microformats over the last few months. You may have even read the easily digestible introduction at Digital Web Magazine, but perhaps you’ve not found time to actually implement much yet. That’s understandable, as it can sometimes be difficult to see exactly what you’re adding by applying a microformat to a page. Sure, you’re semantically enhancing the information you’re marking up, and the Semantic Web is a great idea and all, but what benefit is it right now, today? Well, the answer to that question is simple: you’re adding lots of information that can be and is being used on the web here and now. The big ongoing battle amongst the big web companies if one of territory over information. Everyone’s grasping for as much data as possible. Some of that information many of us are cautious to give away, but a lot of is happy to be freely available. Of the data you’re giving away, it makes sense to give it as much meaning as possible, thus enabling anyone from your friends and family to the giant search company down the road to make the most of it. Ok, enough of the waffle, let’s get working. Introducing hCard You may have come across hCard. It’s a microformat for describing contact information (or really address book information) from within your HTML. It’s based on the vCard format, which is the format the contacts/address book program on your computer uses. All the usual fields are available – name, address, town, website, email, you name it. If you’re running Firefox and Greasemonkey (or if you can, just to try this out), install this user script. What it does is look for instances of the hCard microformat in a page, and then add in a link to pass any hCards it finds to a web service which will convert it to a vCard. Take a look at the About the author box at the bottom of this article. It’s a hCard, so you should be able to click the icon the user script inserts and add me to your Outlook contacts or OS X Address Book with just a click. So microformats are useful after all. Free microformats all round! Implementing hCard This is the really easy bit. All the hCard microformat is, is a bunch of predefined class names that you apply to the markup you’ve probably already got around your contact information. Let’s take the example of the About the author box from this article. Here’s how the markup looks without hCard: <div class="bio"> <h3>About the author</h3> <p>Drew McLellan is a web developer, author and no-good swindler from just outside London, England. At the <a href="http://www.webstandards.org/">Web Standards Project</a> he works on press, strategy and tools. Drew keeps a <a href="http://www.allinthehead.com/">personal weblog</a> covering web development issues and themes.</p> </div> This is a really simple example because there’s only two key bits of address book information here:- my name and my website address. Let’s push it a little and say that the Web Standards Project is the organisation I work for – that gives us Name, Company and URL. To kick off an hCard, you need a containing object with a class of vcard. The div I already have with a class of bio is perfect for this – all it needs to do is contain the rest of the contact information. The next thing to identify is my name. hCard uses a class of fn (meaning Full Name) to identify a name. As is this case there’s no element surrounding my name, we can just use a span. These changes give us: <div class="bio vcard"> <h3>About the author</h3> <p><span class="fn">Drew McLellan</span> is a web developer... The two remaining items are my URL and the organisation I belong to. The class names designated for those are url and org respectively. As both of those items are links in this case, I can apply the classes to those links. So here’s the finished hCard. <div class="bio vcard"> <h3>About the author</h3> <p><span class="fn">Drew McLellan</span> is a web developer, author and no-good swindler from just outside London, England. At the <a class="org" href="http://www.webstandards.org/">Web Standards Project</a> he works on press, strategy and tools. Drew keeps a <a class="url" href="http://www.allinthehead.com/">personal weblog</a> covering web development issues and themes.</p> </div> OK, that was easy. By just applying a few easy class names to the HTML I was already publishing, I’ve implemented an hCard that right now anyone with Greasemonkey can click to add to their address book, that Google and Yahoo! and whoever else can index and work out important things like which websites are associated with my name if they so choose (and boy, will they so choose), and in the future who knows what. In terms of effort, practically nil. Where next? So that was a trivial example, but to be honest it doesn’t really get much more complex even with the most pernickety permutations. Because hCard is based on vCard (a mature and well thought-out standard), it’s all tried and tested. Here’s some good next steps. Play with the hCard Creator Take a deep breath and read the spec Start implementing hCard as you go on your own projects – it takes very little time hCard is just one of an ever-increasing number of microformats. If this tickled your fancy, I suggest subscribing to the microformats site in your RSS reader to keep in touch with new developments. What’s the take-away? The take-away is this. They may sound like just more Web 2-point-HoHoHo hype, but microformats are a well thought-out, and easy to implement way of adding greater depth to the information you publish online. They have some nice benefits right away – certainly at geek-level – but in the longer term they become much more significant. We’ve been at this long enough to know that the web has a long, long memory and that what you publish today will likely be around for years. But putting the extra depth of meaning into your documents now you can help guard that they’ll continue to be useful in the future, and not just a bunch of flat ASCII. 2005 Drew McLellan drewmclellan 2005-12-06T00:00:00+00:00 https://24ways.org/2005/practical-microformats-with-hcard/ code
9 How to Write a Book Were you recently inspired to write a book after reading Owen Gregory’s compendium of author insights? Maybe so inspired to strike out on your own and self-publish? Based on personal experience, writing a book is hard. It requires a great deal of research, experience, and patience. To be able to consolidate your thoughts and what you’ve learned into a sensible and readable tome is an admirable feat. To decide to self-publish and take on yourself all of the design, printing, distribution, and so much more is tantamount to insanity. Again, based on personal experience. So, why might you want to self-publish? If you’ve spent many a late night doing cross-browser testing just to know that your site works flawlessly in twenty-four different browsers — including Mosaic, of course — then maybe you’ll understand the fun that comes from doing it all. Working with a publisher, you’re left to focus on one core thing: writing. That’s a good thing. A good publisher has the right resources to help you get your idea polished and the distribution network to get your book on store shelves around the world. It’s a very proud moment to be able to walk into a book store and see your book sitting there on the shelf. Self-publishing can also be a wonderful process as you get to own it from beginning to end. Every decision is yours and if you’re a control freak like me, this can be a very rewarding experience. While there are many aspects to self-publishing, I’m going to speak to just one of them: creating an ebook. Formats In creating an ebook, you first need to decide what formats you wish to support. There are three main formats, each with their own pros and cons: PDF EPUB MOBI PDFs are supported on almost every device (Windows, Mac, Kindle, iPad, Android, etc.) and can even be a stepping stone to creating a print version of your book. PDFs allow for full typographic and design control, but at the cost of needing to fit things into a predefined page layout. Is it US Letter or A4? Or is it a format that isn’t easily printed by readers on their home printers? EPUB is a more fluid format that is supported by the Apple iPad, iPhone, and now on the desktop with OS X Mavericks. It’s also supported by Google Play for Android devices. While EPUB is supported on other devices, you’re likely to choose EPUB because you’re targeting your book at the Apple audience. The EPUB format is HTML-based with support for some CSS and even video and interactive elements. You can create very rich and exciting experiences using the EPUB format that just aren’t possible with PDF or MOBI. However, if you decide to support multiple file formats, you’ll likely find — as I did — that a consistent experience between all formats is easier to build and maintain, and therefore the extra benefits of interactivity go out the window. MOBI is a format originally developed for the Mobipocket Reader but more popularly supported by the Amazon Kindle. If you’re looking to attract the Kindle audience or publish to Amazon via the Kindle Direct Publishing platform then the HTML-based MOBI format is the format you’ll want to go with. Distribution will probably factor in heavily with what format you decide to go with. Many people I know who self-publish go with PDF only due to its ubiquity. If you want to garner a wider audience by distributing via Amazon or the iBookstore then you’ll need to think about supporting all three formats (as I did). What tools should I use? I spent a lot of time figuring out the right toolset and finally got something that suits me just right. In the past, when working with a publisher, I was given a Microsoft Word template that was passed back and forth between myself, the editor, and tech reviewer. This template has been the bane of any book writer that I’ve spoken to. Not every publisher is like that, though. Some publishers, like O’Reilly, use DocBook, an XML-based format that can be converted into PDF, EPUB, and MOBI. Publishers already have a style guide and whether it’s DocBook or a Word template, they have the tools already in place to easily convert your work into multiple formats. Self-publishing means that you’ll likely have to do a lot of tweaking to get things looking and working the way you want them to. I tried DocBook and the open source export tools didn’t create HTML to my liking. Fixing even the most mundane things required fiddling with XSL transformations for hours on end. Not the way I like to spend my time. I can only imagine the hoops I would’ve had to go through to get a PDF to look half-decent. Tools like Pages or Scrivener offer up the ability to publish to multiple formats, too, but none offered me the control over the output that I truly desired. Have a mentioned that I’m a control freak? I ended up writing my book using a technology that I already knew quite well: HTML. By writing in HTML, I already had something that I could post on my website, use for the EPUB and use for the MOBI format. All without having to change a thing. (That’s right: the same HTML that is used on SMACSS.com is used in the EPUB and is used in the MOBI.) What about PDF? I could open up the HTML in a web browser, choose Save as PDF and be done with it but let’s face it: the filename and date attached to every single page doesn’t exactly scream professional. Web browsers actually do a surprisingly poor job with supporting the CSS paged media spec. I had resorted to copying and pasting the content into Pages and saving as PDF from there. It wasn’t elegant but it worked. However, any changes to my HTML source required redoing those changes in Pages, as well. Then I met my Prince Charming: Prince XML. It’s pricey but it works incredibly well. It takes HTML and CSS (that very format I’ve been using for all of my other file formats) and will generate a PDF via a command line interface. Prince supports CSS paged media including headers, footers, page counts, and alternating page styles. From one format, HTML, I can now easily publish to PDF, MOBI, and EPUB, and even my website. I use the PDF version to send to the printer along with cover art to be bound and ready to ship around the world. It’s amazing how versatile HTML (and CSS) is. To learn more about writing books with HTML and CSS, I recommend reading Building Books with CSS3 over at A List Apart. Creating an EPUB Let’s take a step back. Prince gets us from HTML to PDF but how do we make an EPUB out of the HTML? An EPUB file is essentially a ZIP file with a renamed extension. There are some core files that you need to start with: Root META-INF container.xml mimetype content.opf toc.ncx After that, you can start adding your content to the project. Be sure to update the toc.ncx (Table of Contents) and content.opf (the ebook manifest) with any changes you make to your project. You can learn more about the file formats with the EPUB Format Construction Guide. Once all your files are in place, you’ll need to create the EPUB file by running two commands (on OS X, at least): zip -X0 your-ebook.epub mimetype zip -Xur9D your-ebook.epub * The mimetype needs to be the first file inside the ZIP file and therefore gets added first. Then, the rest of the files are added. I’ve added a function to my .bash_profile to make this even easier: function epub() { zip -q0X $@ mimetype; zip -qXr9D $@ * } Then, within the folder from which I want to create an ebook, I just run epub your-ebook.epub from the Terminal command line and the EPUB file should be ready to go. Creating the MOBI We have our EPUB and we have our PDF. The last step is the MOBI file. For this, I call upon Calibre. Calibre can be used as a reader and as a library but I use it exclusively to export my EPUB files to MOBI. Calibre includes a command line utility to convert from EPUB to MOBI. (To install the command line tools, go to Preferences > Advanced > Miscellaneous and click Install Command Line Tools.) ebook-convert your-ebook.epub your-ebook.mobi Spread the joy Now that you have all of your different file formats, you need to get them into the hands of people who want to (ho-ho-hopefully) buy your book! There are a number of marketplaces such as Amazon’s Kindle Direct Publishing, iBookstore, Google Play, and NOOK Press. Some publishers, like PragProg and O’Reilly will also add self-published books to their roster if they feel it’s a good fit for their audience. With any distribution, you’ll have to give up a percentage of your sales—from 30% to 70% of each sale, so consider your options wisely. Of course, you can always open your own online store and reap as much of the revenue as possible, assuming you can get the traffic to your site. Handling your own distribution allows you to create a deeper one-on-one connection with your customers, something that is impossible with other distribution channels since you don’t get customer information through other services—even though you are giving them a huge chunk of your sales! Go forth and prosper There’s a lot of thought and time that goes into writing a book and just as much thought and time can go into creating, publishing, and marketing your book once you’re done. In the end, self-publishing can be a very rewarding process and well worth the time that goes into it. 2013 Jonathan Snook jonathansnook 2013-12-19T00:00:00+00:00 https://24ways.org/2013/how-to-write-a-book/ content
19 In Their Own Write: Web Books and their Authors The currency of written communication — words on the page, words on the screen — comprises many denominations. To further our ends in web design and development, we freely spend and receive several: tweets aphoristic and trenchant, banal and perfunctory; blog posts and articles that call us to action or reflection; anecdotes, asides, comments, essays, guides, how-tos, manuals, musings, notes, opinions, stories, thoughts, tips pro and not-so-pro. So many, many words. Our industry (so much more than this, but what on earth are we, collectively?), our community thrives on writing and sharing knowledge and experience. 24 ways is a case in point. Everyone can learn and contribute through reading and writing — it’s what we’ve always done. To web authors and readers seeking greater returns, though, broader culture has vouchsafed an enduring and singular artefact: the book. Last month I asked a small sample of web book authors if they would be prepared to answer a few questions; most of them kindly agreed. In spirit, the survey was informal: I had neither hypothesis nor unground axe. I work closely with writers — and yes, I’ve edited or copy-edited books by several of the authors I surveyed — and wanted to share their thoughts about what it was like to write a book (“…it was challenging to find a coherent narrative”), why they did it (“Who wouldn’t want to?”) and what they learned from the experience (“That I could!”). Reasons for writing a book In web development the connection between authors and readers is unusually close and immediate. Working in our medium precipitates a unity that’s rare elsewhere. Yet writing and publishing a book, even during the current books revolution, is something only a few of us attempt and it remains daunting and a little remote. What spurs an author to try it? For some, it’s a deeply held resistance to prevailing trends: I felt that designers and developers needed to be shaken out of what seemed to me had been years of stagnation. —Andrew Clarke Or even a desire to protect us from ourselves: I felt that without a book that clearly defined progressive enhancement in a very approachable and succinct fashion, the web was at risk. I was seeing Tim Berners-Lee’s vision of universal availability slip away… —Aaron Gustafson Sometimes, there’s a knowledge gap to be filled by an author with the requisite excitement and need to communicate. Jon Hicks took his “pet subject” and was “enthused enough to want to spend all that time writing”, particularly because: …there was a gap in the market for it. No one had done it before, and it’s still on its own out there, with no competition. It felt like I was able to contribute something. Cennydd Bowles felt a professional itch at a particular point in his career, understanding that [a]s a designer becomes more senior, they start looking for ways to scale the effects of their work. For some, that leads into management. For others, into writing. Often, though, it’s also simply a personal challenge and ambition to explore a subject at length and create something substantial. Anna Debenham describes a motivation shared by several authors: To be able to point to something more tangible than an article and be able to say “I did that.” That sense of a book’s significance, its heft and gravity even, stems partly from the cultural esteem which honours books and their authors. Books have a long history as sources of wisdom, truth and power. Even with more books being published each year than ever before, writing one is still commonly considered a laudable achievement, including in our field. Challenges of writing a book Received wisdom has it that writing online should be brief and chunky and approachable: get to the point; divide it all up; subheadings and lists are our friends; write like you’re talking; no one has time to read. Much of such advice is true. Followed well, it lends our writing punch and pith, vigour and vim. The web is nimble, the web keeps up, and it suits what we write about developing for it. It’s perfect for delivering our observations, queries and investigations into all the various aspects of the work, professional and personal. Yet even for digital natives like web authors, books printed and electronic retain an attractive glister. Ideas can be developed more fully, their consequences explored to greater depth and extended with more varied examples, and the whole conveyed with more eloquence, more style. Why shouldn’t authors delay their conclusions if the intervening text is apposite, rich with value and helps to flesh out the skeleton of an argument? Conclusions might or might not be reached, of course, but a writer is at greater liberty in a book to digress in tangential and interesting ways. Writing a book involves committing time, energy, thought and money. As Brian Suda found, it can be tough “getting the ideas out of my head into a cohesive blob of text.” Some authors end up talking to themselves… It helps me to keep a real person in mind, someone who I’m talking to as I write. Sometimes I have the same conversations over and over in my head. —Andrew Clarke …while others are thinking ahead, concerned with how their book will be received: Would anyone want to read it? Would they care? Would it be respected by my peers? —Joe Leech Challenges that arose time and again included “starting” and “getting words on the page” as well as “knowing when to stop” or “letting go”. Personal organization problems and those caused by publishers were also widely mentioned. Time loomed large. Making time, finding time. Giving up “sleep and some sanity” and realizing “it will take you far, far, far longer than you naively assumed”. Importantly, writing time is time away from gainful employment: Aaron Gustafson found the hardest thing about writing a book to be “the loss of income while I was writing.” Perils and pleasures of editing Editing, be it structural, technical or copy editing, is founded on reciprocity. Without openness and a shared belief that the book is worthwhile, work can founder in acrimony and mistrust. Editors are a book’s first and most critical (in every sense) readers. Effective and perceptive editing makes a book as good as it can be, finding the book within the draft like sculpture reveals the statue in the stone. A good editor calls you out on poor assumptions and challenges you to really clarify your thinking. Whilst it can be difficult during the process to have your thinking challenged, it’s always been worth it — for me personally — in the long run. A good editor also reins you in when you’ve perhaps wandered off track or taken a little too long to make a point. —Christopher Murphy Andy Croll found editing “all positive” and Aaron Gustafson loves “working with a strong editor […] I want someone to tell it to me straight.” But it can be a rollercoaster, “both terrifying and the real moment of elation”. Mixed emotions during the editing process are common: It was very uncomfortable! I knew it was making the work stronger, but it was awkward having my inconsistencies and waffle picked apart. —Jon Hicks It can be distressing to have written work looked over by a professional, particularly for first-time book authors whose expertise lies elsewhere: I was a little nervous because I don’t consider myself a skilled writer — I never dreamed of becoming an author. I’m a designer, after all. —Geri Coady Communication is key, particularly when it comes to checking or changing the author’s words. I like a good banter between me and the tech editor — if we can have a proper argument in Word comments, that’s great. —Rachel Andrew But if handled poorly, small battles can break out. Rachel Andrew again: However, having had plenty of times where the technical editor has done nothing more than give a cursory glance, I started to leave little issues in for them to spot. If they picked them up I knew they were actually testing the code and I could be sure the work was being properly tech edited. If they didn’t spot them, I’d find someone myself to read through and check it! A major concern for writers is that their voices will be altered, filtered, mangled or otherwise obscured by the editing process. Good copy editing must remain unnoticed while enhancing the author’s voice in print. Donna Spencer appreciated the way her editor “tidied up my work and made it a million times better, but left it sounding exactly like me.” Similarly, Andrew Travers “was incredibly impressed at how well my editor tightened up my own writing without it feeling like another’s voice” and Val Head sums up the consensus that: the editor was able to help me express what I was trying to say in a better way […] I want to have editors for everything now. At the keyboard, keep your friends close, but your editors closer. Publishing and publishers Conditions ought to militate against the allure of writing a book about web design and development. More books are published each year than ever before, so readerships elude new authors and readers can struggle to find authors to trust in their fields of interest. New spaces for more expansive online writing about working on and with the web are opening up (sites like Contents Magazine and STET), and seminal online web development texts are emerging. Publishing online is simple, far-reaching and immediate. Much more so than articles and blog posts, books take time to research, write and read; add the complexity of commissioning, editing, designing, proofreading, printing, marketing and distribution processes, and it can take many months, even years to publish. The ceaseless headlong momentum of the web can leave articles more than a few weeks old whimpering in its wake, but updating them at least is straightforward; printed books about web development can depreciate as rapidly as the technology and techniques they describe, while retaining the “terrifying permanence that print bestows: your opinions will follow you forever”. So much moves on, and becomes out of date. Companies featured get bought by larger companies and die, techniques improve and solutions featured become terribly out of date. Unlike a website, which could be updated continuously, a book represents the thinking ‘at that time’. —Jon Hicks Publishers work hard to mitigate these issues, promoting new books and new authors, bringing authors and readers together under a trusted banner. When a publisher packages up and releases a writer’s words, it confers a seal of approval and “badge of quality”, very important to new authors. Publishers have other benefits to offer, from expert knowledge: My publisher was extraordinarily supportive (and patient). Her expertise in my chosen subject was both a pressure (I didn’t want to let her down) and a reassurance (if she liked it, I knew it was going to be fine). —Andrew Travers …to systems and support mechanisms set up specifically to encourage writers and publish books: Working as a team means you’re bringing in everyone’s expertise. —Chui Chui Tan As a writer, the best part about writing for a publisher was the writing infrastructure offered. —Christopher Murphy There can be drawbacks, however, and the occasional horror story: We were just one small package on a huge conveyor belt. The publisher’s process ruled all. —Cennydd Bowles It’s only looking back I realise how poorly some publishers treat writers — especially when the work is so poorly remunerated.My worst experience was when a publisher decided, after I had completed the book, that they wanted to push a different take on the subject than the brief I had been given. Instead of talking to me, they rewrote chunks of my words, turning my advice into something that I would never have encouraged. Ultimately, I refused to let the book go out under my name alone, and I also didn’t really promote the book as I would have had to point out the things I did not agree with that had been inserted! —Rachel Andrew Self-publishing is now a realistic option for web authors, and can offers “complete control over the end product” as well as the possibility of earning more than a “pathetic author revenue percentage”. There can be substantial barriers, of course, as self-publishing authors must face for themselves the risks and challenges conventional publishers usually bear. Ideally, creating a book is a collaboration between author and publisher. Geri Coady found that “working with my publisher felt more like working with a partner or co-worker, rather than working for a boss.” Wise words So, after meeting the personal costs of writing and publishing a web book — fear, uncertainty, doubt, typing (so much typing) — and then smelling the roses of success, what’s left for an author to say? Some words, perhaps, to people thinking of writing a book. Donna Spencer identifies a stumbling block common to many writers with an insight into the writing process: Having talked to a lot of potential authors, I think most have the problem that they haven’t actually figured out the ‘answer’ to their premise yet. They feel like they are stuck in the writing, but they are actually stuck in the thinking. For some no-nonsense, straightforward advice to cut through any anxiety or inadequacy, Rachel Andrew encourages authors to “treat it like any other work. There is no mystery to writing, you just have to write. Schedule the time, sit down, write words.” Tim Brown notes the importance of the editing process to refine a book and help authors reach their readers: Hire good editors. Editors are amazing thinkers who can vastly improve the quality and clarity of a piece of writing. We are too much beholden to the practical demands and challenges of technology, so Aaron Gustafson suggests a writer should “favor philosophies over techniques and your book will have a longer shelf life.” Most intimations of renown and recognition are nipped in the bud by Joe Leech’s warning: “Don’t expect fame and fortune.” Although Cennydd Bowles’ bitter experience can be discouraging: The sacrifices required are immense. You probably won’t make it. …he would do things differently for a future book: I would approach the book with […] far more concern about conveying the damn joy of what I do for a living. The pleasure of writing, not just having written is captured by James Chudley when he recalls: How much I enjoy writing and also how much I enjoy the discipline or having a side project like this. It’s a really good supplement to working life. And Jon Hicks has words that any author will find comforting: It will be fine. Everything will be fine. Just get on with it! As the web expands effortlessly and ceaselessly to make room for all our words, yet it can also discourage the accumulation of any particular theme in one space, dividing rich seams and scattering knowledge across the web’s surface and into its deepest reaches. How many words become weightless and insubstantial, signals lost in the constant white noise of indistinguishable voices, unloved, unlinked? The web forgets constantly, despite the (somewhat empty) promise of digital preservation: articles and data are sacrificed to expediency, profit and apathy; online attention, acknowledgement and interest wax and wane in days, hours even. Books can encourage deeper engagement in readers, and foster faith in an author, particularly if released under the imprint of a recognized publisher within the field. And books are changing. Although still not widely adopted, EPUB3 is the new standard in ebooks, bringing with it new possibilities for interaction and connection: readers with the text; readers with readers; and readers with authors. EPUB3 is built on HTML, CSS and JavaScript — sound familiar? In the past, we took what we could from the printed page to make the web; now books are rubbing up against what we’ve made. So: a book. Ever thought you could write one? Should write one? Would? I’d like to thank all the authors who wrote their books and answered my questions. Rachel Andrew · CSS3 Layout Modules, The CSS3 Anthology and more Cennydd Bowles · Undercover User Experience Design, with James Box Tim Brown · Combining Typefaces James Chudley · Usability of Web Photos Andrew Clarke · Hardboiled Web Design Geri Coady · Colour Accessibility Andy Croll · HTML Email Anna Debenham · Front-end Style Guides Aaron Gustafson · Adaptive Web Design Val Head · CSS Animations Jon Hicks · The Icon Handbook Joe Leech · Psychology for Designers Christopher Murphy · The Craft of Words, with Niklas Persson Donna Spencer · Information Architecture, Card Sorting and How to Write Great Copy for the Web Brian Suda · Designing with Data Chui Chui Tan · International User Research Andrew Travers · Interviewing for Research 2013 Owen Gregory owengregory 2013-12-15T00:00:00+00:00 https://24ways.org/2013/web-books/ content
24 Kill It With Fire! What To Do With Those Dreaded FAQs In the mid-1640s, a man named Matthew Hopkins attempted to rid England of the devil’s influence, primarily by demanding payment for the service of tying women to chairs and tossing them into lakes. Unsurprisingly, his methods garnered criticism. Hopkins defended himself in The Discovery of Witches in 1647, subtitled “Certaine Queries answered, which have been and are likely to be objected against MATTHEW HOPKINS, in his way of finding out Witches.” Each “querie” was written in the voice of an imagined detractor, and answered in the voice of an imagined defender (always referring to himself as “the discoverer,” or “him”): Quer. 14. All that the witch-finder doth is to fleece the country of their money, and therefore rides and goes to townes to have imployment, and promiseth them faire promises, and it may be doth nothing for it, and possesseth many men that they have so many wizzards and so many witches in their towne, and so hartens them on to entertaine him. Ans. You doe him a great deale of wrong in every of these particulars. Hopkins’ self-defense was an early modern English FAQ. Digital beginnings Question and answer formatting certainly isn’t new, and stretches back much further than witch-hunt days. But its most modern, most notorious, most reviled incarnation is the internet’s frequently asked questions page. FAQs began showing up on pre-internet mailing lists as a way for list members to answer and pre-empt newcomers’ repetitive questions: The presumption was that new users would download archived past messages through ftp. In practice, this rarely happened and the users tended to post questions to the mailing list instead of searching its archives. Repeating the “right” answers becomes tedious… When all the users of a system can hear all the other users, FAQs make a lot of sense: the conversation needs to be managed and manageable. FAQs were a stopgap for the technological limitations of the time. But the internet moved past mailing lists. Online information can be stored, searched, filtered, and muted; we choose and control our conversations. New users no longer rely on the established community to answer their questions for them. And yet, FAQs are still around. They’re a content anti-pattern, replicated from site to site to solve a problem we no longer have. What we hate when we hate FAQs As someone who creates and structures online content – always with the goal of making that content as useful as possible to people – FAQs drive me absolutely batty. Almost universally, FAQs represent the opposite of useful. A brief list of their sins: Double trouble Duplicated content is practically a given with FAQs. They’re written as though they’ll be accessed in a vacuum – but search results, navigation patterns, and curiosity ensure that users will seek answers throughout the site. Is our goal to split their focus? To make them uncertain of where to look? To divert them to an isolated microcosm of the website? Duplicated content means user confusion (to say nothing of the duplicated workload for maintaining content). Leaving the job unfinished Many FAQs fail before they’re even out of the gate, presenting a list of questions that’s incomplete (too short and careless to be helpful) or irrelevant (avoiding users’ real concerns in favor of soundbites). Alternately, if the right questions are there, the answers may be convoluted, jargon-heavy, or otherwise difficult to understand. Long lists of not-my-question Getting a single answer often means sifting through a haystack of questions. For each potential question, the user must read, comprehend, assess, move on, rinse, repeat. That’s a lot of legwork for little reward – and a lot of opportunity for mistakes. Users may miss their question, or they may fail to recognize a differently worded version of their question, or they may not notice when their sought-after answer appears somewhere they didn’t expect. The ventriloquist act FAQs shift the point of view. While websites speak on behalf of the organization (“our products,” “our services,” “you can call us for assistance,” etc.), FAQs speak as the user – “I can’t find my password” or “How do I sign up?” Both voices are written from the first-person perspective, but speak for different entities, which is disorienting: it breaks the tone and messaging across the website. It’s also presumptuous: why do you get to speak for the user? These all underscore FAQs’ fatal flaw: they are content without context, delivered without regard for the larger experience of the website. You can hear the absurdity in the name itself: if users are asking the same questions so frequently, then there is an obvious gulf between their needs and the site content. (And if not, then we have a labeling problem.) Instead of sending users to a jumble of maybe-it’s-here-maybe-it’s-not questions, the answers to FAQs should be found naturally throughout a website. They are not separated, not isolated, not other. They are the content. To present it otherwise is to create a runaround, and users know it. Jay Martel’s parody, “F.A.Q.s about F.A.Q.s” captures the silliness and frustration of such a system: Q: Why are you so rude? A: For that answer, you would have to consult an F.A.Q.s about F.A.Q.s about F.A.Q.s. But your time might be better served by simply abandoning your search for a magic answer and taking responsibility for your own profound ignorance. FAQs aren’t magic answers. They don’t resolve a content dilemma or even help users. Yet they keep cropping up, defiant, weedy, impossible to eradicate. Where are they all coming from? Blame it on this: writing is hard. When generating content, most of us do whatever it takes to get some words on the screen. And the format of question and answer makes it easy: a reactionary first stab at content development. After all, the point of website content is to answer users’ questions. So this – to give everyone credit – is a really good move. Content creators who think in terms of questions and answers are actually thinking of their users, particularly first-time users, trying to anticipate their needs and write towards them. It’s a good start. But it’s scaffolding: writing that helps you get to the writing you’re supposed to be doing. It supports you while you write your way to the heart of your content. And once you get there, you have to look back and take the scaffolding down. Leaving content in the Q&A format that helped you develop it is missing the point. You’re not there to build scaffolding. You have to see your content in its naked purpose and determine the best method for communicating that purpose – and it usually won’t be what got you there. The goal (to borrow a lesson from content management systems) is to separate the content from its presentation, to let the meaning of the content inform its display. This is, of course, a nice theory. An occasionally necessary evil I have a lot of clients who adore FAQs. They’ve developed their content over a long period of time. They’ve listened to the questions their users are asking. And they’ve answered them all on a page that I simply cannot get them to part with. Which means I’ve had to consider that there may be occasions where an FAQ page is appropriate. As an example: one of my clients is a financial office in a large institution. Because this office manages several third-party systems that serve a range of niche audiences, they had developed FAQs that addressed hyper-specific instances of dysfunction within systems for different users – à la “I’m a financial director and my employee submitted an expense report in such-and-such system and it returned such-and-such error. What do I do?” Yes, this content could be removed from the question format and rewritten. But I’m not sure it would be an improvement. It won’t necessarily resolve concerns about length and searchability, and the different audiences may complicate the delivery. And since the work of rewriting it didn’t fit into the client workflow (small team, no writers, pressed for time), I didn’t recommend the change. I’ve had to make peace with not being to torch all the FAQs on the internet. Some content, like troubleshooting information or complex procedures, may be better in that format. It may be the smartest way for a particular client to handle that particular information. Of course, this has to be determined on a case-by-case basis, taking into account the amount of content, the subject matter, the skill levels of the content creators, the publishing workflow, and the search habits of the users. If you determine that an FAQ page is the only way to go, ask yourself: Is there a better label or more specific term for the page (support, troubleshooting, product concerns, etc.)? Is there way to structure the page, categorize the questions, or otherwise make it easier for users to navigate quickly to the answer they need? Is a question and answer format absolutely the best way to communicate this information? Form follows function Just as a question and answer format isn’t necessarily required to deliver the content, neither is it an inappropriate method in and of itself. Content professionals have developed a knee-jerk reaction: It’s an FAQ page! Quick, burn it! Buuuuurn it! But there’s no inherent evil in questions and answers. Framing content in an interrogatory construct is no more a deal with the devil than subheads and paragraphs, or narrative arcs, or bullet points. Yes, FAQs are riddled with communication snafus. They deserve, more often than not, to be tied to a chair and thrown into a lake. But that wouldn’t fix our content problems. FAQs are a shiny and obvious target for our frustration, but they’re not unique in their flaws. In any format, in any display, in any kind of page, weak content can rear its ugly, poorly written head. It’s not the Q&A that’s to blame, it’s bad content. Content without context will always fail users. That’s the real witch in our midst. 2013 Lisa Maria Martin lisamariamartin 2013-12-08T00:00:00+00:00 https://24ways.org/2013/what-to-do-with-faqs/ content
43 Content Production Planning While everyone agrees that getting the content of a website right is vital to its success, unless you’re lucky enough to have an experienced editor or content strategist on board, planning content production often seems to fall through the cracks. One reason is that, for most of the team, it feels like someone else’s problem. Not necessarily a specific person’s problem. Just someone else’s. It’s only when everyone starts urgently asking when the content is going to be ready, that it becomes clear the answer is, “Not as soon as we’d like it”. The good news is that there are some quick and simple things you can do, even if you’re not the official content person on a project, to get everyone on the same content planning page. Content production planning boils down to answering three deceptively simple questions: What content do you need? How much of it do you need? Who’s going to make it? Even if it’s not your job to come up with the answers, by asking these questions early enough and agreeing who is going to come up with the answers, you’ll be a long way towards avoiding the last-minute content problems which so often plague projects. How much content do we need? People tend to underestimate two crucial things about content: how much content they need, and how long that content takes to produce. When I ask someone how big their website is – how many pages it contains – I usually double or triple the answer I get. That’s because almost everyone’s mental model of their website greatly underestimates its true size. You can see the problem for yourself if you look at a site map. Site maps are great at representing a mental model of a website. But because they’re a deliberate simplification they naturally lead us to underestimate how much content is involved in populating them. Several years ago I was asked to help a client create a new microsite (their word) which they wanted ready in two weeks for a conference they were attending. Here’s the site map they had in mind. At first glance it looks like a pretty small website. Maybe twenty to thirty pages? That’s what the client thought. But see those boxes which are multiple boxes stacked on top of one another, for product categories, descriptions and supporting material? They’re known as page stacks, and page stacks are the content strategy equivalent of Here Be Dragons. Say we have: five product categories each with five products which all have two or three supporting documents Those are still fairly small numbers. But small numbers multiplied by other small numbers tend to lead to big numbers. 5 categories = 5 category descriptions plus 5 categories × 5 products each = 25 product descriptions plus 25 products × 2.5 (average) supporting documents = 63 supporting documents equals 93 pages Suddenly our twenty- or thirty-page website is running towards one hundred. That’s probably enough to get most project teams to sit up and take notice. But there’s still the danger of underestimating how long it’s going to take to create the content. After all, assuming the supporting documents already exist in some form, there are only about twenty-five to thirty pages of new copy to write. How much work is it? Again, we have the problem that small numbers when multiplied by other small numbers tend to lead to big numbers. Let’s make a rough guess that it’ll take four hours to write each product category and description page we need. That feels a little conservative if we’re writing stuff from scratch, but assuming the person doing it already knows the products fairly well it’s not unreasonable. 30 pages × 4 hours each = 120 hours 120 hours ÷ 7.5 working hours a day = 16 days Ouch. At this point it’s pretty clear we’re not getting this site launched in two weeks. The goal is the conversation By breaking down the site into its content components, and putting some rough estimates on how long each might take to produce, the client instantly realised that there was no way they would be ready to launch it in two weeks. Although we still didn’t know exactly when it would be ready, getting to that realisation right at the start of the project was a major win for everybody. Without it, the design agency would have bust a gut to get the design, front-end and CMS all done in double-quick time, only to find it was all for nothing as barely half the content was ready. As it was, an early discussion about content, albeit a brief one, bought everyone time to tackle the project properly, without pulling any long nights or working weekends. If you haven’t been able to get people to discuss content plans for the project, these kinds of rough estimates should give you enough evidence to get everyone to start taking it seriously. Your goal is to get everyone on the project to a place where they are ready to talk in detail about who is going to create this content, and how long it’s really going to take them, and to get to those conversations before lack of content becomes a problem. Be careful though. It’s best to talk in ranges and round numbers when your estimates are this uncertain. And watch those multipliers. Given small numbers multiplied by other small numbers lead to big numbers, changing just one number can greatly change the overall estimate. I like to run a couple of different scenarios to check what things look like if I’ve under- or overestimated either how many pages we’re going to need, or how long they’re going to take to create. For example: Top end: 30 pages × 5 hours = 150 hours, or 20 days Bottom end: 25 pages × 4 hours = 100 hours, or 13.3 days So rather than say, “I estimate the content will take around sixteen days to produce”, I’m going to say, “I think the content will take about three to four weeks to produce”. Even with qualifiers like estimate and around, sixteen days sounds too precise. Whereas three to four weeks instantly conveys that this is just a rough figure. Who’s going to make it? So, people tend to underestimate two crucial things about content: how much content they need, and how long content takes to write. At this stage, you’re still in danger of the latter, because it’s tempting to simply estimate how much time content takes to write (or record, if we’re talking audio or visual content), and overlook all the other work that needs to goes on around it. Take 24 ways as an example. In terms of our three deceptively simple questions: what is practical articles about web design; how many is twenty-four, one for each day of Advent; and who are experts working on the web, one to write each article. But there’s another who you might not have considered. Someone needs to select those authors in the first place, make sure they deliver their articles on time (and find someone to replace them if they don’t), review drafts, copy-edit and proofread final versions, upload them to the site, promote them, keep an eye on the comments and make sure there are still presents under the tree on Christmas morning. Even if each of those tasks only takes an hour or so, it then needs multiplying by twenty-four (except the presents, obviously). And as we’ve already seen, small numbers multiplied by small numbers quickly turn into much bigger numbers. Just a few hours per article, when multiplied by twenty-four articles, easily multiplies up to days or even weeks of effort. To get a more accurate estimate of how long the different kinds of content are going to take, you need to break down the content production work into its constituent stages, starting with planning, moving on through the main work of creation, to reviewing, approvals and finally publishing. You need to think about who needs to be involved at each step, and how much time they’ll need to do their bit. Taken together, these things make up your content workflow. The workflow will be different for each organisation, but might look something like this: Eddie the web editor will work out the key messages and objectives for each page, and agree them with Mo the marketing director. Eddie will then get Cal, the copywriter, to write the first draft. As part of that, Cal will interview Sam the subject expert to understand the intricacies of the subject and get all the facts straight. Once Cal’s done the first draft, it’ll go to Sam to check for accuracy, while Eddie reviews it for style and message. Once Cal has incorporated their feedback it’s time to get Mo to have a look at the final draft. If Mo’s happy, it’ll get a final proofread, be uploaded to the CMS, and Mo will give the final sign-off and release it for publishing. You can plot this on a table, with the stages of the content production process down the side, and the key roles or personnel along with top. Then the team can estimate how much time they think each of them needs at each stage. Mo (marketing director) Sam (subject expert) Eddie (web editor) Cal (copywriter) Outline: define key messages and objectives 30 min Review outline 15 min First draft 30 min 3 hours Review 1st draft 30 min 30 min 2nd draft 1 hour Review 2nd draft 15 min 15 min 15 min Final amendments 30 min Proofread 15 min Upload 15 min Sign-off 10 min TOTAL 40 min 1 hour 15 min 1 hour 30 min 4 hours 45 min You can then bring out your calculator again, and come up with some more big scary numbers showing how much time it’s going to take for the whole team to get all the content needed not just written, but also planned, reviewed, approved and published. With an experienced team you can run this exercise as a group workshop and get some fairly accurate estimates pretty quickly. If this is all a bit new to you, check out Gather Content’s Content Production Planning for Agencies ebook for a useful guide to common content roles, ballpark estimates for how much time each one needs on a typical piece of content, and how to run a process and estimating workshop to dig into them in more detail. On a small team, one person might play many roles, but you should still sanity-check your estimates by breaking down the process and putting a rough estimate on each stage. With only a couple of people involved, it’s even easier to only include the core activity like writing or recording in your estimates, and forget to allow time for the planning, reviewing, proofreading, publishing and promoting you’ll still need to do. And even in a team of one, if at all possible you should find at least one other person to act as a second pair of eyes, and give anything you produce a quick once-over and proofread before it’s published. Depending on the kind of content you’re making, you should also consider what will happen after it’s published. The full content life cycle should include promotion, monitoring and regular reviews to make sure content stays accurate and up to date. Making sure you have the time and resources available to do all those things for each piece of content is essential for creating a sustainable content programme. The proof of the pudding Even after digging into workflow and getting the whole team involved in estimating, you’re still largely in the realm of the guesstimate. The good news, though, is that you can quite quickly start finding out if your guesstimates are right or not. As soon as you can, pilot the production process with some real content. This is a double-win: you start finding out how long it really takes to produce all this fab new content, and you get real content to work with in designs and prototypes. Once you’ve run a few things through your process, you’ll be able to refine your estimates, confirm your workflow, and give everyone involved a clear idea of when it will all be ready, and what you need from them. Keeping it all on track At this point I like to pull everything together into the content strategist’s favourite tool: the spreadsheet. A simple content production checklist is a bit like a content inventory or audit, but for the content you don’t yet have, not the stuff already done. You can grab an example here. Each piece of content gets its own row, with columns for basic information like page title, ID (which should match the site map), and who’s responsible for making it. You can capture simple details like target audience and key messages here too, though for more complex content, page description tables like those described by Relly Annett-Baker in “Extracting the Content” may be a better tool to use. Just adapt these columns to whatever makes sense for your content. I then have columns to track where each piece is in the production process. I usually keep this simple, with a column each to mark whether it’s draft, final or uploaded. The status column on the left automatically shows the item’s status, using a simple traffic light colour scheme for whether the item is still to do (red), in draft (amber), or done (green). Seeing the whole thing slowly turn from red to green is a nice motivator. If you want to track the workflow in more detail, a kanban board in a tool like Trello is a great way for a team to collaborate on content production, track each item’s progress, and keep an eye out for bottlenecks and delays. Getting to the content strategy conversation It’s a relatively simple exercise, then, to decide not just what kinds of pages you need, but also how many of them: put some rough estimates of effort on the tasks needed to create those pages – not just the writing, but all the other stages of planning, reviewing, approving, publishing and promoting – and then multiply all those things together. This will quickly bring some reality to grand visions and overambitious plans. Do it early enough, and even when the final big scary number is a lot bigger and scarier than everyone thought, you’ll still have time to do something about it. As well as getting everyone on board for some proper content planning activities, that big scary number is your opportunity to get to the real core questions of content strategy: do we really need all this content? Where can existing content be reused and repurposed? How do we prioritise our efforts? What really matters to our readers and users? Time and again, case studies show that less content delivers more: more leads, more sales, more self-service support and savings in the call centre. Although that argument is primarily one you should make from a good-for-the-users perspective, it doesn’t hurt to be able to make it from the cheaper-for-the-business perspective as well, and to have some big scary numbers to back that up. 2014 Sophie Dennis sophiedennis 2014-12-17T00:00:00+00:00 https://24ways.org/2014/content-production-planning/ content
57 Cooking Up Effective Technical Writing Merry Christmas! May your preparations for this festive season of gluttony be shaping up beautifully. By the time you read this I hope you will have ordered your turkey, eaten twice your weight in Roses/Quality Street (let’s not get into that argument), and your Christmas cake has been baked and is now quietly absorbing regular doses of alcohol. Some of you may be reading this and scoffing Of course! I’ve also made three batches of mince pies, a seasonal chutney and enough gingerbread men to feed the whole street! while others may be laughing Bake? Oh no, I can’t cook to save my life. For beginners, recipes are the step-by-step instructions that hand-hold us through the cooking process, but even as a seasoned expert you’re likely to refer to a recipe at some point. Recipes tell us what we need, what to do with it, in what order, and what the outcome will be. It’s the documentation behind our ideas, and allows us to take the blueprint for a tasty morsel and to share it with others so they can recreate it. In fact, this is a little like the open source documentation and tutorials that we put out there, similarly aiming to guide other developers through our creations. The ‘just’ification of documentation Lately it feels like we’re starting to consider the importance of our words, and the impact they can have on others. Brad Frost warned us of the dangers of “Just” when it comes to offering up solutions to queries: “Just use this software/platform/toolkit/methodology…” “Just” makes me feel like an idiot. “Just” presumes I come from a specific background, studied certain courses in university, am fluent in certain technologies, and have read all the right books, articles, and resources. “Just” is a dangerous word. “Just” by Brad Frost I can really empathise with these sentiments. My relationship with code started out as many good web tales do, with good old HTML, CSS and JavaScript. University years involved some time with Perl, PHP, Java and C. In my first job I worked primarily with ColdFusion, a bit of ActionScript, some classic  ASP and pinch of Java. I’d do a bit of PHP outside work every now and again. .NET came in, but we never really got on, and eventually I started learning some Ruby, Python and Node. It was a broad set of learnings, and I enjoyed the similarities and differences that came with new languages. I don’t develop day in, day out any more, and my interests and work have evolved over the years, away from full-time development and more into architecture and strategy. But I still make things, and I still enjoy learning. I have often found myself bemoaning the lack of tutorials or courses that cater for the middle level – someone who may be learning a new language, but who has enough programming experience under their belt to not need to revise the concepts of how loops or objects work, and is perfectly adept at googling the syntax for getting a substring. I don’t want snippets out of context; I want an understanding of architectural principles, of the strengths and weaknesses, of the type of applications that work well with the language. I’m caught in the place between snoozing off when ‘Using the Instagram API with Ruby’ hand-holds me through what REST is, and feeling like I’m stupid and need to go back to dev school when I can’t get my environment and dependencies set up, let alone work out how I’m meant to get any code to run. It’s seems I’m not alone with this – Erin McKean seems to have been here too: “Some tutorials (especially coding tutorials) like to begin things in media res. Great for a sense of dramatic action, bad for getting to “Step 1” without tears. It can be really discouraging to fire up a fresh terminal window only to be confronted by error message after error message because there were obligatory steps 0.1.0 through 0.9.9 that you didn’t even know about.” “Tips for Learning What You Don’t Know You Don’t Know” by Erin McKean I’m sure you’ve been here too. Many tutorials suffer badly from the fabled ‘how to draw an owl’-itis. It’s the kind of feeling you can easily get when sifting through recipes as well as with code. Far from being the simple instructions that let us just follow along, they too can be a minefield. Fall in too low and you may be skipping over an explanation of what simmering is, or set your sights too high and you may get stuck at the point where you’re trying to sous vide a steak using your bathtub and a Ziploc bag. Don’t be a turkey, use your loaf! My mum is a great cook in my eyes (aren’t all mums?). I love her handcrafted collection of gathered recipes from over the years, including the one below, which is a great example of how something may make complete sense to the writer, but could be impermeable to a reader. Depending on your level of baking knowledge, you may ask: What’s SR flour? What’s a tsp? Should I use salted or unsalted butter? Do I use sticks of cinnamon or ground? Why is chopped chocolate better? How do I cream things? How big should the balls be? How well is “well spaced”? How much leeway do I have for “(ish!!)”? Does the “20” on the other cookie note mean I’ll end up with twenty? At any point, making a wrong call could lead to rubbish cookies, and lead to someone heading down the path of an I can’t cook mentality. You may be able to cook (or follow recipes), but you may not understand the local terms for ingredients, may not be able to acquire something and need to know what kind of substitutes you can use, or may need to actually do some prep before you jump into the main bit. However, if we look at good examples of recipes, I think there’s a lot we can apply when it comes to technical writing on the web. I’ve written before about the benefit of breaking documentation into small, reusable parts, and this will help us, but we can also take it a bit further. Here are my five top tips for better technical writing. 1. Structure and standardise your information Think of the structure of a recipe. We very often have some common elements and they usually follow roughly the same format. We have standards and conventions that allow us to understand very quickly what a recipe is and how it should be used.  Great recipes help their chefs know what they need to get ready in advance, both in terms of buying ingredients and putting together their kit. They then talk through the process, using appropriate language, and without making assumptions that the person can fill in any gaps for themselves; they explain why things are done the way they are. The best recipes may also suggest how you can take what you’ve done and put your own spin on it. For instance, a good recipe for the simple act of boiling an egg will explain cooking time in relation to your preference for yolk gooiness. There are also different flavour combinations to try, accompaniments, or presentation suggestions.  By breaking down your technical writing into similar sections, you can help your audience understand the elements they’ll be working with, what they need to do once they have these, and how they can move on from your self-contained illustration. Title Ensure your title is suitably descriptive and representative of the result. Getting Started with Python perhaps isn’t as helpful as Learn Python: General Syntax and Basics. Result Many recipes include a couple of lines as an overview of what you’ll end up with, and many include a photo of the finished dish. With our technical writing we can do the same: In this tutorial we’re going to learn how to set up our development environment, and we’ll then undertake some exercises to explore the general syntax, finishing by building a mini calculator. Ingredients What are the components we’ll be working with, whether in terms of versions, environment, languages or the software packages and libraries you’ll need along the way? Listing these up front gives the reader a great summary of the things they’ll be using, and any gotchas. Being able to provide a small amount of supporting information will also help less experienced users. Ideally, explain briefly what things are and why we’re using it. Prep As we heard from Erin above, not fully understanding the prep needed can be a huge source of frustration. Attempting to run a code snippet without context will often lead to failure when the prerequisites and process aren’t clear. Be sure to include information around any environment set-up, installation or config you’ll need to have done before you start. Stu Robson’s Simple Sass documentation aims to do this before getting into specifics, although ideally this would also include setting up Sass itself. Instructions The body of the tutorial itself is the whole point of our writing. The next four tips will hopefully make your tutorial much more successful. Variations Like our ingredients section, as important as explaining why we’re using something in this context is, it’s also great to explain alternatives that could be used instead, and the impact of doing so. Perhaps go a step further, explaining ways that people can change what you have done in your tutorial/readme for use in different situations, or to provide further reading around next steps. What happens if they want to change your static array of demo data to use JSON, for instance? By giving some thought to follow-up questions, you can better support your readers. While not in a separate section, the source code for GreenSock’s GSAP JS basics explains: We’ll use a window.onload for simplicity, but typically it is best to use either jQuery’s $(document).ready() or $(window).load() or cross-browser event listeners so that you’re not limited to one. Keep in mind to both: Explain what variations are possible. Explain why certain options may be more desirable than others in different situations. 2. Small, reusable components Reusable components are for life, not just for Christmas, and they’re certainly not just for development. If you start to apply the structure above to your writing, you’re probably going to keep coming across the same elements: Do I really have to explain how to install Sass and Node.js again, Sally? The danger with more clarity is that our writing becomes bloated and overly convoluted for advanced readers, those who don’t need to be told how to beat an egg for the hundredth time.  Instead, by making our writing reusable and modular, and by creating smaller, central resources, we can provide context and extra detail where needed without diluting our core message. These could be references we create, or those already created well by others. This recipe for katsudon makes use of this concept. Rather than explaining how to make tonkatsu or dashi stock, these each have their own page. Once familiar, more advanced readers will likely skip over the instructions for the component parts. 3. Provide context to aid accessibility Here I’m talking about accessibility in the broadest sense. Small, isolated snippets can be frustrating to those who don’t fully understand the wider context of how our examples work. Showing an exciting standalone JavaScript function is great, but giving someone the full picture of how and when this is called, and how it should be included in relation to other HTML and CSS is even better. Giving your readers the ability to view a big picture version, and ideally the ability to download a full version of the source, will help to reduce some of the frustrations of trying to get your component to work in their set-up.  4. Be your own tech editor A good editor can be invaluable to your work, and wherever possible I’d recommend that you try to get a neutral party to read over your writing. This may not always be possible, though, and you may need to rely on yourself to cast a critical eye over your work. There are many tips out there around general editing, including printing out your work onto paper, or changing the font size: both will force your eyes to review it in a new light. Beyond this, I’d like to encourage you to think about the following: Explain what things are. For example, instead of referencing Grunt, in the first instance perhaps reference “Grunt (a JavaScript task runner that minimises repetitive activities through automation).” Explain how you get things, even if this is a link to official installers and documentation. Don’t leave your readers having to search. Why are you using this approach/technology over other options? What happens if I use something else? What depends on this? Avoid exclusionary lingo or acronyms. Airbnb’s JavaScript Style Guide includes useful pointers around their reasoning: Use computed property names when creating objects with dynamic property names. Why? They allow you to define all the properties of an object in one place. The language we use often makes assumptions, as we saw with “just”. An article titled “ES6 for Beginners” is hugely ambiguous: is this truly for beginner coders, or actually for people who have a good pre-existing understanding of JavaScript but are new to these features? Review your writing with different types of readers in mind. How might you confuse or mislead them? How can you better answer their questions? This doesn’t necessarily mean supporting everyone – your audience may need to have advanced skills – but even if you’re providing low-level, deep-dive, reference material, trying not to make assumptions or take shortcuts will hopefully lead to better, clearer writing. 5. A picture is worth a thousand words… …or even better: use a thousand pictures, stitched together into a quick video or animated GIF. People learn in different ways. Just as recipes often provide visual references or a video to work along with, providing your technical information with alternative demonstrations can really help get your point across. Your audience will be able to see exactly what you’re doing, what they should expect as interaction responses, and what the process looks like at different points. There are many, many options for recording your screen, including QuickTime Player on Mac OS X (File → New Screen Recording), GifGrabber, or Giffing Tool on Windows. Paul Swain, a UX designer, uses GIFs to provide additional context within his documentation, improving communication: “My colleagues (from across the organisation) love animated GIFs. Any time an interaction is referenced, it’s accompanied by a GIF and a shared understanding of what’s being designed. The humble GIF is worth so much more than a thousand words; and it’s great for cats.” Paul Swain Next time you’re cooking up some instructions for readers, think back to what we can learn from recipes to help make your writing as accessible as possible. Use structure, provide reusable bitesize morsels, give some context, edit wisely, and don’t scrimp on the GIFs. And above all, have a great Christmas! 2015 Sally Jenkinson sallyjenkinson 2015-12-18T00:00:00+00:00 https://24ways.org/2015/cooking-up-effective-technical-writing/ content
87 Content Planning Demystified The first thing you learn as a junior editor is that you can’t do everything yourself. You must rely on someone else to do at least part of what must be done: the long-range planning, the initial drafting or shooting or recording, the editing, the production, the final polish. All of those pieces of work that belong to someone else take quite a lot of time — days, weeks, sometimes months. If you’re the sort of person who wrote college term papers the night before they were due, this can come as a bit of a shock. To my twenty-two-year-old self, it certainly did. It turns out that the only real way to avoid a trainwreck with editorial work is to get ahead of the trouble, line everything up carefully, and leave oodles of room for all the pieces to connect on time. The same is true of content strategy, content planning, and just about everything to do with content on the web, except for the writing itself — and that, too, usually takes far longer than anyone expects. If you’re not a professional editor and you suddenly find yourself dealing with content creation, you’re almost certainly going to underestimate the time and effort involved, or to skip something important in the planning process that pops up to bite you later. Without good content, it doesn’t matter how well designed or coded your web project is, because it won’t be doing the thing it’s meant to do. And even if content is far from your specialty, you may well end up being the only one willing to coordinate it far enough in advance to avoid a chaotic ending. Whether you’re hiring writers and editors for a big project, working with a small client, or coaxing some editorial help out of a co-worker, getting the planning work done correctly — and ahead of time — will allow you to orchestrate a glorious ballet of togetherness, instead of feverishly scraping together something to put on your site when the deadline looms. So get out the graph paper and the pocket protector, because we’re going to go Full Nerd on this problem. Know your poison Anyone who’s seen a project delayed for six months by content trouble, or derailed by content that’s bland and unhelpful, knows this stuff can make you feel like a dead sock. To get ahead of the problem, you’re going to have to learn to spot common problems and plan your way around them. On web projects without a dedicated editorial lead, you’re likely to encounter content that is: Useless – Content that doesn’t serve your readers’ needs in some way is pointless. And because it takes up your time and crowds out genuinely helpful things, it’s actually damaging. The logic is simple: you can make content that’s all about you, and that serves your stated messaging goals, but if no one is motivated to read it, it’s a waste of everyone’s time. Badly written – When you publish articles or instructions or other content that is too stiffly formal, overly wordy, hard to understand, offensive, unintentionally cheesy, or otherwise off in tone or style, you’re doing two things. First, you’re weakening the information you’re trying to convey by making it obscure or annoying. Second — and this one is even more damaging — you’re demonstrating bad taste. When you get the cultural elements of publishing wrong, you encourage your readers to believe that you either don’t understand them or don’t care about getting it wrong. Gooey – Content strategists have been talking about structured content (that’s chunks versus blobs) for years. If you’re publishing more than a few dozen pages without thinking through the structure of your content, you’re probably missing a chance to improve your long-term efficiency. If you’re publishing more than a couple of thousand pages without taking care of your content structure, you’re probably doing a lot more manual wrangling (or cumbersome CMS work) than you need to be, especially when it comes to cross-platform publishing. Unregulated – If you’re not tracking what works and what doesn’t — and especially if you don’t know what “works” means for your project or organization — you’re almost certainly getting worse results than you should be, for more work. Overabundant – As demonstrated by the cinnamon challenge, too much of a delicious thing can be a giant and publicly embarrassing disaster. For most projects and organizations, if you’re making more stuff than your readers can handle, or if you’re spreading your creative and editorial resources too thinly, that’s bad. Spammers, content farms, and barrel-bottom tabloids have their own special math, the side effects of which include insomnia, irritability, and crying in traffic while silently mouthing Wilson Phillips lyrics. Prevent all preventable damage Once you know what kind of trouble to look for, you can prevent a lot of it by doing some smart planning well before someone starts writing (or recording or shooting video). To prevent uselessness: Know your readers and decide what you’re trying to accomplish — with your website as a whole, and with each piece of content, always. Once you know what you’re trying to achieve, you can evaluate your work as you go to make sure that it’s actually doing the right thing. (I’ve written a lot more about this for A List Apart and in The Elements of Content Strategy.) To prevent bad writing: Establish a consistent and appropriate style using examples (and a style guide if you need one), designate an editor, hire good writers, and make time for quality control. Kate Kiefer’s style guide for MailChimp is a superb example of style-wrangling that everyone can use. To prevent repulsive goo: Give your content as much structure as possible, and know how structure relates to your entire publishing ecosystem, including all those mobile devices. Sara Wachter-Boettcher’s Content Everywhere and Karen McGrane’s Content Strategy for Mobile offer brilliant yet friendly introductions to the wide world of structured content. To prevent unregulated chaos: Measure everything that matters to your project, your client, your organization, and especially your readers — not generic measures of someone else’s success. Measure it all regularly. Be disciplined. Adjust at regular intervals. Rick Allen’s series on content strategy analytics is an excellent place to begin (part one; part two). To prevent overabundance: Stop trying to do everything and focus on giving your readers just a few things they want and genuinely need. Don’t establish a schedule your writers might not be able to keep, and focus on differentiating yourself with quality, not quantity. (And while you’re at it, scratch the auto-posting to social networks and the cross-posting between them. It’s about as engaging as an automated phone system.) At a slightly higher level, pick the right content person (or team) for the work. If you really only need a few pages of copy, find a smart writer who does good work for multi-platform readers. If you’re slinging tens of thousands of pages of content, get someone with field experience in high-level editorial planning and the ability to turn blobs into chunks and melted goo into Legos. If you’re starting a project that involves making a lot of content over time, bring in someone with journalism experience (or get your client to do so). “But wait!” you may say. “I’m not hiring anyone. I have to do this all myself.” That’s not uncommon at all. The bad news is, you have to learn a bunch of stuff. The good news is, you get to learn a bunch of awesome stuff. Figure out what the project needs, just as though you were going to hire someone, and then give yourself time to get up to speed. If it’s a really complicated project, you’re probably going to have trouble unless you eventually get professional help. But if it’s small and you can do it in steps, you can certainly do much better by giving yourself a plan and working on the things that matter most. Plan for the marathon, not the sprint Launching with awesome content is a tiny fraction of a victory, which is why it’s so important that your content not be gooey or unregulated. It also means that if you don’t plan for a realistic publication schedule, you are going to slam into reality in a really unpleasant way not too long after you’ve begun. If you’re asking people to make words (or videos or whatever) for you, they’re going to have to do less of something else, so plan for that beforehand. And while you’re at it, unless publishing is your core business, ditch the feed-the-beast plan that leads to fluffy blog posts and spiritless, unhelpful social media content. It’s antisocial for your reading community, offers short-term gains at best, and will burn you out or lower your standards until you don’t even know you’re doing lousy work. Good content is expensive, no matter how you do it, but spreading yourself too thin is a much worse investment than doing a smaller thing well and gradually building up a body of superb content that people want to share and keep and return to. 2012 Erin Kissane erinkissane 2012-12-20T00:00:00+00:00 https://24ways.org/2012/content-planning-demystified/ content
172 The Construction of Instruction If the world were made to my specifications, all your clients would be happy to pay for a web writer to craft every sentence into something as elegant as it was functional, and the client would have planned the content so that you had it just when you asked, but we both know that won’t happen every time. Sometimes you just know they are going to write the About page, two company blog pages and a Facebook fan page before resigning their position as chief content writer and you are going to end up filling in all the details that will otherwise just be Lorem Ipsum. Welcome to the big world of microcopy: A man walks into a bar. The bartender nods a greeting and watches as the man scans the bottles behind the bar. “Er, you have a lot of gin here. Is there one you would recommend?” “Yes sir.” Long pause. “… Never mind, I’ll have the one in the green bottle.” “Certainly, sir. But you can’t buy it from this part of the bar. You need to go through the double doors there.” “But they look like they lead into the kitchen.” “Really, sir? Well, no, that’s where we allow customers to purchase gin.” The man walks through the doors. On the other side he is greeted by the same bartender. “Y-you!” he stammers but the reticent bartender is now all but silent. Unnerved, the man points to a green bottle, “Er, I’d like to buy a shot of that please. With ice and tonic water.” The bartender mixes the drink and puts it on the bar just out of the reach of the man and looks up. “Um, do you take cards?” the man asks, ready to present his credit card. The bartender goes to take the card to put it through the machine. “Wait! How much was it – with sales tax and everything? Do you take a gratuity?” The bartender simply shrugs. The man eyes him for a moment and decides to try his luck at the bar next door. In the Choose Your Own Adventure version of this story there are plenty of ways to stop the man giving up. You could let him buy the gin right where he was; you could make the price more obvious; you could signpost the place to buy gin. The mistakes made by the bar and bartender are painfully obvious. And yet, there are websites losing users everyday due to the same lack of clear instruction. A smidgen of well written copy goes a long way to reassure the nervous prospect. Just imagine if our man walked into the bar and the bartender explained that although the bar was here, sales were conducted in the next room because people were not then able to overhear the man’s card details. Instead, he is left to fend for himself. Online, we kick customers through the anonymous double doors with a merry ‘Paypal will handle your transaction!’. Recently I worked on a site where the default error message, to account for anything happening that the developers hadn’t accounted for, was ‘SOMETHING HAS GONE WRONG!’. It might have been technically accurate but this is not how to inspire confidence in your customers that they can make a successful purchase through you. As everyone knows they can shop just fine, thank you very much, it is your site they will blame. Card declined? It’s the site. Didn’t know my email address has changed? It’s the site. Can’t log in? It’s the site. Yes, yes. I know. None of these things are related to your site, or you the developer, but drop outs will be high and you’ll get imploring emails from your client asking you to wade knee deep into the site analytics to find a solution by testing 41 shades of blue because if it worked for Google…? Before you try a visual fix involving the Dulux paint chart breeding with a Pantone swatch, take an objective look at the information you are giving customers. How much are you assuming they know? How much are you relying on age-old labels and prompts without clarification? Here’s a fun example for non-North Americans: ask your Granny to write out her billing address. If she looks at you blankly, tell her it is the address where the bank sends her statements. Imagine how many fewer instances of the wrong address there would be if we routinely added that information when people purchased from the UK? Instead, we rely on a language convention that hasn’t much common usage without explanation because, well, because we always have since the banks told us how we could take payments online. So. Your client is busying themselves with writing the ultimate Facebook fan page about themselves and here you are left with creating a cohesive signup process or basket or purchase instructions. Here are five simple rules for bending puny humans to your will creating instructive instructions and constructive error messages that ultimately mean less hassle for you. Plan what you want to say and plan it out as early as possible This goes for all content. Walk a virtual mile in the shoes of your users. What specific help can you offer customers to actively encourage continuation and ensure a minimal amount of dropouts? Make space for that information. One of the most common web content mistakes is jamming too much into a space that has been defined by physical boundaries rather than planned out. If you manage it, the best you can hope for is that no-one notices it was a last-minute job. Mostly it reads like a bad game of Tetris with content sticking out all over the place. Use your words Microcopy often says a lot in a few words but without those words you could leave room for doubt. When doubt creeps in a customer wants reassurance just like Alice: This time (Alice) found a little bottle… with the words ‘DRINK ME’ beautifully printed on it in large letters. It was all very well to say ‘Drink me,’ but the wise little Alice was not going to do that in a hurry. ‘No, I’ll look first,’ she said, ‘and see whether it’s marked “poison” or not’ Alice in Wonderland, Lewis Carroll. Value clarity over brevity. Or a little more prosaically, “If in doubt, spell it out.” Thanks, Jeremy! Be prepared to help ‘Login failed: email/password combination is incorrect.’ Oh. ‘Login failed: email/password combination is incorrect. Are you typing in all capitals? Caps Lock may be on. Have you changed your email address recently and not updated your account with us? Try your old email address first. Can’t remember your password? We can help you reset it.’ Ah! Be direct and be informative There is rarely a site that doesn’t suffer from some degree of jargon. Squash it early by setting a few guidelines about what language and tone of voice you will use to converse with your users. Be consistent. Equally, try to be as specific as possible when giving error messages or instructions and allay fears upfront. Card payments are handled by paypal but you do not need a paypal account to pay. We will not display your email address but we might need it to contact you. Sign up for our free trial (no credit card required). Combine copy and visual cues, learn from others and test new combinations While visual design and copy can work independently, they work best together. New phrases and designs are being tested all the time so take a peek at abtests.com for more ideas, then test some new ideas and add your own results. Have a look at the microcopy pool on Flickr for some wonderful examples of little words and pictures working together. And yes, you absolutely should join the group and post more examples. A man walks into a bar. The bartender greets him in a friendly manner and asks him what he would like to drink. “Gin and Tonic, please.” “Yes sir, we have our house gin on offer but we also have a particularly good import here too.” “The import, please.” “How would you like it? With a slice of lemon? Over ice?” “Both” “That’s £3.80. We accept cash, cards or you could open a tab.” “Card please.” “Certainly sir. Move just over here so that you can’t be observed. Now, please enter your pin number.” “Thank you.” “And here is your drink. Do let me know if there is a problem with it. I shall just be here at the bar. Enjoy.” Cheers! 2009 Relly Annett-Baker rellyannettbaker 2009-12-08T00:00:00+00:00 https://24ways.org/2009/the-construction-of-instruction/ content
198 Is Your Website Accidentally Sexist? Women make up 51% of the world’s population. More importantly, women make 85% of all purchasing decisions about consumer goods, 75% of the decisions about buying new homes, and 81% of decisions about groceries. The chances are, you want your website to be as attractive to women as it is to men. But we are all steeped in a male-dominated culture that subtly influences the design and content decisions we make, and some of those decisions can result in a website that isn’t as welcoming to women as it could be. Typography tells a story Studies show that we make consistent judgements about whether a typeface is masculine or feminine: Masculine typography has a square or geometric form with hard corners and edges, and is emphatically either blunt or spiky. Serif fonts are also considered masculine, as is bold type and capitals. Feminine typography favours slim lines, curling or flowing shapes with a lot of ornamentation and embellishment, and slanted letters. Sans-serif, cursive and script fonts are seen as feminine, as are lower case letters. The effect can be so subtle that even choosing between bold and regular styles within a single font family can be enough to indicate masculinity or femininity. If you want to appeal to both men and women, search for fonts that are gender neutral, or at least not too masculine. When you’re choosing groups of fonts that need to work harmoniously together, consider which fonts you are prioritising in your design. Is the biggest word on the page in a masculine or feminine font? What about the smallest words? Is there an imbalance between the prominence of masculine and feminine fonts, and what does this imply? Typography is a language in and of itself, so be careful what you say with it. Colour me unsurprised Colour also has an obvious gender bias. We associate pinks and purples, especially in combination, with girls and women, and a soft pink has become especially strongly related to breast cancer awareness campaigns. On the other hand, pale blue is strongly associated with boys and men, despite the fact that pastels are usually thought of as more feminine. These associations are getting stronger and stronger as more and more marketers use them to define products as “for girls” and “for boys”, setting expectations from an incredibly young age — children as young as four understand gender stereotypes. It should be obvious that using these highly gender-associated colours sends an incredibly strong message to your visitors about who you think your target audience is. If you want to appeal to both men and women, then avoid pinks and pale blues. But men and women also have different colour preferences. Men tend to prefer intense primary colours and deeper colours (shades), and tolerate greys better, whilst women prefer pastels (tints). When choosing colours, consider not just the hue itself, but also tint, tone and shade. Slightly counterintuitively, everyone likes blue, but no one seems to particularly like brown or orange. A picture is worth a thousand words, or none Stock photos are the quickest and easiest way to add a little humanity to your website, directly illustrating the kind of people you believe are in your audience. But the wrong photo can put a woman off before she’s even read your text. A website about a retirement home will, for example, obviously include photos of older people, and a baby clothes retailer will obviously show photos of babies. But, in the latter case, should they also show only photographs of mothers with their children, or should they include fathers too? It’s true that women take on the majority of childcare responsibilities, but that’s a cultural holdover from a previous era, rather than some rule of law. We are seeing increasing number of stay at home dads as well as single dads, so showing only photographs of women both enforces the stereotype that only women can care, as well as marginalising male carers. Equally, featuring prominent photographs of women on sites about male-dominated topics such as science, technology or engineering help women feel welcomed and appreciated in those fields. Photos really do speak volumes, so make sure that you also represent other marginalised groups, especially ethnic groups. If people do not see themselves represented on your site, they are not going to engage with it as much as they might. Another form of picture that we often ignore is the icon. When you do use icons, make sure that they are gender neutral. For example, avoid using a icon of a man to denote engineers, or of a woman to denote nurses. Avoid overly masculine or feminine metaphors, such as a hammer to denote DIY or a flower to denote gardens. Not only are these gendered, they’re also trite and unappealing, so come up with more exciting and novel metaphors. Use gender-neutral language Last, but not least, be very careful in your use of gender in language. Pronouns are an obvious pitfall. A lot of web content is written in the second person, using the cleary gender neutral ‘you’, but if you have to write in the third person, which uses ‘she’, ‘he’, ‘it’, and ‘they’, then be very careful which pronouns you use. The singular ‘they’ is becoming more widely acceptable, and is a useful gender-neutral option. If you must use generic ‘he’ and ‘she’, (as opposed to talking about a specific person), then vary the order that they come in, so don’t always put the male pronoun first. When you are talking about people, make sure that you use the same level of formality for both men and women. The tendency is to refer to men by their surname and women by their first name so, for example, when people are talking about Ada Lovelace and Charles Babbage, they often talk about “Ada and Babbage”, rather than “Lovelace and Babbage” or “Ada and Charles”. As a rule, it’s best to use people’s surnames in formal and semi-formal writing, and their first names only in very informal writing. It’s also very important to make sure that you respect people’s honorifics, especially academic titles such as Dr or Professor, and that you use titles consistently. Studies show that women and people of colour are the most likely to have their honorifics dropped, which is not only disrespectful, it gives readers the idea that women and people of colour are less qualified than white men. If you mention job titles, avoid old-fashioned gendered titles such as ‘chairman’, and instead look for a neutral version, like ‘chair’ or ‘chairperson’. Where neutral terms have strong gender associations, such as nurse or engineer, take special care that the surrounding text, especially pronouns, is diverse and/or neutral. Do not assume engineers are male and nurses female. More subtle intimations of gender can be found in the descriptors people use. Military metaphors and phrases, out-sized claims, competitive words, and superlatives are masculine, such as ‘ground-breaking’, ‘best’, ‘genius’, ‘world-beating’, or ‘killer’. Excessive unnecessary factual detail is also very masculine. Women tend to relate to more cooperative, non-competitive, future-focused, and warmer language, paired with more general information. Women’s language includes word like ’global’, ‘responsive’, ‘support’, ‘include’, ‘engage’ and ‘imagine’. Focus more on the kind of relationship you can build with your customers, how you can help make their lives easier, and less on your company or product’s status. Smash the patriarchy, one assumption at a time We’re all brought up in a cultural stew that prioritises men’s needs, feelings and assumptions over women’s. This is the patriarchy, and it’s been around for thousands of years. But given women’s purchasing power, adhering to the patriarchy’s norms is unlikely to be good for your business. If you want to tap into the female market, pay attention to the details of your design and content, and make sure that you’re not inadvertently putting women off. A gender neutral website that designs away gender stereotypes will attract both men and women, expanding your market and helping your business flourish. 2017 Suw Charman-Anderson suwcharmananderson 2017-12-20T00:00:00+00:00 https://24ways.org/2017/is-your-website-accidentally-sexist/ content
227 A Contentmas Epiphany The twelve days of Christmas fall between 25 December, Christmas Day, and 6 January, the Epiphany of the Kings. Traditionally, these have been holidays and a lot of us still take a good proportion of these days off. Equally, a lot of us have a got a personal site kicking around somewhere that we sigh over and think, “One day I’ll sort you out!” Why not take this downtime to give it a big ol’ refresh? I know, good idea, huh? HEY WAIT! WOAH! NO-ONE’S TOUCHING PHOTOSHOP OR DOING ANY CSS FANCYWORK UNTIL I’M DONE WITH YOU! Be honest, did you immediately think of a sketch or mockup you have tucked away? Or some clever little piece of code you want to fiddle with? Now ask yourself, why would you start designing the container if you haven’t worked out what you need to put inside? Anyway, forget the content strategy lecture; I haven’t given you your gifts yet. I present The Twelve Days of Contentmas! This is a simple little plan to make sure that your personal site, blog or portfolio is not just looking good at the end of these twelve days, but is also a really useful repository of really useful content. WARNING KLAXON: There are twelve parts, one for each day of Christmas, so this is a lengthy article. I’m not expecting anyone to absorb this in one go. Add to Instapaper. There is no TL;DR for this because it’s a multipart process, m’kay? Even so, this plan of mine cuts corners on a proper applied strategy for content. You might find some aspects take longer than the arbitrary day I’ve assigned. And if you apply this to your company-wide intranet, I won’t be held responsible for the mess. That said, I encourage you to play along and sample some of the practical aspects of organising existing content and planning new content because it is, honestly, an inspiring and liberating process. For one thing, you get to review all the stuff you have put out for the world to look at and see what you could do next. This always leaves me full of ideas on how to plug the gaps I’ve found, so I hope you are similarly motivated come day twelve. Let’s get to it then, shall we? On the first day of Contentmas, Relly gave to me: 1. A (partial) content inventory I’m afraid being a site owner isn’t without its chores. With great power comes great responsibility and all that. There are the domain renewing, hosting helpline calls and, of course, keeping on top of all the content that you have published. If you just frowned a little and thought, “Well, there’s articles and images and… stuff”, then I’d like to introduce you to the idea of a content inventory. A content inventory is a list of all your content, in a simple spreadsheet, that allows you to see at a glance what is currently on your site: articles; about me page; contact form, and so on. You add the full URL so that you can click directly to any page listed. You add a brief description of what it is and what tags it has. In fact, I’ll show you. I’ve made a Google Docs template for you. Sorry, it isn’t wrapped. Does it seem like a mammoth task? Don’t feel you have to do this all in one day. But do do it. For one thing, looking back at all the stuff you’ve pushed out into the world gives you a warm fuzzy feeling which keeps the heating bill down. Grab a glass of mulled cider and try going month-by-month through your blog archives, or project-by-project through your portfolio. Do a little bit each day for the next twelve days and you’ll have done something awesome. The best bit is that this exploration of your current content helps you with the next day’s task. Bonus gift: for more on content auditing and inventory, check out Jeff Veen’s article on just this topic, which is also suitable for bigger business sites too. On the second day of Contentmas, Relly gave to me: 2. Website loves Remember when you were a kid, you’d write to Santa with a wish list that would make your parents squirm, because your biggest hope for your stocking would be either impossible or impossibly expensive. Do you ever get the same thing now as a grown-up where you think, “Wouldn’t it be great if I could make a video blog every week”, or “I could podcast once a month about this”, and then you push it to the back of your mind, assuming that you won’t have time or you wouldn’t know what to talk about anyway? True fact: content doesn’t just have to be produced when we are so incensed that we absolutely must blog about a topic. Neither does it have to be a drain to a demanding schedule. You can plan for it. In fact, you’re about to. So, today, get a pen and a notebook. Move away from your computer. My gift to you is to grab a quiet ten minutes between turkey sandwiches and relatives visiting and give your site some of the attention it deserves for 2011. What would you do with your site if you could? I don’t mean what would you do purely visually – although by all means note those things down too – but to your site as a whole. Here are some jumping off points: Would you like to individually illustrate and design some of your articles? What about a monthly exploration of your favourite topic through video or audio? Who would you like to collaborate with? What do you want your site to be like for a user? What tone of voice would you like to use? How could you use imagery and typography to support your content? What would you like to create content about in the new year? It’s okay if you can’t do these things yet. It’s okay to scrub out anything where you think, “Nah, never gonna happen.” But do give some thought to what you might want to do next. The best inspiration for this comes from what you’ve already done, so keep on with that inventory. Bonus gift: a Think Vitamin article on podcasting using Skype, so you can rope in a few friends to join in, too. On the third day of Contentmas, Relly gave to me: 3. Red pens Shock news, just in: the web is not print! One of the hardest things as a writer is to reach the point where you say, “Yeah, okay, that’s it. I’m done” and send off your beloved manuscript or article to print. I’m convinced that if deadlines didn’t exist, nothing would get finished. Why? Well, at the point you hand it over to the publishing presses, you can make no more changes. At best, you can print an erratum or produce an updated second edition at a later date. And writers love to – no, they live to – tweak their creations, so handing them over is quite a struggle. Just one more comma and… Online, we have no such constraints. We can edit, correct, test, tweak, twiddle until we’re blooming sick of it. Our red pens never run out of ink. It is time for you to run a more critical eye over your content, especially the stuff already published. Relish in the opportunity to change stuff on the fly. I am not so concerned by blog articles and such (although feel free to apply this concept to those, too), but mainly by your more concrete content: about pages; contact pages; home page navigation; portfolio pages; 404 pages. Now, don’t go running amok with the cut function yet. First, put all these evergreen pages into your inventory. In the notes section, write a quick analysis of how useful this copy is. Example questions: Is your contact page up-to-date? Does your about page link to the right places? Is your portfolio current? Does your 404 page give people a way to find what they were looking for? We’ll come back to this in a few days once we have a clearer idea of how to improve our content. Bonus gift: the audio and slides of a talk I gave on microcopy and 404 pages at @media WebDirections last year. On the fourth day of Contentmas, Relly gave to me: 4. Stalling nerds Actually, I guess more accurately this is something I get given a lot. Designers and developers particularly can find a million ways to extract themselves from the content of a site but, as the site owner, and this being your personal playground and all, you mustn’t. You actually can’t, sorry. But I do understand that at this point, ‘sorting out your site’ suddenly seems a lot less exciting, especially if you are a visually-minded person and words and lists aren’t really your thing. So far, there has been a lot of not-very-exciting exercises in planning, and there’s probably a nice pile of DVDs and video games that you got from Santa worth investigating. Stay strong my friend. By now, you have probably hit upon an idea of some sort you are itching to start on, so for every half-hour you spend doing inventory, gift yourself another thirty minutes to play with that idea. Bonus gift: the Pomodoro Technique. Take one kitchen timer and a to-do list and see how far you can go. On the fifth day of Contentmas, Relly gave to me: 5. Golden rules Here are some guidelines for writing online: Make headlines for tutorials and similar content useful and descriptive; use a subheading for any terrible pun you want to work in. Create a broad opening paragraph that addresses what your article is about. Part of the creative skill in writing is to do this in a way that both informs the reader and captures their attention. If you struggle with this, consider a boxout giving a summary of the article. Use headings to break up chunks of text and allow people to scan. Most people will have a scoot about an article before starting at the beginning to give it a proper read. These headings should be equal parts informative and enticing. Try them out as questions that might be posed by the reader too. Finish articles by asking your reader to take an affirmative action: subscribe to your RSS feed; leave a comment (if comments are your thing – more on that later); follow you on Twitter; link you to somewhere they have used your tutorial or code. The web is about getting excited, making things and sharing with others, so give your readers the chance to do that. For portfolio sites, this call to action is extra important as you want to pick up new business. Encourage people to e-mail you or call you – don’t just rely on a number in the footer or an e-mail link at the top. Think up some consistent calls-to-action you can use and test them out. So, my gift to you today is a simplified page table for planning out your content to make it as useful as possible. Feel free to write a new article or tutorial, or work on that great idea from yesterday and try out these guidelines for yourself. It’s a simple framework – good headline; broad opening; headings to break up volume; strong call to action – but it will help you recognise if what you’ve written is in good shape to face the world. It doesn’t tell you anything about how to create it – that’s your endeavour – but it does give you a start. No more staring at a blank page. Bonus gift: okay, you have to buy yourself this one, but it is the gift that keeps on giving: Ginny Reddish’s Letting Go of the Words – the hands down best guide to web writing there is, with a ton of illustrative examples. On the sixth day of Contentmas, Relly gave to me: 6. Foundation-a-laying Yesterday, we played with a page table for articles. Today, we are going to set the foundations for your new, spangly, spruced up, relaunched site (for when you’re ready, of course). We’ve checked out what we’ve got, we’ve thought about what we’d like, we have a wish list for the future. Now is the time for a small reality check. Be realistic with yourself. Can you really give your site some attention every day? Record a short snippet of audio once a week? A photo diary post once a month? Look back at the wish list you made. What can you do? What can you aim for? What just isn’t possible right now? As much as we’d all love to be producing a slick video podcast and screencast three times a week, it’s better to set realistic expectations and work your way up. Where does your site sit in your online world? Do you want it to be the hub of all your social interactions, a lifestream, a considered place of publication or a free for all? Do you want to have comments (do you have the personal resource to monitor comments?) or would you prefer conversation to happen via Twitter, Facebook or not at all? Does this apply to all pages, posts and content types or just some? Get these things straight in your head and it’s easier to know what sort of environment you want to create and what content you’ll need to sustain it. Get your notebook again and think about specific topics you’d like to cover, or aspects of a project you want to go into more, and how you can go ahead and do just that. A good motivator is to think what you’ll get out of doing it, even if that is “And I’ll finally show the poxy $whatever_community that my $chosen_format is better than their $other_format.” What topics have you really wanted to get off your chest? Look through your inventory again. What gaps are there in your content just begging to be filled? Today, you’re going to give everyone the gift of your opinion. Find one of those things where someone on the internet is wrong and create a short but snappy piece to set them straight. Doesn’t that feel good? Soon you’ll be able to do this in a timely manner every time someone is wrong on the internet! Bonus gift: we’re halfway through, so I think something fun is in order. How about a man sledding naked down a hill in Brighton on a tea tray? Sometimes, even with a whole ton of content planning, it’s the spontaneous stuff that is still the most fun to share. On the seventh day of Contentmas, Relly gave to me: 7. Styles-a-guiding Not colour style guides or brand style guides or code style guides. Content style guides. You could go completely to town and write yourself a full document defining every aspect of your site’s voice and personality, plus declaring your view on contracted phrases and the Oxford comma, but this does seem a tad excessive. Unless you’re writing an entire site as a fictional character, you probably know your own voice and vocabulary better than anyone. It’s in your head, after all. Instead, equip yourself with a good global style guide (I like the Chicago Manual of Style because I can access it fully online, but the Associated Press (AP) Stylebook has a nifty iPhone app and, if I’m entirely honest, I’ve found a copy of Eats, Shoots and Leaves has set me right on all but the most technical aspects of punctuation). Next, pick a good dictionary and bookmark thesaurus.com. Then have a go at Kristina Halvorson’s ‘Voice and Tone’ exercise from her book Content Strategy for the Web, to nail down what you’d like your future content to be like: To introduce the voice and tone qualities you’re [looking to create], a good approach is to offer contrasting values. For example: Professional, not academic. Confident, not arrogant. Clever, not cutesy. Savvy, not hipster. Expert, not preachy. Take a look around some of your favourite sites and examine the writing and stylistic handling of content. What do you like? What do you want to emulate? What matches your values list? Today’s gift to you is an idea. Create a ‘swipe file’ through Evernote or Delicious and save all the stuff you come across that, regardless of topic, makes you think, “That’s really cool.” This isn’t the same as an Instapaper list you’d like to read. This is stuff you have read or have seen that is worth looking at in closer detail. Why is it so good? What is the language and style like? What impact does the typography have? How does the imagery work to enhance the message? This isn’t about creating a personal brand or any such piffle. It’s about learning to recognise how good content works and how to create something awesome yourself. Obviously, your ideas are brilliant, so take the time to understand how best to spring them on the unsuspecting public for easier world domination. Bonus gift: a nifty style guide is a must when you do have to share content creation duties with others. Here is Leeds University’s publicly available PDF version for you to take a gander at. I especially like the Rationale sections for chopping off dissenters at the knees. On the eighth day of Contentmas, Relly gave to me: 8. Times-a-making You have an actual, real plan for what you’d like to do with your site and how it is going to sound (and probably some ideas on how it’s going to look, too). I hope you are full of enthusiasm and Getting Excited To Make Things. Just before we get going and do exactly that, we are going to make sure we have made time for this creative outpouring. Have you tried to blog once a week before and found yourself losing traction after a month or two? Are there a couple of podcasts lurking neglected in your archives? Whereas half of the act of running is showing up for training, half of creating is making time rather than waiting for it to become urgent. It’s okay to write something and set a date to come back to it (which isn’t the same as leaving it to decompose in your drafts folder). Putting a date in your calendar to do something for your site means that you have a forewarning to think of a topic to write about, and space in your schedule to actually do it. Crucially, you’ve actually made some time for this content lark. To do this, you need to think about how long it takes to get something out of the door/shipped/published/whatever you want to call it. It might take you just thirty minutes to record a podcast, but also a further hour to research the topic beforehand and another hour to edit and upload the clips. Suddenly, doing a thirty minute podcast every day seems a bit unlikely. But, on the flipside, it is easy to see how you could schedule that in three chunks weekly. Put it in your calendar. Do it, publish it, book yourself in for the next week. Keep turning up. Today my gift to you is the gift of time. Set up your own small content calendar, using your favourite calendar system, and schedule time to play with new ways of creating content, time to get it finished and time to get it on your site. Don’t let good stuff go to your drafts folder to die of neglect. Bonus gift: lots of writers swear by the concept of ‘daily pages’. That is, churning out whatever is in your head to see if there is anything worth building upon, or just to lose the grocery list getting in the way. 750words.com is a site built around this concept. Go have a play. On the ninth day of Contentmas, Relly gave to me: 9. Copy enhancing An incredibly radical idea for day number nine. We are going to look at that list of permanent pages you made back on day three and rewrite the words first, before even looking at a colour palette or picking a font! Crazy as it sounds, doing it this way round could influence your design. It could shape the imagery you use. It could affect your choice of typography. IMAGINE THE POSSIBILITIES! Look at the page table from day five. Print out one for each of your homepage, about page, contact page, portfolio, archive, 404 page or whatever else you have. Use these as a place to brainstorm your ideas and what you’d like each page to do for your site. Doodle in the margin, choose words you think sound fun to say, daydream about pictures you’d like to use and colours you think would work, but absolutely, completely and utterly fill in those page tables to understand how much (or how little) content you’re playing with and what you need to do to get to ‘launch’. Then, use them for guidance as you start to write. Don’t skimp. Don’t think that a fancy icon of an envelope encourages people to e-mail you. Use your words. People get antsy at this bit. Writing can be hard work and it’s easy for me to say, “Go on and write it then!” I know this. I mean, you should see the faces I pull when I have to do anything related to coding. The closest equivalent would be when scientists have to stick their hands in big gloves attached to a glass box to do dangerous experiments. Here’s today’s gift, a little something about writing that I hope brings you comfort: To write something fantastic you almost always have to write a rubbish draft first. Now, you might get lucky and write a ‘good enough’ draft first time and that’s fab – you’ve cut some time getting to ‘fantastic’. If, however, you’ve always looked at your first attempt to write more than the bare minimum and sighed in despair, and resigned yourself to adding just a title, date and a screenshot, be cheered because you have taken the first step to being able to communicate with clarity, wit and panache. Keep going. Look at writing you admire and emulate it. Think about how you will lovingly design those words when they are done. Know that you can go back and change them. Check back with your page table to keep you on track. Do that first draft. Bonus gift: becoming a better writer helps you to explain design concepts to clients. On the tenth day of Contentmas, Relly gave to me: 10. Ideas for keeping Hurrah! You have something down on paper, ready to start evolving your site around it. Here’s where the words and visuals and interaction start to come together. Because you have a plan, you can think ahead and do things you wouldn’t be able to pull together otherwise. How about finding a fresh-faced stellar illustrator on Dribbble to create you something perfect to pep up your contact page or visualize your witty statement on statements of work. A List Apart has been doing it for years and it hasn’t worked out too badly for them, has it? What about spending this month creating a series of introductory tutorials on a topic, complete with screencasts and audio and give them a special home on your site? How about putting in some hours creating a glorious about me page, with a biography, nice picture, and where you spend your time online? You could even do the web equivalent of getting up in the attic and sorting out your site’s search to make it easier to find things in your archives. Maybe even do some manual recommendations for relevant content and add them as calls to action. How about writing a few awesome case studies with individual screenshots of your favourite work, and creating a portfolio that plays to your strengths? Don’t just rely on the pretty pictures; use your words. Otherwise no-one understands why things are the way they are on that screenshot and BAM! you’ll be judged on someone else’s tastes. (Elliot has a head start on you for this, so get to it!) Do you have a serious archive of content? What’s it like being a first-time visitor to your site? Could you write them a guide to introduce yourself and some of the most popular stuff on your site? Ali Edwards is a massively popular crafter and every day she gets new visitors who have found her multiple papercraft projects on Flickr, Vimeo and elsewhere, so she created a welcome guide just for them. What about your microcopy? Can you improve on your blogging platform’s defaults for search, comment submission and labels? I’ll bet you can. Maybe you could plan a collaboration with other like-minded souls. A week of posts about the more advanced wonders of HTML5 video. A month-long baton-passing exercise in extolling the virtues of IE (shut up, it could happen!). Just spare me any more online advent calendars. Watch David McCandless’s TED talk on his jawdropping infographic work and make something as awesome as the Billion Dollar O Gram. I dare you. Bonus gift: Grab a copy of Brian Suda’s Designing with Data, in print or PDF if Santa didn’t put one in your stocking, and make that awesome something with some expert guidance. On the eleventh day of Contentmas, Relly gave to me: 11. Pixels pushing Oh, go on then. Make a gorgeous bespoke velvet-lined container for all that lovely content. It’s proper informed design now, not just decoration. Mr. Zeldman says so. Bonus gift: I made you a movie! If books were designed like websites. On the twelfth day of Contentmas, Relly gave to me: 12. Delighters delighting The Epiphany is upon us; your site is now well on its way to being a beautiful, sustainable hub of content and you have a date in your calendar to help you keep that resolution of blogging more. What now? Keep on top of your inventory. One day it will save your butt, I promise. Keep making a little bit of time regularly to create something new: an article; an opinion piece; a small curation of related links; a photo diary; a new case study. That’s easier than an annual content bootcamp for sure. And today’s gift: look for ways to play with that content and make something a bit special. Stretch yourself a little. It’ll be worth it. Bonus gift: Paul Annett’s presentation on Ooh, that’s clever: Delighters in design from SxSW 09. All my favourite designers and developers have their own unique styles and touches. It’s what sets them apart. My very, very favourites have an eloquence and expression that they bring to their sites and to their projects. I absolutely love to explore a well-crafted, well-written site – don’t we all? I know the time it takes. I appreciate the time it takes. But the end results are delicious. Do please share your spangly, refreshed sites with me in the comments. Catch me on Twitter, I’m @RellyAB, and I’ve been your host for these Twelve Days of Contentmas. 2010 Relly Annett-Baker rellyannettbaker 2010-12-21T00:00:00+00:00 https://24ways.org/2010/a-contentmas-epiphany/ content
251 The System, the Search, and the Food Bank Imagine a warehouse, half the length of a football field, with a looped conveyer belt down the center. On the belt are plastic bins filled with assortments of shelf-stable food—one may have two bags of potato chips, seventeen pudding cups, and a box of tissues; the next, a dozen cans of beets. The conveyer belt is ringed with large, empty cardboard boxes, each labeled with categories like “Bottled Water” or “Cereal” or “Candy.” Such was the scene at my local food bank a few Saturdays ago, when some friends and I volunteered for a shift sorting donated food items. Our job was to fill the labeled cardboard boxes with the correct items nabbed from the swiftly moving, randomly stocked plastic bins. I could scarcely believe my good fortune of assignments. You want me to sort things? Into categories? For several hours? And you say there’s an element of time pressure? Listen, is there some sort of permanent position I could be conscripted into. Look, I can’t quite explain it: I just know that I love sorting, organizing, and classifying things—groceries at a food bank, but also my bookshelves, my kitchen cabinets, my craft supplies, my dishwasher arrangement, yes I am a delight to live with, why do you ask? The opportunity to create meaning from nothing is at the core of my excitement, which is why I’ve tried to build a career out of organizing digital content, and why I brought a frankly frightening level of enthusiasm to the food bank. “I can’t believe they’re letting me do this,” I whispered in awe to my conveyer belt neighbor as I snapped up a bag of popcorn for the Snacks box with the kind of ferocity usually associated with birds of prey. The jumble of donated items coming into the center need to be sorted in order for the food bank to be able to quantify, package, and distribute the food to those who need it (I sense a metaphor coming on). It’s not just a nice-to-have that we spent our morning separating cookies from carrots—it’s a crucial step in the process. Organization makes the difference between chaos and sense, between randomness and usefulness, whether we’re talking about donated groceries or—there it is—web content. This happens through the magic of criteria matching. In order for us to sort the food bank donations correctly, we needed to know not only the categories we were sorting into, but also the criteria for each category. Does canned ravioli count as Canned Soup? Does enchilada sauce count as Tomatoes? Do protein bars count as Snacks? (Answers: yes, yes, and only if they are under 10 grams of protein or will expire within three months.) Is X a Y? was the question at the heart of our food sorting—but it’s also at the heart of any information-seeking behavior. When we are organizing, or looking for, any kind of information, we are asking ourselves: What is the criteria that defines Y? Does X meet that criteria? We don’t usually articulate it so concretely because it’s a background process, only leaping to consciousness when we encounter a stumbling block. If cans of broth flew by on the conveyer belt, it didn’t require much thought to place them in the Canned Soup box. Boxed broth, on the other hand, wasn’t allowed, causing a small cognitive hiccup—this X is NOT a Y—that sometimes meant having to re-sort our boxes. On the web, we’re interested—I would hope—in reducing cognitive hiccups for our users. We are interested in making our apps easy to use, our websites easy to navigate, our information easy to access. After all, most of the time, the process of using the internet is one of uniting a question with an answer—Is this article from a trustworthy source? Is this clothing the style I want? Is this company paying their workers a living wage? Is this website one that can answer my question? Is X a Y? We have a responsibility, therefore, to make information easy for our users to find, understand, and act on. This means—well, this means a lot of things, and I’ve got limited space here, so let’s focus on these three lessons from the food bank: Use plain, familiar language. This advice seems to be given constantly, but that’s because it’s solid and it’s not followed enough. Your menu labels, page names, and headings need to reflect the word choice of your users. Think how much harder it would have been to sort food if the boxes were labeled according to nutritional content, grocery store aisle number, or Latin name. How much would it slow sorting down if the Tomatoes box were labeled Nightshades? It sounds silly, but it’s not that different from sites that use industry jargon, company lingo, acronyms (oh, yes, I’ve seen it), or other internally focused language when trying to provide wayfinding for users. Choose words that your audience knows—not only will they be more likely to spot what they’re looking for on your site or app, but you’ll turn up more often in search results. Create consistency in all things. Missteps in consistency look like my earlier chicken broth example—changing up how something looks, sounds, or functions creates a moment of cognitive dissonance, and those moments add up. The names of products, the names of brands, the names of files and forms and pages, the names of processes and procedures and concepts—these all need to be consistently spelled, punctuated, linked, and referenced, no matter what section or level the user is in. If submenus are visible in one section, they should be visible in all. If calls-to-action are a graphic button in one section, they are the same graphic button in all. Every affordance, every module, every design choice sets up user expectations; consistency keeps those expectations afloat, making for a smoother experience overall. Make the system transparent. By this, I do not mean that every piece of content should be elevated at all times. The horror. But I do mean that we should make an effort to communicate the boundaries of the digital space from any given corner within. Navigation structures operate just as much as a table of contents as they do a method of moving from one place to another. Page hierarchies help explain content relationships, communicating conceptual relevancy and relative importance. Submenus illustrate which related concepts may be found within a given site section. Take care to show information that conveys the depth and breadth of the system, rather than obscuring it. This idea of transparency was perhaps the biggest challenge we experienced in food sorting. Imagine us volunteers as users, each looking for a specific piece of information in the larger system. Like any new visitor to a website, we came into the system not knowing the full picture. We didn’t know every category label around the conveyer belt, nor what criteria each category warranted. The system wasn’t transparent for us, so we had to make it transparent as we went. We had to stop what we were doing and ask questions. We’d ask staff members. We’d ask more seasoned volunteers. We’d ask each other. We’d make guesses, and guess wrongly, and mess up the boxes, and correct our mistakes, and learn. The more we learned, the easier the sorting became. That is, we were able to sort more quickly, more efficiently, more accurately. The better we understood the system, the better we were at interacting with it. The same is true of our users: the better they understand digital spaces, the more effective they are at using them. But visitors to our apps and websites do not have the luxury of learning the whole system. The fumbling trial-and-error method that I used at the food bank can, on a website, drive users away—or, worse, misinform or hurt them. This is why we must make choices that prioritize transparency, consistency, and familiarity. Our users want to know if X is a Y—well-sorted content can give them the answer. 2018 Lisa Maria Martin lisamariamartin 2018-12-16T00:00:00+00:00 https://24ways.org/2018/the-system-the-search-and-the-food-bank/ content
252 Turn Jekyll up to Eleventy Sometimes it pays not to over complicate things. While many of the sites we use on a daily basis require relational databases to manage their content and dynamic pages to respond to user input, for smaller, simpler sites, serving pre-rendered static HTML is usually a much cheaper — and more secure — option. The JAMstack (JavaScript, reusable APIs, and prebuilt Markup) is a popular marketing term for this way of building websites, but in some ways it’s a return to how things were in the early days of the web, before developers started tinkering with CGI scripts or Personal HomePage. Indeed, my website has always served pre-rendered HTML; first with the aid of Movable Type and more recently using Jekyll, which Anna wrote about in 2013. By combining three approachable languages — Markdown for content, YAML for data and Liquid for templating — the ergonomics of Jekyll found broad appeal, influencing the design of the many static site generators that followed. But Jekyll is not without its faults. Aside from notoriously slow build times, it’s also built using Ruby. While this is an elegant programming language, it is yet another ecosystem to understand and manage, and often alongside one we already use: JavaScript. For all my time using Jekyll, I would think to myself “this, but in Node”. Thankfully, one of Santa’s elves (Zach Leatherman) granted my Atwoodian wish and placed such a static site generator under my tree. Introducing Eleventy Eleventy is a more flexible alternative Jekyll. Besides being written in Node, it’s less strict about how to organise files and, in addition to Liquid, supports other templating languages like EJS, Pug, Handlebars and Nunjucks. Best of all, its build times are significantly faster (with future optimisations promising further gains). As content is saved using the familiar combination of YAML front matter and Markdown, transitioning from Jekyll to Eleventy may seem like a reasonable idea. Yet as I’ve discovered, there are a few gotchas. If you’ve been considering making the switch, here are a few tips and tricks to help you on your way1. Note: Throughout this article, I’ll be converting Matt Cone’s Markdown Guide site as an example. If you want to follow along, start by cloning the git repository, and then change into the project directory: git clone https://github.com/mattcone/markdown-guide.git cd markdown-guide Before you start If you’ve used tools like Grunt, Gulp or Webpack, you’ll be familiar with Node.js but, if you’ve been exclusively using Jekyll to compile your assets as well as generate your HTML, now’s the time to install Node.js and set up your project to work with its package manager, NPM: Install Node.js: Mac: If you haven’t already, I recommend installing Homebrew, a package manager for the Mac. Then in the Terminal type brew install node. Windows: Download the Windows installer from the Node.js website and follow the instructions. Initiate NPM: Ensure you are in the directory of your project and then type npm init. This command will ask you a few questions before creating a file called package.json. Like RubyGems’s Gemfile, this file contains a list of your project’s third-party dependencies. If you’re managing your site with Git, make sure to add node_modules to your .gitignore file too. Unlike RubyGems, NPM stores its dependencies alongside your project files. This folder can get quite large, and as it contains binaries compiled to work with the host computer, it shouldn’t be version controlled. Eleventy will also honour the contents of this file, meaning anything you want Git to ignore, Eleventy will ignore too. Installing Eleventy With Node.js installed and your project setup to work with NPM, we can now install Eleventy as a dependency: npm install --save-dev @11ty/eleventy If you open package.json you should see the following: … "devDependencies": { "@11ty/eleventy": "^0.6.0" } … We can now run Eleventy from the command line using NPM’s npx command. For example, to covert the README.md file to HTML, we can run the following: npx eleventy --input=README.md --formats=md This command will generate a rendered HTML file at _site/README/index.html. Like Jekyll, Eleventy shares the same default name for its output directory (_site), a pattern we will see repeatedly during the transition. Configuration Whereas Jekyll uses the declarative YAML syntax for its configuration file, Eleventy uses JavaScript. This allows its options to be scripted, enabling some powerful possibilities as we’ll see later on. We’ll start by creating our configuration file (.eleventy.js), copying the relevant settings in _config.yml over to their equivalent options: module.exports = function(eleventyConfig) { return { dir: { input: "./", // Equivalent to Jekyll's source property output: "./_site" // Equivalent to Jekyll's destination property } }; }; A few other things to bear in mind: Whereas Jekyll allows you to list folders and files to ignore under its exclude property, Eleventy looks for these values inside a file called .eleventyignore (in addition to .gitignore). By default, Eleventy uses markdown-it to parse Markdown. If your content uses advanced syntax features (such as abbreviations, definition lists and footnotes), you’ll need to pass Eleventy an instance of this (or another) Markdown library configured with the relevant options and plugins. Layouts One area Eleventy currently lacks flexibility is the location of layouts, which must reside within the _includes directory (see this issue on GitHub). Wanting to keep our layouts together, we’ll move them from _layouts to _includes/layouts, and then update references to incorporate the layouts sub-folder. We could update the layout: frontmatter property in each of our content files, but another option is to create aliases in Eleventy’s config: module.exports = function(eleventyConfig) { // Aliases are in relation to the _includes folder eleventyConfig.addLayoutAlias('about', 'layouts/about.html'); eleventyConfig.addLayoutAlias('book', 'layouts/book.html'); eleventyConfig.addLayoutAlias('default', 'layouts/default.html'); return { dir: { input: "./", output: "./_site" } }; } Determining which template language to use Eleventy will transform Markdown (.md) files using Liquid by default, but we’ll need to tell Eleventy how to process other files that are using Liquid templates. There are a few ways to achieve this, but the easiest is to use file extensions. In our case, we have some files in our api folder that we want to process with Liquid and output as JSON. By appending the .liquid file extension (i.e. basic-syntax.json becomes basic-syntax.json.liquid), Eleventy will know what to do. Variables On the surface, Jekyll and Eleventy appear broadly similar, but as each models its content and data a little differently, some template variables will need updating. Site variables Alongside build settings, Jekyll let’s you store common values in its configuration file which can be accessed in our templates via the site.* namespace. For example, in our Markdown Guide, we have the following values: title: "Markdown Guide" url: https://www.markdownguide.org baseurl: "" repo: http://github.com/mattcone/markdown-guide comments: false author: name: "Matt Cone" og_locale: "en_US" Eleventy’s configuration uses JavaScript which is not suited to storing values like this. However, like Jekyll, we can use data files to store common values. If we add our site-wide values to a JSON file inside a folder called _data and name this file site.json, we can keep the site.* namespace and leave our variables unchanged. { "title": "Markdown Guide", "url": "https://www.markdownguide.org", "baseurl": "", "repo": "http://github.com/mattcone/markdown-guide", "comments": false, "author": { "name": "Matt Cone" }, "og_locale": "en_US" } Page variables The table below shows a mapping of common page variables. As a rule, frontmatter properties are accessed directly, whereas derived metadata values (things like URLs, dates etc.) get prefixed with the page.* namespace: Jekyll Eleventy page.url page.url page.date page.date page.path page.inputPath page.id page.outputPath page.name page.fileSlug page.content content page.title title page.foobar foobar When iterating through pages, frontmatter values are available via the data object while content is available via templateContent: Jekyll Eleventy item.url item.url item.date item.date item.path item.inputPath item.name item.fileSlug item.id item.outputPath item.content item.templateContent item.title item.data.title item.foobar item.data.foobar Ideally the discrepancy between page and item variables will change in a future version (see this GitHub issue), making it easier to understand the way Eleventy structures its data. Pagination variables Whereas Jekyll’s pagination feature is limited to paginating posts on one page, Eleventy allows you to paginate any collection of documents or data. Given this disparity, the changes to pagination are more significant, but this table shows a mapping of equivalent variables: Jekyll Eleventy paginator.page pagination.pageNumber paginator.per_page pagination.size paginator.posts pagination.items paginator.previous_page_path pagination.previousPageHref paginator.next_page_path pagination.nextPageHref Filters Although Jekyll uses Liquid, it provides a set of filters that are not part of the core Liquid library. There are quite a few — more than can be covered by this article — but you can replicate them by using Eleventy’s addFilter configuration option. Let’s convert two used by our Markdown Guide: jsonify and where. The jsonify filter outputs an object or string as valid JSON. As JavaScript provides a native JSON method, we can use this in our replacement filter. addFilter takes two arguments; the first is the name of the filter and the second is the function to which we will pass the content we want to transform: // {{ variable | jsonify }} eleventyConfig.addFilter('jsonify', function (variable) { return JSON.stringify(variable); }); Jekyll’s where filter is a little more complicated in that it takes two additional arguments: the key to look for, and the value it should match: {{ site.members | where: "graduation_year","2014" }} To account for this, instead of passing one value to the second argument of addFilter, we can instead pass three: the array we want to examine, the key we want to look for and the value it should match: // {{ array | where: key,value }} eleventyConfig.addFilter('where', function (array, key, value) { return array.filter(item => { const keys = key.split('.'); const reducedKey = keys.reduce((object, key) => { return object[key]; }, item); return (reducedKey === value ? item : false); }); }); There’s quite a bit going on within this filter, but I’ll try to explain. Essentially we’re examining each item in our array, reducing key (passed as a string using dot notation) so that it can be parsed correctly (as an object reference) before comparing its value to value. If it matches, item remains in the returned array, else it’s removed. Phew! Includes As with filters, Jekyll provides a set of tags that aren’t strictly part of Liquid either. This includes one of the most useful, the include tag. LiquidJS, the library Eleventy uses, does provide an include tag, but one using the slightly different syntax defined by Shopify. If you’re not passing variables to your includes, everything should work without modification. Otherwise, note that whereas with Jekyll you would do this: <!-- page.html --> {% include include.html value="key" %} <!-- include.html --> {{ include.value }} in Eleventy, you would do this: <!-- page.html --> {% include "include.html", value: "key" %} <!-- include.html --> {{ value }} A downside of Shopify’s syntax is that variable assignments are no longer scoped to the include and can therefore leak; keep this in mind when converting your templates as you may need to make further adjustments. Tweaking Liquid You may have noticed in the above example that LiquidJS expects the names of included files to be quoted (else it treats them as variables). We could update our templates to add quotes around file names (the recommended approach), but we could also disable this behaviour by setting LiquidJS’s dynamicPartials option to false. Additionally, Eleventy doesn’t support the include_relative tag, meaning you can’t include files relative to the current document. However, LiquidJS does let us define multiple paths to look for included files via its root option. Thankfully, Eleventy allows us to pass options to LiquidJS: eleventyConfig.setLiquidOptions({ dynamicPartials: false, root: [ '_includes', '.' ] }); Collections Jekyll’s collections feature lets authors create arbitrary collections of documents beyond pages and posts. Eleventy provides a similar feature, but in a far more powerful way. Collections in Jekyll In Jekyll, creating collections requires you to add the name of your collections to _config.yml and create corresponding folders in your project. Our Markdown Guide has two collections: collections: - basic-syntax - extended-syntax These correspond to the folders _basic-syntax and _extended-syntax whose content we can iterate over like so: {% for syntax in site.extended-syntax %} {{ syntax.title }} {% endfor %} Collections in Eleventy There are two ways you can set up collections in 11ty. The first, and most straightforward, is to use the tag property in content files: --- title: Strikethrough syntax-id: strikethrough syntax-summary: "~~The world is flat.~~" tag: extended-syntax --- We can then iterate over tagged content like this: {% for syntax in collections.extended-syntax %} {{ syntax.data.title }} {% endfor %} Eleventy also allows us to configure collections programmatically. For example, instead of using tags, we can search for files using a glob pattern (a way of specifying a set of filenames to search for using wildcard characters): eleventyConfig.addCollection('basic-syntax', collection => { return collection.getFilteredByGlob('_basic-syntax/*.md'); }); eleventyConfig.addCollection('extended-syntax', collection => { return collection.getFilteredByGlob('_extended-syntax/*.md'); }); We can extend this further. For example, say we wanted to sort a collection by the display_order property in our document’s frontmatter. We could take the results of collection.getFilteredByGlob and then use JavaScript’s sort method to sort the result: eleventyConfig.addCollection('example', collection => { return collection.getFilteredByGlob('_examples/*.md').sort((a, b) => { return a.data.display_order - b.data.display_order; }); }); Hopefully, this gives you just a hint of what’s possible using this approach. Using directory data to manage defaults By default, Eleventy will maintain the structure of your content files when generating your site. In our case, that means /_basic-syntax/lists.md is generated as /_basic-syntax/lists/index.html. Like Jekyll, we can change where files are saved using the permalink property. For example, if we want the URL for this page to be /basic-syntax/lists.html we can add the following: --- title: Lists syntax-id: lists api: "no" permalink: /basic-syntax/lists.html --- Again, this is probably not something we want to manage on a file-by-file basis but again, Eleventy has features that can help: directory data and permalink variables. For example, to achieve the above for all content stored in the _basic-syntax folder, we can create a JSON file that shares the name of that folder and sits inside it, i.e. _basic-syntax/_basic-syntax.json and set our default values. For permalinks, we can use Liquid templating to construct our desired path: { "layout": "syntax", "tag": "basic-syntax", "permalink": "basic-syntax/{{ title | slug }}.html" } However, Markdown Guide doesn’t publish syntax examples at individual permanent URLs, it merely uses content files to store data. So let’s change things around a little. No longer tied to Jekyll’s rules about where collection folders should be saved and how they should be labelled, we’ll move them into a folder called _content: markdown-guide └── _content ├── basic-syntax ├── extended-syntax ├── getting-started └── _content.json We will also add a directory data file (_content.json) inside this folder. As directory data is applied recursively, setting permalink to false will mean all content in this folder and its children will no longer be published: { "permalink": false } Static files Eleventy only transforms files whose template language it’s familiar with. But often we may have static assets that don’t need converting, but do need copying to the destination directory. For this, we can use pass-through file copy. In our configuration file, we tell Eleventy what folders/files to copy with the addPassthroughCopy option. Then in the return statement, we enable this feature by setting passthroughFileCopy to true: module.exports = function(eleventyConfig) { … // Copy the `assets` directory to the compiled site folder eleventyConfig.addPassthroughCopy('assets'); return { dir: { input: "./", output: "./_site" }, passthroughFileCopy: true }; } Final considerations Assets Unlike Jekyll, Eleventy provides no support for asset compilation or bundling scripts — we have plenty of choices in that department already. If you’ve been using Jekyll to compile Sass files into CSS, or CoffeeScript into Javascript, you will need to research alternative options, options which are beyond the scope of this article, sadly. Publishing to GitHub Pages One of the benefits of Jekyll is its deep integration with GitHub Pages. To publish an Eleventy generated site — or any site not built with Jekyll — to GitHub Pages can be quite involved, but typically involves copying the generated site to the gh-pages branch or including that branch as a submodule. Alternatively, you could use a continuous integration service like Travis or CircleCI and push the generated site to your web server. It’s enough to make your head spin! Perhaps for this reason, a number of specialised static site hosts have emerged such as Netlify and Google Firebase. But remember; you can publish a static site almost anywhere! Going one louder If you’ve been considering making the switch, I hope this brief overview has been helpful. But it also serves as a reminder why it can be prudent to avoid jumping aboard bandwagons. While it’s fun to try new software and emerging technologies, doing so can require a lot of work and compromise. For all of Eleventy’s appeal, it’s only a year old so has little in the way of an ecosystem of plugins or themes. It also only has one maintainer. Jekyll on the other hand is a mature project with a large community of maintainers and contributors supporting it. I moved my site to Eleventy because the slowness and inflexibility of Jekyll was preventing me from doing the things I wanted to do. But I also had time to invest in the transition. After reading this guide, and considering the specific requirements of your project, you may decide to stick with Jekyll, especially if the output will essentially stay the same. And that’s perfectly fine! But these go to 11. Information provided is correct as of Eleventy v0.6.0 and Jekyll v3.8.5 ↩ 2018 Paul Lloyd paulrobertlloyd 2018-12-11T00:00:00+00:00 https://24ways.org/2018/turn-jekyll-up-to-eleventy/ content